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Abstract

Since the introduction of the quantum Turing machine almost half a century ago, quan-

tum computing has emerged as a promising technology and an active interdisciplinary field

of research. The quantum circuit model, which is polynomially equivalent to a quantum

Turing machine, arose as the dominant formalism in quantum computation. Interestingly,

such a gate-based model proved useful not only in describing quantum information process-

ing in quantum computing hardware but also in applications such as many-body quantum

systems, quantum complexity, and black hole physics. One of the reasons for such a di-

verse set of applications is that quantum circuits can be used to model the complexity of

quantum states supported on discrete quantum physical systems. The question about the

complexity of a specific unitary operation, which prepares the quantum state of interest

up to a given precision, is known to be hard. However, the question about the joint up-

per bounds on such complexities is tangible and can be understood as a question about

the computational efficiency of elementary quantum operations used to prepare the states.

Indeed, the seminal Solovay-Kitaev (SK) theorem provides such bounds for any discrete

universal gate set. However, it is known that certain gate sets enjoy the optimal scaling,

which is better than the SK bound.

In this thesis, we explore the bounds on the efficiency of universal gate sets based on the

spectral gap of the corresponding t-moment (or averaging) operators. We primarily focus

on the finite-scale spectral gaps, which can, in principle, be computed.

Such an approach allows one to derive the non-constructive Solovay-Kitaev-like (SKL)

theorems. We demonstrate how to obtain the SKL theorem using a construction based

on the correspondence between δ-approximate t-designs and ϵ-nets, which are ubiquitous

constructs, widely used in quantum information theory. We achieve such a correspondence

by constructing polynomial approximations of the Dirac delta based on heat kernels, which

are well-known and natural objects that find many applications in mathematical physics.
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Using such an approach, we were able to improve the scaling of δ compared to the state of

the art, while essentially retaining the scaling of t.

Aside from deriving the mentioned SKL theorem, we provide a relatively simple proof for

the poly-logarithmic decay of the spectral gap with calculable constants and an alternative

proof for the (global) spectral gap SKL theorem.

Finally, we introduce the notion of the Quantum Circuit Overhead (QCO) and the related

notion of T -Quantum Circuit Overhead (T -QCO), which we believe are suitable measures

to compare the efficiency of various gate sets and can be upper-bounded via simple formulas

and numerical simulations. Aside from its direct relation to computational efficiency, the

notion of the overhead can be used as a reasonable proxy for the actual cost-effectiveness

of gate sets in certain NISQ and fault-tolerant architectures. We use this approach to gain

insight into the efficiency of various random ensembles of single-qubit gate sets. Moreover,

we numerically analyse several specific choices, such as Clifford+T and Super-Golden gate

sets, obtaining interesting results concerning the efficiency of the famous T gate.

Crucially, we put a great emphasis on obtaining formulas where all constants are known

or can be calculated in principle via numerical simulations on supercomputing clusters.

Such an approach differs from some of the more mathematical works, in which the values

of specific constants are not provided.



Streszczenie

Od czasu przedstawienia kwantowej maszyny Turinga prawie pół wieku temu, obliczenia

kwantowe wyłoniły się jako obiecująca technologia i aktywny interdyscyplinarny obszar

badań. Model obwodu kwantowego, który jest wielomianowo równoważny z kwantową

maszyną Turinga, stał się dominującym formalizmem w obliczeniach kwantowych. Co in-

teresujące, taki bramkowy model okazał się użyteczny nie tylko do opisu przetwarzania

informacji kwantowej w sprzęcie do obliczeń kwantowych, lecz również znalazł zastosowa-

nia w obszarach takich jak wielociałowe układy kwantowe, złożoność kwantowa i fizyka

czarnych dziur. Jednym z powodów tak różnorodnego wachlarza zastosowań jest fakt, że

obwody kwantowe mogą zostać użyte do modelowania złożoności stanów kwantowych real-

izowanych przez dyskretne układy kwantowe. Wiadomo, że pytanie o złożoność konkretnej

operacji unitarnej, która przygotowuje zadany stan kwantowy z zadaną dokładnością, jest

trudne. Jednakże pytanie o wspólne ograniczenia górne na takie złożoności jest namacalne

i może być rozumiane jako pytanie o efektywność obliczeniową elementarnych operacji

kwantowych używanych do przygotowania stanów. W rzeczy samej, słynne twierdzenie

Solovaya-Kitaeva (SK) wyznacza takie ograniczenia dla dowolnego dyskretnego zestawu

bramek uniwersalnych. Jednakże wiadomo, że istnieją pewne zestawy bramek cechujące

się optymalnym skalowaniem, które jest lepsze od ograniczenia wynikającego z twierdzenia

SK.

W tej rozprawie badamy ograniczenia na efektywność uniwersalnych zestawów bramek

opierając się na przerwie spektralnej odpowiadających im operatorów t-momentów (bądź

uśredniania). Skupiamy się przede wszystkim na przerwach spektralnych na skończonej

skali, które mogą być, co do zasady, wyliczone.

Takie podejście pozwala na wyprowadzenie niekonstruktywnych twierdzeń podobnych do

twierdzenia Solovaya-Kitaeva (ang. Solovay-Kitaev-like; SKL). Demonstrujemy w jaki

sposób można uzyskać twierdzenie SKL używając konstrukcji opartej na odpowiedniości
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między δ-przybliżonymi t-designami oraz ϵ-netami, które są wszechobecnymi konstruk-

tami, stosowanymi szeroko w teorii informacji kwantowej. Uzyskujemy taką odpowied-

niość poprzez konstrukcję wielomianowych przybliżeń delty Diraca opartych na jądrach

ciepła, które są dobrze znanymi i naturalnymi obiektami, znajdującymi wiele zastosowań w

fizyce matematycznej. Używając takiego podejścia, byliśmy w stanie poprawić skalowanie

δ względem najlepszego istniejącego wyniku, zasadniczo zachowując przy tym skalowanie

t.

Poza wyprowadzeniem wspomnianego twierdzenia SKL, prezentujemy względnie prosty

dowód na wielologarytmiczny zanik przerwy spektralnej ze stałymi, które są obliczalne

oraz alternatywny dowód twierdzenia SKL z (globalną) przerwą spektralną.

Ostatecznie, wprowadzamy pojęcie Quantum Circuit Overhead (QCO) i powiązane z nim

pojęcie T -Quantum Circuit Overhead, który naszym zdaniem mogą być odpowiednią miarą

do porównywania efektywności różnych zestawów bramek kwantowych i może być ogranic-

zony od góry za pomocą prostych wzorów i symulacji numerycznych. Poza bezpośrednim

związkiem z efektywnością obliczeniową, pojęcie overheadu może być użyte jako rozsądna

miara pośrednia (proxy) efektywności kosztowej w niektórych architekturach NISQ oraz z

pełną korekcją błędów. Używamy tego podejścia, aby uzyskać wgląd w efektywność różnych

losowych zespołów zestawów bramek jednokubitowych. Ponadto analizujemy numerycznie

kilka konkretnych wyborów, takich jak zestaw bramek Clifford+T i Super-Golden, uzysku-

jąc interesujące wyniki dotyczące efektywności słynnej bramki T.

Co warte podkreślenia, kładziemy duży nacisk na to, aby wszystkie stałe w uzyskanych

wzorach były znane bądź, co do zasady, obliczalne za pomocą symulacji numerycznych na

klastrach superkomputerowych. Takie podejście różni się od niektórych bardziej matem-

atycznych prac, w których wartości określonych stałych nie są podane.
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Chapter 1

Introduction

The 20th century was rich in scientific breakthroughs. One of the most important ad-

vances in physics at that time was the birth of quantum mechanics. While Max Planck

is often considered the “father” of quantum theory, the first mathematical framework of

quantum mechanics was formulated in the mid-1920s by Werner Heisenberg and later by

Erwin Schrödinger 1, marking the beginning of a new era in theoretical physics. Around

ten years later, in 1936, Alan Turing laid the foundations of modern computer science

by publishing a paper introducing a theoretical model of computation that can be made

universal, later known as the Turing machine. Initially, quantum theory and computer

science were seemingly unrelated branches of science, developing independently. However,

at some point, physicists started to consider computational problems in the language of

quantum theory. A key early step in this direction was made by Paul Benioff in 1980,

with the introduction of the quantum Turing machine [1]. With the arrival of more ad-

vanced digital computers, scientists attempted to model quantum systems using computer

simulations. However, physicists started to notice that such simulations may be inefficient

due to the potential exponential scaling of required resources. This was articulated by

Richard Feynman and Yuri Manin, who proposed using machines based on quantum phe-

nomena to run potentially more efficient simulations [2, 3], thereby essentially establishing

the concept of a quantum computer. The notion of a quantum computer was formalized by

David Deutsch in 1985, who was also considering the applications of quantum computers

to problems beyond quantum physics. Since then, numerous quantum algorithms [4] have

been proposed. The first notable examples are the oracular algorithms of Deutsch (1985)

and Simon (1994) [5, 6], which did not turn out to be particularly useful, but illustrated
1Heisenberg’s “matrix mechanics” and Schrödinger’s “wave mechanics” turned out to be mathematically

equivalent.
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query-complexity separations for some abstract problems. However, soon after that and

inspired by Simon’s work, Shor’s algorithm (1994) was introduced, demonstrating an expo-

nential quantum speed-up for the factoring and discrete logarithm problem. This sparked

a surge in interest in quantum computing. Two years later, Grover’s algorithm (1996)

was introduced, demonstrating a generic quadratic quantum speed-up for the unstructured

search problem [7, 8]. The more recent algorithms with potential applications include HHL

(2008) [9] and more hardware-ready VQE and QAOA (2014) [10, 11].

