Error mitigation by training with fermionic linear optics




May 27, 2021 3:15 PM


Noisy intermediate-scale quantum (NISQ) computers could solve quantum-mechanical simulation problems that are beyond the capabilities of classical computers. However, NISQ devices experience significant errors which, if not corrected, can render physical quantities measured in these simulations inaccurate or meaningless. In this talk I will describe a method of reducing these errors which is tailored to quantum algorithms for simulating fermionic systems. The method is based on executing quantum circuits in the model of fermionic linear optics, which are known to be efficiently simulable classically, to infer the relationship between exact and noisy measurement outcomes, and hence undo the effect of noise. We validated our method by applying it to the VQE algorithm for estimating ground state energies of instances of the Fermi-Hubbard model. In classical numerical simulations of 12-qubit examples with physically realistic levels of depolarising noise, errors were reduced by a factor of around 34 compared with the uncorrected case. Smaller experiments on quantum hardware demonstrate an average reduction in errors by a factor of 10 or more.


Zoom meeting details 

Topic: Quantum Information and Quantum Computing Working Group
Time: May 27, 2021, 3:15 PM Warsaw
Join Zoom Meeting

Meeting ID: 96294497969
Passcode: 729533

If you encounter any problems with connecting to the Zoom meeting, please email directly.