Nowadays, quantum computing is an emerging technology and a multidisciplinary area

of science, at the intersection of theoretical and experimental physics, computer science,

mathematics, and engineering. Quantum computers are a type of computers that utilize

quantum mechanical phenomena to solve computational problems and, as such, work in a

different paradigm of computation than classical computers.

The quantum circuit model [4, 12], which is polynomially equivalent to the quantum Turing

machine, is the universal and most widely used model of quantum computation. In this

model, the quantum information stored in the quantum bit (qubit) register is processed

through a series of elementary quantum operations, known as quantum gates. This is

analogous to the classical circuit model, which can be used to describe the classical infor-

mation processing occurring inside classical computers. Similarly to the classical circuits,

which can be implemented using a finite set of elementary logic gates 2, a finite universal

quantum gate set S is sufficient to realize an arbitrary n-qubit global unitary operation

by a quantum circuit made out of the quantum gates from such a gate set. However,

since there is a continuum of possible quantum operations, contrary to the classical case,

the generic global quantum operation can be implemented only up to some finite error ϵ
3. Although the gate-based quantum computers offer a potential advantage over classical

computers, their current level of development makes such improvements debatable at best.

This is mainly due to the moderate number of qubits, which, together with the quantum

gates, state preparation, and measurement, are noisy enough to render the fault-tolerant

quantum error correction schemes impossible. Executing potentially powerful quantum

algorithms that require fault-tolerance, such as Shor’s algorithm, is practically impossible

in this scenario. Such devices are called noisy intermediate-scale quantum (NISQ) devices.

In the case of NISQ quantum hardware, reducing circuit length (i.e. the number of quantum

gates used) and depth, especially the number of costly gates, such as the noisy entangling
2In fact, a single logical gate is needed - e.g. both NAND and NOR gates are universal.
3If the gate set is universal, then the error ϵ can be made arbitrarily small, for any target operation, by

allowing long enough circuits.
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gates, is necessary to keep the fidelities at an acceptable range and make the computations

feasible [13, 14, 15]. Such circuit optimization is performed by the quantum compiler

[16, 17, 4], which additionally decomposes quantum logical gates into the native gates

used in a target quantum computer. Moreover, implementing quantum error correction

schemes is associated with a significant overhead, which may cancel out potential speed-

ups. Thus, even fault-tolerant quantum machines require a certain level of optimization,

e.g., due to the high cost of the fault-tolerant implementation of specific gates used, e.g.,

the non-Clifford T gates in the case of Clifford+T quantum gates [18, 19, 20, 21, 22, 23, 24].

Such considerations naturally lead to questions like: What is the shortest circuit length

ℓ, constructed from gates in S, needed to implement an arbitrary global unitary quantum

operation on an n-qubit register, up to some finite precision ϵ?; How does ℓ depend on

the universal gate set S used? Such questions can be understood as questions about the

efficiency of various gate sets S or, in the language of the complexities of unitary operations,

about the joint upper bounds on the complexity of all global unitary operations with respect

to S and for a certain precision ϵ.

Importantly, the questions about the efficiency of quantum gate sets are not only crucial to

impose bounds on the compilation of quantum circuits executable on quantum computers,

which are artificial, human-made machines. Although the statement that we all live inside

a quantum computer is highly debatable [25], the dynamics of various naturally occurring

objects can be described, or at least approximated, as a unitary dynamics of discrete

quantum systems. Consequently, such dynamics naturally involve quantum information

processing, which can be expressed in the universal language of quantum circuits. Such an

approach has been recently used to study the dynamics of quantum many-body systems

and, due to the dualities between physical theories and conjectures such as those of Brown

and Susskind [26], to gain insight into the properties of black holes [27, 28, 29, 30, 31].

Although the seminal Solovay-Kitaev theorem [32, 12, 4] states that all universal gate

sets are essentially efficient, namely ℓ = O(logc(1/ϵ)), where c is a constant larger than

one 4, examples of gate sets with the optimal asymptotic scaling ℓ = Θ(log(1/ϵ)) are

known [34, 35, 36, 37]. In particular, the gate sets S with a so-called spectral gap enjoy

such scaling. Nowadays, it is believed that every universal gate set has a spectral gap.

Although the proof of such a conjecture (dating back to Sarnak) eluded mathematicians

for years, the proof without additional assumptions on the gates 5 is still not known. In
4The value of the constant c depends on the proof and varies between 3+α, for any α > 0 and ≈ 3.97.

Recently, the cubic barrier has been broken with c ≈ 1.44 [33].
5Such as the algebraicity of matrix entries, which is a property not satisfied generically.
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fact, the history of the spectral gap results is longer and can be traced back to Kazhdan’s

property (T) [38].

However, the knowledge of the (global) spectral gap is not necessary to obtain poly-

logarithmic bounds on ℓ. Indeed, there exist certain non-constructive theorems, similar

to the Solovay-Kitaev theorem, that are based on the knowledge of the spectral gap at

finite ϵ-dependent scales [39, 40, 41]. We refer to all constructive and non-constructive

bounds on ℓ, which are poly-logarithmic in 1/ϵ, as Solovay-Kitaev-like (SKL) theorems.

Contrary to the (global) spectral gap, the finite-scale spectral gap is, in principle, com-

putable. Moreover, there exist poly-logarithmic bounds on the decay of the finite-scale

spectral gap, which can be used to obtain SKL theorems using only the knowledge of the

spectral gap at some group-dependent constant scale [40]. Unfortunately, such bounds

often contain unknown constants, limiting their practical applications.

The main objective of this thesis is to study the calculable bounds on the

efficiency of universal quantum gate sets.

In this thesis, we focus on the derivation of the bounds on the efficiency of quantum gate

sets using the SKL theorems based on the finite-scale spectral gap. Crucially, we are

interested not in the asymptotic scaling but in explicit bounds with all constants known

or computable. Since such bounds already exist, our goal was to improve them, use more

natural objects, or provide alternative, preferably simplified, proofs. Our strategy is mainly

based on the establishment of the unitary δ-approximate t-design and ϵ-net correspondence

using polynomial approximate identities stemming from the heat kernels, which are well-

known and natural mathematical objects. This allows us to derive the SKL theorems based

on the finite-scale spectral gap. Moreover, we introduce a new notion of the computational

efficiency of the quantum gate sets - the Quantum Circuit Overhead (QCO), which we

believe to be a good way for comparing the efficiency of different gate sets. Additionally,

we introduce the related notion of the T -Quantum Circuit Overhead, which is more suitable

for practical quantum hardware considerations. We also show how to upper-bound such

overheads using the finite-scale spectral gap. Additionally, we supplement our theoretical

considerations with numerical simulations on supercomputing clusters, demonstrating how

our bounds can be used in practice. Such numerical simulations allow us to analyse various

quantum gate sets, including the single-qubit Clifford+T, and shed light on the efficiency

of the famous T gate and so-called Super-Golden Gates.

The thesis is organised as follows: Chapter 2 contains a common theoretical background

needed to understand the results presented in the papers. It briefly covers the topics such as:

basic notions, elements of group theory and analysis (including heat kernels), probability
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theory, quantum computation and information (including ϵ-nets, δ-approximate t-designs

and spectral gaps), and the formulation of the relevant state-of-the-art (SOTA) results, such

as the SKL theorems and spectral gaps. Chapters 3, 4, and 5 are related to the papers

I, II, and III, respectively. Each chapter includes information such as a short overview

of the paper, the authors’ contributions, and the full text of the paper. In Chapter 6,

we summarize the thesis conclusions and discuss the future research directions, including

the open problems. Finally, a complete list of authors’ publications is given in List of

Publications.
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Chapter 2

Preliminaries

In this Chapter, we introduce the theoretical preliminaries underpinning the research work

presented in the papers. In particular, we define the objects referred to in the thesis title

- ε-nets, t-designs, and explain their relation to quantum computing. Finally, we present

the chosen state-of-the-art (SOTA) results related to the thesis topic and formulate the

research problems, indicating the ones addressed in the thesis.

2.1 Basic notions

For the matrix A we denote by Ā the matrix with complex conjugated entries, by AT its

transpose and by A† its Hermitian conjugate, i.e. A† = AT . We say A is Hermitian if

A = A†. For the square matrix A, we denote its trace as Tr(A) and its determinant as

det(A). We denote the square identity matrix of dimension n as Id. Similarly, for the

matrix of zeros, we write 0d.

By Md(C), we denote the set of n×n complex matrices. By M0
d (C), we denote the subset

of Md(C) with matrices having trace zero.

The normalizer of a subset S in a group G is the set NG(S) := {g ∈ G| gSg−1 = S}.
The centralizer of S in G is CG(S) := {g ∈ G| ∀s∈S gs = sg} ⊆ NG(S). The center of the

group G is Z(G) := CG(G).

7
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2.1.1 Relevant groups

The three most widely used continuous groups in quantum information and computation

theory are: the unitary group U(d), the special unitary group SU(d), and the projective

group PU(d). We recall the definitions of such groups together with other relevant groups.

The general linear group,

GL(d,C) := {A ∈Md(C)| det(A) ̸= 0}. (2.1)

The special linear group,

SL(d,C) := {A ∈Md(C)| det(A) = 1}. (2.2)

The unitary group,

U(d) := {U ∈Md(C)| U †U = Id}. (2.3)

The special unitary group,

SU(d) := U(d) ∩ SL(d,C). (2.4)

We have the following inclusions as closed subgroups, SU(d) ⊆ SL(d,C) ⊆ GL(d,C), and

additionally SU(d) ⊆ U(d) ⊆ GL(d,C).

To define the projective groups, we use the notion of a group center. We have,

Z(U(d)) := {cId| |c| = 1} ∼= U(1), (2.5)

and

Z(SU(d)) := {cId| cd = 1} ∼= Zd. (2.6)

We define the projective unitary group PU(d) as the quotient of U(d) by the (right mul-

tiplication) of its center. Similarly, by taking the quotient of the SU(d) by its center, we

obtain the projective special unitary group PSU(d), which is isomorphic to PU(d), i.e.

PU(d) = U(d)/U(1) ∼= SU(d)/Zd = PSU(d). (2.7)
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The groups GL(d,C), GL(d,C), U(d), SU(d) and PU(d) are connected matrix Lie groups.

Out of them, U(d), SU(d) and PU(d) are compact real Lie groups and the others are

non-compact complex Lie groups. Moreover, the groups SL(d,C) and SU(d) are simply

connected 1.

Since the group PU(d) is defined as the quotient of either U(d) or SU(d), it is the image

of the corresponding canonical projections. Since SU(d) is easier to work with for our

purposes, we can define various structures on SU(d) and use the canonical projection

π : SU(d) → PU(d) (2.8)

to transport them to PU(d) or lift the objects of interest from PU(d) to SU(d). For

example, every function f on PU(d) can be pulled back to the (unique) function f̃ = f ◦ π
on SU(d) which is constant on the fibres of π.

2.1.2 Measures and functions

For a compact group G, we denote its unique (normalised) Haar measure by µ. For compact

groups 2, left and right Haar measure coincide so that µ is bi-invariant, i.e., for any Borel

subset A ⊂ G and element g ∈ G, we have

µ(gA) = µ(Ag) = µ(A). (2.9)

Such translation invariance of µ is a property very useful in calculations.

The Haar measure µS on SU(d) can be pushed forward to the Haar measure µP on PU(d),

i.e. µP (A) = µS(π
−1(A)), whenever π−1(A) is µS-measurable. This way, the integration

on PU(d) can be obtained by means of integration on SU(d) (a variant of the change of

variable formula)

ˆ

X
f dµP =

ˆ

X̃
f̃ dµS , (2.10)

where X ⊆ PU(d) is some Haar-measurable set and X̃ = π−1(X).
1Excluding the degenerate case of SL(1,C) = PU(1) = {1}, which is compact and complex and simply-

connected. In fact, any connected, compact and complex Lie group is abelian.
2or more generally - unimodular groups
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The Haar measure on G is an example of a finite, regular Borel measure. We denote general

finite Borel measures on compact groups as ν.

For a chosen subset A ⊂ G, by 1A : X → {0, 1} we denote the indicator function of the

set A, i.e. 1A has value 1 at points of A and 0 at points of its compliment G \A.

We say ν is a probability measure if it is real, non-negative, and normalized to 1.

A prominent example of ν, which is important in applications, is a discrete probability

measure supported on a finite subset S ⊂ G, especially its uniform version, which we

denote as νS
νS :=

1

|S|
∑

g∈S
δg, (2.11)

where δg is a Dirac measure of g, i.e. δg(A) = 1A(g) for any measurable set A ⊂ G. In

general, we denote the support of ν as supp(ν).

We say a probability measure ν is symmetric if ν(A) = ν(A−1), for every measurable

set A. In particular, this corresponds to νS with symmetric (inverse-closed) set S =

{g1, g2, . . . , gk, g−1
1 , g−1

2 , . . . , g−1
k }.

For two finite Borel measures ν1 and ν2 on G and the measurable set A, their convolution

measure ν1 ∗ ν2,

(ν1 ∗ ν2)(A) =
¨

G×G
1A(gh)dν1(g)dν2(h), (2.12)

is also a finite measure.

Example 2.1. The calculation of the ℓ self-convolution of νS is particularly simple. We

have

ν
∗(ℓ)
S =

1

|S|ℓ
∑

ω∈Sℓ

δω (2.13)

where Sℓ = {g1g2 . . . gℓ| gi ∈ S} is the set of all words of length ℓ over the alphabet S.

In practice, one may prefer to work with the corresponding functions on G instead of

the measures. For “sufficiently regular” measures, this can be made precise through the

Radon-Nikodym derivative. Indeed, if ν is absolutely continuous with respect to µ (denoted

ν ≪ µ), i.e. for every µ-measurable set A, µ(A) = 0 implies ν(A) = 0, then there

exist a measurable function dν
dµ

3, called the Radon-Nikodym derivative, such that for any

measurable set A
3Unique up to a µ-null set.
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ν(A) =

ˆ

A

dν

dµ
(g)dµ(g). (2.14)

In such a case, we say ν has a density k = dν/dµ ∈ L1(G) with respect to µ, and ||k||1 ≤
|ν|(G) (see (2.15)), where |ν|(G) is the total variation of ν on G.

Moreover, the derivative of the convolution is the convolution of derivatives (as functions;

see (2.18)). The measure νS does not have the corresponding probability density as it is not

absolutely continuous with respect to µ. However, by taking its convolution with appro-

priate approximations of identity (aka the mollifiers), we can consider the corresponding

approximate densities.

By Lp(G), 1 ≤ p <∞, we denote the space of Lp-integrable complex functions on G, which

is a Banach space under the norm 4

||f ||p :=
(
ˆ

G
|f(g)|pdµ(g)

)1/p

. (2.15)

In particular, for p = 2, the space L2(G) is a Hilbert space with a scalar product

⟨f, g⟩ :=
ˆ

G
f(x)g(x)dµ(x), (2.16)

where g denotes the complex conjugate of a function g.

By C(G) we denote the set of continuous complex functions on G, which is a Banach space

under the supremum norm ||f ||∞ = supg∈G|f(g)|. The space C(G) ⊂ Lp(G) is dense in

any Lp(G) with 1 ≤ p <∞.

The following inequality turns out to be very useful for the study of Lp(G)-spaces 5.

Fact 2.1 (Hölder’s inequality - specialised). Let p, q ∈ [1,∞] with 1/p+ 1/q = 1 6. Then

for f, g being the µ-measurable functions on G

||fg||1 ≤ ||f ||p||g||q. (2.17)
4Formally, one should consider the equivalence classes of functions, where functions which agree µ-almost

everywhere (i.e. up to a set of µ-measure zero) are identified.
5This inequality is valid for any measure space and any measurable real or complex functions.
6The ∞ case corresponds to the space L∞(G) of essentially bounded functions on G. On a compact

group we have C(G) ⊆ L∞(G).
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Moreover if additionally p, q ∈ (1,∞) and f ∈ Lp(G) and g ∈ Lq(G), then one obtains an

equality if and only if α|f |p = β|g|q µ-almost everywhere for some real numbers α, β ≥ 0,

not both of them zero.

A simple consequence of (2.1) and the finiteness of the Haar measure (µ(G) < ∞) is

that we have the inclusions Lq(G) ⊆ Lp(G), for p < q with the norms satisfying ||f ||p ≤
µ(G)

1
p
− 1

q ||f ||q. In particular, for the normalized Haar measure and f ∈ L2(G) being

the probability density, we have ||f ||2 ≥ 1 with equality if and only if f = 1 µ-almost

everywhere 7. Thus, the discrepancy between the L2-norm of a probability density on G

and one can be understood as a measure of its non-uniformity.

We define the convolution of functions f, g ∈ L1(G) as

(f ∗ g)(x) :=
ˆ

G
f(y)g(y−1x)dµ(y), (2.18)

and the convolution of a finite Borel measure ν and f ∈ L1(G)

(ν ∗ f)(x) :=
ˆ

G
f(y−1x)dν(y). (2.19)

If ν has density k = dν/dµ, then ν ∗ f=k ∗ f .

2.1.3 Norms, balls and volumes

In this subsection, we introduce the relevant norms and metrics. By G we mean any of

the groups U(d), SU(d) and PU(d). Since we are restricted to the matrix case, we refrain

from providing the more general versions of stated facts.

The default norm we use for the operators is the operator norm, denoted || · ||∞ 8. In

particular, for the matrix A, ||A||∞ is the square root of the largest eigenvalue of the

matrix A†A.

We denote the Hilbert-Schmidt norm of the operator as || · ||HS . In particular, for the

matrix A = (aij), ||A||HS =
√∑

i

∑
j
|aij |2 =

√
Tr (A†A) and the corresponding scalar

product is ⟨A,B⟩HS := Tr(AB†).
7Probability density is the non-negative real function normalized/integrating to one
8In some of our papers, we use || · ||op instead.
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For matrices A and B with defined product, we have ||AB||HS ≤ ||A||∞ · ||B||HS and

||BA||HS ≤ ||B||HS · ||A||∞. In particular ||A||∞ ≤ ||A||HS .

A more unified way to look at || · ||∞ and || · ||HS is provided by the Schatten norm. For a

m× n matrix A, we define

|A| :=
√
A†A, (2.20)

and the Schatten p-norm

||A||p := (Tr(|A|p))1/p =




min{m,n}∑

j=1

σpj (A)




1/p

, (2.21)

where σj(A) denotes the j-th singular value, i.e. the j-th eigenvalue of |A|.

This agrees with the definition of the operator norm and the Schatten 2-norm corresponds

to the Hilbert-Schmidt/Frobenius norm. For p = 1 we obtain the trace/nuclear norm

||A||1 = Tr(|A|). By combining von Neumann’s trace inequality with Hölder’s inequality

for Euclidean spaces, we obtain Hölder’s inequality for Schatten norms

|⟨A,B⟩HS | ≤ ||A||p||B||q. (2.22)

All Schatten norms are sub-multiplicative, meaning that ||AB||p ≤ ||A||p · ||B||p. Moreover,

they are unitarily invariant, which means ||UAV ||p = ||A||p, for all matrices A and all

unitary matrices U and V .

Finally, we note that the Schatten norm can be defined in the same way for bounded

linear operators on Hilbert spaces, possibly by specifying the p = ∞ case separately as the

operator norm (e.g for non-compact operators), and the same properties hold.

Using the operator norm, we equip U(d) with the induced metric d∞(·, ·)

d∞(U, V ) := ||U − V ||∞. (2.23)

By restricting d∞(·, ·) we define the metric on SU(d), denoting it using the same symbol.

To obtain the corresponding metric on PU(d), we minimize over the relative global phase:
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dP (U,V) := min
φ

||U − eiφV ||∞, (2.24)

where U,V ∈ PU(d) and U, V ∈ U(d) are the unitary representatives of the elements U

and V respectively. The metric dP can be also defined using the metric on SU(d):

dP (U,V) = min
γ∈Z(SU(d))

d∞(U, γV ), (2.25)

where U = π(U) and V = π(V).

Due to the unitary invariance of the operator norm, the metrics d(·, ·) and dP (·, ·) are

translation-invariant.

By Bε we denote the closed ε-ball in G centered at the group identity, with respect to

the appropriate metric. The closed ε-ball centered at g ∈ G is then a translation Bε(g) =

gBε = Bεg.

The Haar volume of Bε ⊂ G 9 can be bounded as

(avε)
d2−1 ≤ µ(Bε) ≤ (Avε)

d2−1, (2.26)

These constants can be obtained using methods from [42], where the balls in homogeneous

spaces of U(d) are studied (see also [41])

Table 2.1: Common groups G used in quantum computing together with the constants
providing the bounds of the volumes of balls in respective metrics.

G av Av dimG metric

U(d) 1
4π+2

10
π d2 d∞ (2.23)

SU(d) 1
8π+2

10
π d2 − 1 d∞ (2.23)

PU(d) 1
8π+2 87 d2 − 1 dP (2.24)

9Due to translational invariance of Haar measure and the metric, the volume of a ball does not depend
on its origin.
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2.2 Elements of group theory and analysis

In this thesis, we consider representations over the field of complex numbers. We always

assume the groups and Lie algebras are finite-dimensional. We assume the reader is familiar

with the basic facts from representation theory; we redirect readers without any exposition

to standard books, e.g., [43, 44, 45, 46].

2.2.1 Elements of representation theory

We are interested in representations (reps) of compact groups. Due to the standard Haar-

averaging “unitary trick”, every finite-dimensional rep of a compact group is equivalent to

a unitary rep. Moreover, every finite-dimensional rep of a compact group is completely

reducible, i.e., decomposes into a direct sum of irreducible representations (irreps). As

outlined in Subsection 2.2.2, due to the Peter-Weyl theorem, this is also the case for the

regular representations of compact groups, which are infinite-dimensional unitary reps. In

fact, every unitary irrep of a compact group is finite-dimensional, and every unitary rep of

a compact group is completely reducible [47].

For completeness, we recall some basic definitions for unitary representations.

A unitary representation of a group G, as a continuous homomorphism π : G → U(Vπ),

where U(Vπ) denotes the unitary group on a complex Hilbert space Vπ, equipped with the

strong operator topology. The continuity means then that g → π(g)v is continuous as a

mapping from G to Vπ, for every fixed v ∈ Vπ (strong continuity). We call Vπ the rep

space, and in case of finite-dimensional Vπ refer to dπ := dim(Vπ) as the dimension of π.

Two unitary reps π1 and π2 are said to be equivalent (isomorphic) if there is a unitary

operator U : Vπ1 → Vπ2 , such that for all g ∈ G, π1(g) = Uπ2(g)U
†. We then write

π1 ∼= π2 (or V1 ∼= V2, unless it may lead to confusion). In other words, they are the same

up to the unitary change of basis.

For a rep π, a subspace W ⊆ Vπ is called invariant if π(g)W ⊆W for all g ∈ G.

A rep is called irreducible (irrep) if it is non-zero and Vπ has no non-trivial closed in-

variant subspaces. By 1, we denote the irreducible trivial representation (which is one-

dimensional).

Finite-dimensional (continuous) reps of Lie groups are automatically smooth.
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A function f on G is central (or a class function), if f(g) = f(hgh−1), for any g, h ∈ G.

A character of a finite-dimensional rep π : G→ GL(V ) is a central function defined as

χπ(g) = Tr(π(g)). (2.27)

The finite-dimensional rep π : G→ GL(Vπ) of a Lie group G with Lie algebra g gives rise

to a rep of g, dπ : g → gl(V ), called the derived rep

dπ(X) :=
d

dt

∣∣∣∣
t=0

π(etX). (2.28)

Moreover, if G is connected, then π is an irrep if and only if dπ is an irrep.

To cover the infinite-dimensional unitary reps, notice that t 7→ π(etX) is a strongly con-

tinuous one-parameter subgroup, so dπ can be defined using Stone’s theorem with (2.28)

replaced by strong derivative. The operator dπ is then skew-adjoint on its natural dense

domain. Additionally, we obtain

π(etX) = etdπ(X), t ∈ R, (2.29)

which for t = 0 reproduces a well-known formula for finite-dimensional reps.

Example 2.2. The derived rep of the adjoint representation of a group Ad : G → gl(g),

Ad(g) : X 7→ gXg−1 is called the adjoint representation of its Lie algebra ad : g → gl(g),

ad(X) : Y 7→ [X,Y ].

The adjoint representation of g gives rise to asymmetric bilinear form on g, called the

Killing form,

B(X,Y ) := Tr (ad(X) ◦ ad(Y )) , (2.30)

which is ad-invariant, i.e. B([X,Y ], Z) = B(X, [Y, Z]). By changing ad to any finite-

dimensional rep of g, we define the so-called trace form of π, which has the same properties

as specified.

We say a Lie algebra g is simple if it is non-abelian and has no non-zero proper ideals.

A Lie algebra g is semisimple if it is a direct sum of simple Lie algebras. Equivalently, g
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has no non-zero abelian ideals. Moreover, this is equivalent to the Killing form being non-

degenerate and also implies g = [g, g]. We say a Lie algebra g is reductive if it decomposes

(as Lie algebras) as g = a⊕ [g, g], where a is abelian and [g, g] is semisimple. Lie algebras

of compact Lie groups are reductive, with the semisimple part having a negative-definite

Killing form (for real Lie groups).

The complex representation theory of a real Lie algebra g is equivalent to the complex

representation theory of its complexification gC := g⊗R C.

The complex (finite-dimensional) representation theory of (finite-dimensional) complex

semisimple Lie algebras is particularly simple and elegant e.g. due to the results such

as the complete reducibility, weight and root space decomposition, highest weight theorem

and Weyl character formula. Finally, such algebras themselves are classified, up to isomor-

phism, by the (finite disjoint sums of) Dynkin diagrams. However, many of these good

properties also apply in the reductive case, with simple modifications stemming from the

abelian component. Finally, the semisimple theory is closely related to the representation

theory of compact Lie groups.

We now specialize to the representation theory of compact connected (real) Lie groups U(d)

and SU(d), hence by G we denote one of such groups. We denote the (real) Lie algebra of

G by g and use gC := g+ ig for its complexification.

The Cartan subalgebra (CSA) of gC is an abelian and diagonalisable subalgebra of gC which

is maximal under set inclusion. Choose the maximal torus in T ⊂ G with Lie algebra t.

Then the corresponding Cartan subalgebra of gC is h := t+it. The maximal torus is unique

up to conjugacy.

Consider a finite-dimensional rep (π, V ) of gC. From the definition of the CSA, the family

of operators {π(H)| H ∈ h} is simultaneously diagonalizable. Hence, we can organize the

eigenvalues of their common eigenvectors using linear functionals on h, i.e. the elements

from the dual space h∗.

We define a weight of V as an element λ ∈ h∗, such that the corresponding weight space

Vλ := {v ∈ V | π(H)v = λ(H)v,∀H ∈ h} (2.31)

is not zero. The vector space V decomposes into weight spaces,

V =
⊕

λ∈w(π)

Vλ, (2.32)
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where by w(π) we denote the set of weights of π.

By considering the specific case of the adjoint representation ad : gC → gl(gC), we arrive

at the notion of a root. The root of gC is the non-zero element α ∈ h∗, such that the

corresponding root space

gα := {Xα ∈ gC| [H,Xα] = α(H)Xα, ∀H ∈ h} (2.33)

is not zero. We denote the set of roots of g as Φ. We have the following root space

decomposition,

gC = h⊕
⊕

α∈Φ
gα. (2.34)

The weight spaces (2.32) are not invariant. Indeed, the root vectors act on weight vectors

by changing their weight spaces π(Xα) : Vλ → Vλ+α, i.e. for vλ ∈ Vλ

π(H)π(Xα)vλ = (λ+ α)(H)π(Xα)vλ. (2.35)

We note that for the compact (real) Lie groups, the weights and roots take purely imaginary

values in t. Hence, it is customary to use the notion of real weights λR and real roots αR,

which are the elements of t∗. The definitions are analogous to (2.31) and (2.33) with λ(H)

and α(H) replaced with iλR(H) and iαR(H) respectively and H ∈ t.

By picking a nondegenerate symmetric bilinear form B on h, we can identify h ≃ h∗ via

Riesz isomorphism, i.e. for h → h∗ we put H 7→ H♭ := B(H, ·) and for h∗ → h we put

α 7→ α♯, where B(α♯, H) = α(H) for any H ∈ h. This defines the corresponding form on

h∗, which we denote by the same symbol, given by B(α, β) = B(α♯, β♯), for any α, β ∈ h∗.

To form (an abstract) root system Φ ⊂ V , which lives in a real span of roots V = spanRΦ,

we require B to induce an inner product on V . Additionally, the inner product needs to be

invariant under a specific group of reflections, called the Weyl group, which can be ensured

by picking ad-invariant B. We then denote B(·, ·) and its restrictions as (·, ·).

For α ∈ h∗ we define α∨ := 2α
(α,α) ∈ h∗.

The Weyl group is then generated as W := ⟨sα| α ∈ Φ⟩, where sα is a reflection about a

hyperplane perpendicular to α
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sα(λ) = λ− (λ, α∨)α, λ ∈ h∗, (2.36)

which leaves Φ invariant.

From the properties of a root system, by choosing any hyperplane in V that does not

intersect Φ, we obtain two sets of roots with equal cardinality. Each set is closed under

addition and contains either α or -α, for all α ∈ Φ. The set of positive roots Φ+ is then

the set of roots lying at the chosen side of the hyperplane we decided. Additionally, we

distinguish a set of simple roots ∆, which are the elements of Φ+ that cannot be decomposed

as a sum α+ β, for α, β ∈ Φ+. Then, every α ∈ Φ is a linear combination of simple roots

with all the coefficients being either positive or negative integers.

For α, β ∈ h∗, we say that α is higher than β, denoted α > β, if α−β is a linear combination

of simple roots with non-negative coefficients. Analogously we define α < β. We say a

weight λ ∈ h∗ is the highest, if there is no weight higher than λ.

We define the integral lattice in t

tZ := {X ∈ t| ei2πX = I}. (2.37)

We say λ ∈ h∗ is integral, if (λ, α∨) ∈ Z for all α ∈ Φ. We say λ is analytically integral if

λ(X) ∈ Z for all X ∈ tZ. Finally, we say λ is dominant if (λ, α∨) ≥ 0 for all α ∈ ∆.

The analytic integrality condition is needed to identify the irreps of the Lie algebra that

integrate to the irreps of its Lie group.

We are now ready to characterize the irreps of G using the Theorem of the highest weights.

The Theorem states that every finite-dimensional complex rep of G has a unique highest

weight λ and such λ is a dominant element. Moreover, λ is the same for isomorphic reps.

Finally, if the highest weight λ is dominant and analytically integral, there exists a finite-

dimensional complex irrep with such a highest weight. It follows that the equivalence

classes of finite-dimensional complex representations of G are bijectively labelled by the

corresponding dominant and analytically integral highest weights.

From now on, by highest weights we will understand such highest weights bijectively la-

belling the equivalence classes of irreps.
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Finally, we define the Weyl vector as

δ :=
1

2

∑

α∈Φ+

α, (2.38)

and we proceed to the group-specific computations. For U(d) we have the following real

Lie algebra

u(d) = {X ∈Md(C)| X† = −X}. (2.39)

The complexification reads u(d)C ∼= gl(d,C) =Md(C). We pick the maximal torus

T := {diag(eiϕ1 , eiϕ2 , . . . , eiϕd)| ϕ ∈ R}, (2.40)

so that the toral algebra reads

t := {diag(iϕ1, iϕ2, . . . , iϕd)| ϕ ∈ R}, (2.41)

and the CSA is

h := {diag(z1, z2, . . . , zd)| z ∈ C}. (2.42)

For SU(d), we have su(d) = u(d)∩M0
d (C) and su(d)C ∼= sl(d,C) =M0

d (C). The Lie algebra

sl(d,C) is semisimple.

The corresponding maximal torus in SU(d) is T0 := T ∩ SU(d), with the toral algebra

t0 := t ∩M0
d (C) and the CSA h0 := h ∩M0

d (C).

The Lie algebra u(d)C is not semisimple, but it is reductive, with u(d)C = CId ⊕ sl(d,C).

We introduce the linear functionals on h,

Lj :




z1

z2
. . .

zd




7→ zj . (2.43)

so that {Lj | 1 ≤ j ≤ d} is the basis of h∗. Restricting to h∗0, we can use {Lj | 1 ≤ j ≤ d}
to span h∗0, keeping in mind that (i.e. quotienting by) L1 + L2 + . . .+ Ld = 0.

The set of roots, Φ := {αi,j | 1 ≤ i, j ≤ d}, where αi,j := Li − Lj , is the same for u(d)C

and su(d)C. This is not a coincidence, as it is easy to see that the roots need to vanish
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on the abelian part of the reductive algebra and can be defined as the functionals on the

semisimple part.

We choose the positive roots as Φ+ := {αi,j | 1 ≤ i < j ≤ d} and the set of simple roots

∆ := {αi,i+1| 1 ≤ i ≤ d− 1}.

The inner product on h∗ can be chosen to be (Li, Lj) = δij , so that the (long) roots have

squared length 2, which is a standard normalisation. The restriction to h∗0 preserves the

standard normalisation and yields (Li, Lj) = δij − 1
d . Such a restriction is proportional to

the inner product on h∗0 induced by the (unnormalised) negative Killing form on sl(d,C),
(Li, Lj) =

1
2d

(
δij − 1

d

)
, with squared root length (αi,j , αi,j) = 1/d, and restricts to an inner

product on the root system V .

The root system Φ ⊂ V is of typeAd−1 in Dynkin classification. The Weyl group isomorphic

to the group of permutations Sd, acting as σ · Lj = Lσ(j), where σ ∈ Sd ∼=W .

Expressing the weights as λ =
∑d

i=1 λiLi, the highest weights of U(d) form a set

Λ = {(λ1, λ2, . . . , λd) ∈ Zd| λj ≥ λj+1, 1 ≤ j ≤ d− 1}, (2.44)

which is 1-1 with the irreps of U(d).

One can check that any irrep of U(d) restricts to an irrep of SU(d), while any irrep of

SU(d) extends to the irreps of U(d) (see e.g. [48]).

However, this mapping is not one-to-one. Since on sl(d,C),
∑d

j=1 Lj = 0, any irrep of

U(d) labelled by vectors which differ by a constant vector (n, n, . . . , n) ∈ Zd corresponds

to the same irrep of SU(d). This Z-gauge can be fixed by subtracting a constant vector

with n = λd. Defining λsj := λj − λd, the set of highest weights for SU(d) reads

Λ0 = {(λs1, λs2, . . . , λsd−1) ∈ Zd−1
≥0 | λsj ≥ λsj+1, 1 ≤ j ≤ d− 2}, (2.45)

which can be interpreted as a description using Young diagrams λs = (λs1, λ
s
2, . . . , λ

s
d−1).

In terms of the irreps of PU(d), which consists of equivalence classes of members of U(d)

under the equivalence relation U ∼ eiϕU , any irrep of PU(d) extends to an irrep of U(d)

by choosing it to be constant on equivalence classes. An irrep of U(d) corresponds to an

irrep of PU(d) exactly when it is constant on equivalence classes. By checking the action
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of the center U(1), this happens when the highest weight vector satisfies
∑

j λj = 0. Thus,

the irreps of PU(d) are 1-1 with the highest weights

ΛP = {(λ1, λ2, . . . , λd) ∈ Zd| λj ≥ λj+1, 1 ≤ j ≤ d− 1},
∑

j

λj = 0}. (2.46)

Theorem 2.2 (Weyl Character Formula). Let g be a complex semisimple Lie algebra and

let π be an irrep of g with highest weight λ, then

χπ(e
H) =

∑
w∈W det(w)e(w·(λ+δ))(H)

∏
α∈Φ+(eα(H)/2 − e−α(H)/2)

,

for all H ∈ h for which the denominator is non-zero. By det(w) we denote the determinant

of a linear map w : V → V corresponding to w ∈W .

For root systems of type Ad−1, det(w) is just the sign of the permutation w ∈ Sd. The

denominator in Theorem 2.2 is called the Weyl denominator. Using Theorem 2.2 and

calculating the limit limH→0χπ(e
H), we obtain the following Corollary.

Corollary 2.3 (Weyl dimension formula). Let g be a complex semisimple Lie algebra and

let πλ be an irrep of g with highest weight λ. Then,

dπ =

∏
α∈Φ+(α, λ+ δ)∏

α∈Φ+(α, δ)
.

Theorem 2.2 holds verbatim for compact connected groups G and characters χπ(t), where

t = eH with H ∈ t.

Theorem 2.4 (Weyl Integration formula). Let G be a compact connected Lie group with

a maximal torus T ⊂ G. For any class function f

ˆ

G
f(g)dµ(g) =

1

|W |

ˆ

T
f(t)|∆(t)|2dµT(t), (2.47)

where dµT is the Haar measure on T and writing t = exp(H) for H ∈ t,

∆(t) :=
∏

α∈Φ+

(eα(H)/2 − e−α(H)/2),

with α being roots relative to T.
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Example 2.3 (Volume of a ball in SU(2)). Due to the invariance of the Haar measure,

the volume of the ball is independent of the origin. For SU(2) and H = diag(iϕ,−iϕ) we

have α(H) = 2iϕ, so ∆(t) = 2 sin(ϕ). Since |W | = |S2| = 2 and dµT(t) = dϕ/2π,

ˆ

G
f(g)dµ(g) =

1

π

ˆ π

−π
f(t)sin2(ϕ)dϕ. (2.48)

In particular,

µ(Br) =

ˆ

G
1Br(g)dµ(g) =

2

π

ˆ ϕr

0
sin2(ϕ)dϕ, (2.49)

where ϕr := 2 · arcsin(r/2), since ||e− g||∞ = ||e− t||∞ = 2 |sin(ϕ/2)|.

Thus,

µ(Br) =
1

π

(
ϕr −

sin(2 · ϕr)
2

)
, (2.50)

Note that the diameter of SU(d) is 2 and µ(B2) = 1. Taylor series expansion at r = 0

yields

µ(Br) =
1

6π
r3 +

1

80π
r5 +

3

1792π
r7 +O(r9) ≥ 1

6π
r3. (2.51)

2.2.2 Peter-Weyl theorem and Fourier transform

In this subsection, we discuss chosen parts of the Peter-Weyl theorem [49, 47], a funda-

mental result in harmonic analysis, and introduce the concept of the Fourier transform on

a compact group G. All the representations considered in this subsection are unitary. We

start with introducing the necessary definitions.

By Ĝ we denote the set of equivalence classes of finite-dimensional unitary irreps of G. By

a slight abuse of notation, we will use π to represent the elements of Ĝ.

For an finite-dimensional rep π ofG, we define its matrix coefficients as πij(g) = ⟨ei, π(g)ej , ⟩,
where {e1, e2, . . . , edπ} is the orthonormal basis of the rep space Vπ. Matrix coefficients

πij(g) are smooth functions.

The left-regular rep of G, denoted λ, is the unitary rep on the Hilbert space L2(G) given

by

λ(h)f(g) := f(h−1g). (2.52)
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The Peter-Weyl theorem states that λ decomposes into an orthogonal direct sum of all

unitary irreps of G as follows

L2(G) ∼=
⊕̂

π∈Ĝ

V ⊕dπ
π , (2.53)

where hat symbol denotes the closure.

The direct sum of all the copies of Vπ in L2(G), V ⊕dπ
π , is also called the π-isotypic compo-

nent. Moreover, the theorem asserts that the set of elements πij(g) is dense in the space

of continuous complex functions C(G), equipped with the supremum norm (hence also in

Lp(G) for 1 ≤ p < ∞). The theorem also specifies the following orthonormal basis of

L2(G),

{√
dππij |π ∈ Ĝ, 1 ≤ i, j ≤ dπ

}
. (2.54)

In particular, the space of smooth functions is dense in L2(G). It is informative to see how

the irreps Vπ are realized inside the function space L2(G).

We define E(j)
π := span{πij |1 ≤ i ≤ dπ} as the span of the j-th column and span of all

the matrix coefficients Eπ := span{πij |1 ≤ i, j ≤ dπ}. Such spans depend only on the

isomorphism classes π ∈ Ĝ. Any fπ ∈ Eπ can be expressed as

fπ(g) = Tr(Aπ(g)), (2.55)

where A is any complex dπ × dπ matrix. The spaces E(j)
π are invariant under λ so that the

restriction of λ to them form subrepresentations.

One can check that the mappings ψj : Vπ → E(j)
π

ψj :

dπ∑

i=1

ciei 7→
dπ∑

i=1

ciπij(g), (2.56)

where 1 ≤ j ≤ dπ, are the intertwiners providing the isomorphisms of Vπ with the corre-

sponding subspaces of L2(G). We have

Eπ =

dπ⊕

j=1

E(j)
π . (2.57)
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and for each 1 ≤ j ≤ dπ, we can write λ|E(j)
π

∼= π and the whole π-isotypic component

corresponds to the restriction to Eπ. We can then write alternatively

L2(G) =
⊕̂

π∈Ĝ

Eπ. (2.58)

Finally, we note that an analogous result can be obtained for the right-regular rep (ρ(h)f)(g) :=

f(gh), when the spans of the rows are considered instead of E(j)
π and the matrix coefficients

are replaced with their complex conjugates.

We now move to the definition of the Fourier coefficients of functions on G.

The Fourier coefficient of a function f ∈ L1(G) at a rep π, denoted f̂(π), is the operator

in End(Vπ) defined via

f̂(π) :=

ˆ

G
π(g−1)f(g)dµ(g), (2.59)

where by Vπ we denote the representation space of irrep π. We turn End(Vπλ
) into a

Hilbert space HS(Vπ) with inner product dπ⟨·, ·⟩HS . Such a defined Fourier transform

behaves under convolution as expected (̂f ∗ g)(π) = f̂(π)ĝ(π).

Then one can show that the Fourier transform is an isomorphism of such Hilbert spaces

L2(G) ∼=
⊕̂

π∈Ĝ

HS(Vπ). (2.60)

In light of (2.60), one can think of Ĝ as the “spectrum” of G with “frequencies” π appearing

with multiplicities dπ.

Using the Peter-Weyl theorem, we obtain the Fourier inversion formula for the functions

f ∈ L2(G),

f(g) =
∑

π∈Ĝ

dπTr
(
f̂(π)π(g)

)
, (2.61)

where the convergence is in L2-norm. If f is additionally continuous and

∑

π∈Ĝ
d3/2π ||f̂(π)||HS <∞, (2.62)
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then the Fourier series converges absolutely and uniformly. If G is additionally connected,

the condition (2.62) follows from f being k-differentiable with k > 1
2dim(G). More-

over, in this case, the Fourier coefficients of smooth functions are rapidly decreasing with

lim|λ|→∞||λ||kf̂(πλ) = 0, for every k ∈ Z+ (see [50] for details).

As a consequence, we have the Plancherel identity

||f ||22 =
ˆ

G
|f(g)|2dµ(g) =

∑

π∈Ĝ

dπ||f̂(π)||2HS . (2.63)

The π-isotypic components fπ(g) = dπTr
(
f̂(π)π(g)

)
can be found via the orthogonal

projection Pπ : L2(G) → Eπ, given by the convolution with dπχπ:

fπ = Pπf := f ∗ (dπχπ). (2.64)

This can be seen from the fact that

χ̂π(π
′) =

δππ′

dπ
Idπ , (2.65)

which follows e.g. from the orthogonality of the matrix elements (Peter-Weyl theorem).

By applying the Peter-Weyl theorem to (a Hilbert space of) square-integrable central func-

tions L2(G)G, we obtain a well-known fact that the characters of irreps of G form an

orthonormal Hilbert basis for L2(G)G. The formula (2.61) then simplifies to

h =
∑

π∈Ĝ
⟨f, χπ⟩χπ, (2.66)

with ĥ(π) = ⟨f,χπ⟩
dπ

1dπ , and (2.61) becomes

L2(G) ∼=
⊕̂

π∈Ĝ

C. (2.67)

Example 2.4 (Abelian group; Fourier series). Consider a 1-dimensional torus T ∼= U(1).

The irreps are one-dimensional with χn(e
iϕ) = einϕ, n ∈ Z. Then each f ∈ L2(T) has a

form

f(ϕ) =
k∑

n=−k

f̂(n)einϕ (2.68)
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with f̂(n) = 1
2π

´ π
−π f(ϕ)e

−inϕdϕ.

Example (2.4) justifies naming (2.59) as Fourier coefficients and the interpretation of the

approach presented in this Subsection as nonabelian Fourier analysis. Moreover, by ex-

pressing einϕ = cos(nϕ) + isin(nϕ), one can understand why the functions πij are often

referred to as trigonometric polynomials (even in the nonabelian case).

Writing the central function as h =
∑

π∈Ĝmπdπχπ, the convolution with h acts as a

“frequency filter”, i.e. for a function f ∈ L2(G)

(f̂ ∗ h)(π) = (ĥ ∗ f)(π) = mπf̂(π), (2.69)

uniquely characterized by its frequency response function/multipliers: mh : Ĝ → C,

mh(π) = mπ.

2.2.3 Averaging operators and spectral gap

In this subsection, we introduce the notion of the averaging operator on the compact group

G, also known as the mixing operators.

For a rep π and the finite Borel measure ν, we define the operator-valued integral

π(ν) :=

ˆ

G
π(g)dν(g) ∈ End(Vπ) (2.70)

by means of Bochner integration 10. Similarly, we can define π(f) for functions.

The averaging operator given by ν, is the operator Tν : L2(G) → L2(G),

(Tνf)(h) := λ(ν) =

ˆ

G
f(g−1h)dν(g). (2.71)

We have Tνf = ν ∗ f and Tν1∗ν2 = Tν1Tν2 . The operator Tν is bounded. For ν being the

probability measure, ||Tν ||∞ = 1 since the norm is attained on constant functions. In such

a case, Tν is also called the Markov/mixing operator (see also 2.4.4). If additionally ν is

symmetric, then Tν is self-adjoint with the spectrum σ(Tν) ⊂ [−1, 1].
10If π is finite-dimensional, one can use entry-wise integration.
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From now on, we assume ν is a probability measure.

Due to Peter-Weyl, the operator Tν can be made block-diagonal with finite blocks.

Tν ∼= I1 ⊕
⊕

π∈Ĝ0

π(ν)⊕dπ , (2.72)

where by Ĝ0 we denote the set Ĝ without the trivial rep.

The operator Tµ is the orthogonal projector onto the space of constant functions on G.

Hence, in the same basis as (2.72), it reads

Tµ ∼= I1 ⊕
⊕

π∈Ĝ0

0⊕dπ
dπ

(2.73)

By L2
0(G) we denote the orthogonal complement of this space (i.e. the space of functions

with average 0). We define the (uniform) spectral gap of Tν as

gap(ν) := 1− ||Tν |L2
0(G)||∞ ∈ [0, 1]. (2.74)

We have

||Tν |L2
0(G)||∞ = ||Tν − Tµ||∞ = supπ∈Ĝ0

||π(ν)||∞. (2.75)

We say ν has spectral gap if gap(ν) > 0.

Since Tµ = TµTν = TνTµ, one can show that

||Tν∗ℓ − Tµ||∞ ≤ (1− gap(ν))ℓ ≤ e−ℓ·gap(ν), (2.76)

which essentially says that the existence of a gap implies exponential convergence Tν∗ℓ → Tµ

in operator norm with growing ℓ. Since the Haar measure µ is our model uniform density,

this corresponds to a measure ν∗ becoming equidistributed.

The spectral gap at a finite scale is defined by restricting Tν to a finite number of subspaces

with “frequencies” bounded by a certain parameter r. For example,

gapr(ν) := 1−max0<||λ||≤r||πλ(ν)||∞, (2.77)
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where ||λ|| is the chosen norm. Intuitively, such finite-scale information should be sufficient

to characterize the equidistribution at scales ∼ 1/r.

By excluding the space of constant functions, the question about the existence of a (uni-

form) gap becomes potentially non-trivial. To make it truly non-trivial we need to assume

that ν is finitely-supported, i.e. |supp(ν)| < ∞ (or at least it is discrete or does not have

the density; see below) and that ν is universal, i.e. ⟨supp(ν)⟩ = G. Indeed, ν is not uni-

versal iff there exists an invariant vector (fixed point) in L2
0(G), so that ||Tν ||∞ = 1 and

there is no gap. In fact, Fix(Tν) ∼= L2(G/H), where H = ⟨supp(ν)⟩ and G/H is the set of

left cosets of H in G ([51]; see also [52]).

However, even if ν is universal, so for each non-trivial irrep block ||π(ν)||∞ < 1 for any

π ∈ Ĝ, the gap may be zero. Indeed, what is needed is the uniform bound ||π(ν)||∞ ≤ 1−c
for some universal constant c. Using the notion of almost invariant vectors, the question

about the (uniform) gap can be related to Kazhdan’s property (T), hence also to the

notions such as expander graphs and strong ergodicity [38, 53].

Example 2.5 (No gap on circle). Consider a one-dimensional Torus T ∼= U(1). We pick

any q ̸∈ Q and choose S = {eiqπ, e−iqπ} as the symmetric universal set with the corre-

sponding symmetric probability measure νS = 1
2 (δeiqπ + δe−iqπ), so that σ(TνS ) ∈ [−1, 1].

Evaluating on characters χn : eiϕ 7→ einϕ, n ∈ Z, we have

(TνSχn)(e
iϕ) =

1

2

(
ein(ϕ+q) + ein(ϕ−q)

)
= cos(nqπ)χn(e

iϕ). (2.78)

We have |cos(nq)| < 1, but supn̸=0|cos(nq)| = 1 so ||TνS
∣∣
L2
0(T)

||∞ = 1. If q ∈ Q then S is

not universal (a finite set) and the norm is attained on all non-trivial characters χn with

nq ∈ Z.

However, if ν has a density k = dν/dµ, then Tνf = k∗f , so Tν is a block-diagonal compact

operator with finite blocks. Thus, if additionally ν is universal, then it has a spectral gap.

Moreover, if the density k ∈ L2(G), then Tν is the Hilbert-Schmidt operator and one can

use (2.63) to bound

||π(ν)||∞ ≤ ||π(ν)||HS ≤ ||k||L2√
dπ

. (2.79)

This simple observation suggests studying the behaviour of finite-scale spectral gaps of

finitely-supported measures, such as νS and its convolutions, using tools from harmonic
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analysis by transforming them into measures with L2-densities via convolution with ap-

propriately chosen approximate identities/mollifiers.

Focusing now on the case of a finite universal set S, it is interesting to ask what can be said

about the upper bounds on gap(νS), or equivalently on lower bounds on ||TνS |L2
0(G)||∞.

Following [54], one can obtain a bound for continuous groups from the, so-called, almost

covering property by the balls of Haar volume 1
2|S| ,

1− gap(νS) ≥
1

2
√
|S|

. (2.80)

A tighter bound (Kesten bound) can be obtained from random walk considerations (see

Section 2.4.4).

2.2.4 Balanced polynomials, t-moment operators and finite-scale spec-
tral gap

In this subsection, we introduce the concept of balanced polynomials and the related notion

of t-moment operators. We explain the close relation between t-moment and averaging

operators, introduced in subsection (2.2.3). Finally, we present a more natural approach

to defining finite-scale spectral gaps.

Thinking of a matrix U ∈ U(d) as its image under the defining representation U 7→ U of

U(d), we denote the matrix elements of the defining representations as ui,j = (U)i,j (and

their complex conjugates as ui,j). With a slight abuse of notation, we denote the defining

representation as U . A balanced polynomial of degree t is a homogeneous polynomial with

degree t in ui,j and t in ui,j . We denote the space of all such polynomials of degree t as

Ht. Such polynomials are linear combinations of the matrix elements of the representation

U 7→ (U⊗Ū)⊗t and as such, due to (U⊗Ū)⊗t ∼= U⊗t⊗Ū⊗t, every ft ∈ Ht can be expressed

as

ft(U) = Tr
(
A
(
U⊗t ⊗ Ū⊗t

))
, (2.81)

for some d2t × d2t complex matrix A. Due to the global phase invariance, such balanced

polynomials are well-defined on SU(d) and PU(d).

Since U ⊗ Ū ∼= Ad⊕ 1, where Ad is the adjoint representation of U(d), for s ≤ t the irreps

of U⊗s ⊗ Ū⊗s appear in U⊗t ⊗ Ū⊗t and Hs ⊆ Ht. By Λt, we denote the set of highest
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weights enumerating all (equivalence classes of) non-trivial irreps appearing in U⊗t⊗ Ū⊗t.

Then we can decompose the tensor product in two ways

1⊕m0 ⊕
⊕

λ∈Λt

π⊕mλ
λ

∼= U⊗t ⊗ Ū⊗t ∼=
t⊕

N=0

(
t

N

)
Ad⊗N , (2.82)

and m0,mλ are some natural numbers. On the right-hand side of (2.82), the binomial

coefficient indicates taking the direct sum of that many copies of Ad⊗N . The left-hand

side of (2.82) is the decomposition into irreps.

Then (see [55]),

Λt = {(λ1, λ2, . . . , λd) ∈ Zd|∀1≤i≤d−1λi ≥ λi+1, |λ| = 0, |λ+| ≤ t}, (2.83)

where by |λ| we denote the sum of elements of λ and by λ+ we denote a subsequence of

positive elements of λ.

We now specialize to the case of PU(d). For a fixed faithful (i.e. the homomorphism is

injective) rep V of a compact group G, every irrep of G is contained in a tensor product

V ⊗k⊗V̄ ⊗l [46]. The Ad descends to a well-defined and faithful irrep of PU(d) and Ad ∼= Ad.

Hence, every irrep of PU(d) appears in some power Ad⊗N and in consequence in (2.82)

for t larger than a certain constant. This observation is consistent with (2.83), since the

condition |λ| = 0 simply restricts the weights of U(d) to the ones of PU(d).

For a probability measure ν on PU(d), we define its t-moment operator , Tν,t : Ht → Ht as

Tν,t :=

ˆ

G
dν(U)U t,t, (2.84)

where

U t,t := U⊗s ⊗ Ū⊗t, (2.85)

and we introduce a quantity

δ(ν, t) := ∥Tν,t − Tµ,t∥∞ ∈ [0, 1]. (2.86)

Using the decomposition into irreps (2.82), we can express Tν,t as a block-diagonal matrix
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Tν,t ∼=




Im0 0 · · · 0

0 πλ1(ν)⊗ Imλ1
· · · 0

...
...

. . .
...

0 0 · · · πλM
(ν)⊗ ImλM



, (2.87)

for some M , with λi going through the set Λt in some fixed order. Comparing with the

matrix for Tµ in the same basis, the trivial block cancels out and we can write

δ(ν, t) = maxλ∈Λt ||πλ(ν)||∞, (2.88)

since the multiplicities are irrelevant. We define δ(ν) := suptδ(ν, t).

The irreps Λt are only of real or complex types, i.e. there are no quaternionic representa-

tions. Moreover, in practical calculations of (2.88), the set of complex type representations

can be restricted due to unnecessary reflections of weights (see e.g. [48]).

On the other hand, using the averaging operator (2.71), we can define the gap at a scale t

as

gap(ν, t) := 1− ||Tν
∣∣
Ht

− Tµ
∣∣
Ht

||∞ (2.89)

However, one can check that the two notions coincide, i.e.

gap(ν, t) = 1− δ(ν, t). (2.90)

Indeed, since Ht is spanned by the matrix entries of U 7→ U⊗t ⊗ Ū⊗t, it is also spanned by

the matrix entries of the irreps from the decomposition (2.82). Thus, Ht as a subrepresen-

tation of the left-regular representation λ, decomposes (reducibly) into

Ht = 1⊕
⊕

λ∈Λt

Eπλ
, (2.91)

and Tν
∣∣
Eπλ

∼= πλ(ν)⊗ dπλ
.
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Hence, we can express Tν
∣∣
Ht

in the same block-diagonal form as (2.87) with multiplicities

m0 = 1 and mλi
= dπλi

for 1 ≤ i ≤M (see also [41]).

As a consequence,

gap(ν) = 1− δ(ν). (2.92)

2.2.5 Casimir elements and Laplacian

In this subsection, we briefly explain the relationship between the Casimir element of a Lie

algebra g and the Laplacian on a compact connected group G (see also [49]).

We pick an ad-invariant nondegenerate positive-definite symmetric bilinear form (·, ·) on

g ≃ TeG. This gives rise to a Riemannian bi-invariant metric on G (by translations).

For example, in the case of compact semisimple Lie groups, one may obtain a Riemannian

metric by setting (X,Y ) = −B(X,Y ), where B is the Killing form on g.

Let {Xi}ni=1 be a basis of g. Then the Casimir operator Ω of g is an element of the universal

enveloping algebra U(g) [44] defined as

Ω :=

n∑

i,j=1

XiX
i =

n∑

i,j=1

gijXiXj , (2.93)

where gij = (Xi, Xj) and (gij) = (gij)
−1 and by Xi we denote the generators of U(g)

corresponding to the basis elements of g and we skip the tensor product symbols.

The operator Ω does not depend on the choice of the basis and belongs to the center

of U(g), i.e. the set of the elements of U(g) that commute with every element of U(g).

Representations of g give rise to the reps of the algebra U(g), which we will denote by the

same symbol.

The elements X ∈ g ≃ TeG correspond to the left (right)-invariant vector fields, XL (XR),

which are left (right) first order differential operators on G. The action of such fields on

smooth functions f ∈ C∞(G) can be expressed using derived left (right) representations as
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(dλ(X)f)(g) = −(XLf)(g) =
d

dt

∣∣∣∣
t=0

f(e−tXg), (dρ(X)f)(g) = (XRf)(g) =
d

dt

∣∣∣∣
t=0

f(getX).

(2.94)

Similarly, the elements of U(g) correspond to left (right) invariant differential operators on

G, which can be expressed as polynomials in XL
i (XR

i ).

Since Ω is central, one may check that dλ(Ω) = dρ(Ω), and we call such an operator the

Laplacian on G, denoted ∆ := dλ(Ω) = dρ(Ω).

The Laplacian is then a second-order differential operator,

∆ =
∑

i,j

gi,jXL
i X

L
j =

∑

i,j

gi,jXR
i X

R
j , (2.95)

which is symmetric and non-positive on C∞(G).

The presented construction involving the Casimir element Ω can also be used when (·, ·)
is indefinite (pseudo-Riemannian manifolds). One may also verify that ∆ corresponds to

the usual (pseudo-)Laplace-Beltrami operator (2.106) on a manifold G with a bi-invariant

(pseudo-)Riemannian metric. For Riemannian manifolds, (·, ·) is positive definite and ∆ is

elliptic, which corresponds to heat diffusion. On the other hand, for Lorentzian manifolds,

which are examples of pseudo-Riemannian manifolds with indefinite (·, ·), ∆ is hyperbolic

and corresponds to "wave-like" solutions.

We use the inner product (·, ·) on g to identify h ∼= h∗.

For a rep π of G, we define

Ωπ := dπ(Ω) =
n∑

i,j=1

gijdπ(Xi)dπ(Xj). (2.96)

Then, one may show (see e.g. [50, 49]) that for an irrep πλ of G, corresponding to the

highest weight λ,

Ωπ = −(λ, λ+ 2δ) · Idπ (2.97)

and regarding ∆ as a differential operator on G,
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∆(πλ)ij = −(λ, λ+ 2δ)(πλ)ij . (2.98)

Indeed, by Schur’s lemma and from the fact Ω is central, Ωπ = c · Idπ . The value of the

scalar c can be found by expressing Ω in the Weyl basis {Eα, Hi| α ∈ Φ, 1 ≤ i ≤ dim(T )}
of gC, chosen so that (Eα, E−α) = 1, (Hi, Hj) = δij and Eα + E−α, i(Eα − E−α), Hi ∈ g.

The evaluation on the highest weight vector v ∈ Vπ yields Ωπv = −(λ, λ + 2δ)v, which

proves (2.97).

To prove (2.98), for X ∈ g we compute

(XR(πλ)ij)(g) =
d

dt

∣∣∣∣
t=0

(πλ)ij(ge
tX) =

dπ∑

k=1

(πλ)ik(g)
d

dt

∣∣∣∣
t=0

(πλ)kj(e
tX). (2.99)

Then, thinking of πλ(g) as matrix of functions, we can express (2.99) compactly as

(XRπλ)(g) = πλ(g)dπλ(X). (2.100)

Extending this observation to U(g), we apply it to ∆ and use (2.97) to obtain

(∆πλ)(g) = πλ(g)Ωπλ
= −(λ, λ+ 2δ)πλ(g). (2.101)

Thus, the πλ-isotypic components Eπλ
are the eigenspaces of ∆ with eigenvalues −kλ, where

kλ := (λ, λ+ 2δ). (2.102)

In particular,

∆χλ = −kλχλ. (2.103)

Finally, we note that for simplicity, we defined the Laplacian acting on C∞(G). However,

such a Laplacian is essentially self-adjoint and it can be extended to a (unique) self-adjoint

Laplacian on L2(G) with the domain H2(G), i.e. the L2 Sobolev space of order 2.
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2.2.6 Approximate identities, heat and Fejér kernels

In this subsection, we introduce the notion of approximate identity on a compact (metriz-

able) group G with normalized Haar measure µ and provide some canonical examples.

Specializing to metric spaces, we define an approximate identity as follows [56].

Definition 2.5. An approximate identity on G with respect to a chosen metric is a net

{φα}α>0 ⊂ L1(G) so that

1. (normalization)
´

G φαdµ = 1, for any α > 0.

2. (bounded L1-norm) supα>0||φα|| <∞

3. (vanishing outside ε-balls) limα→0

´

G\Bε
|φα|dµ = 0, for any ε > 0.

Such conditions guarantee that the convolution f ∗ φα reconstructs the function f in the

limit α → 0, in terms of Lp convergence (with 1 ≤ p < ∞) and uniform or pointwise

convergence (for continuous f) - see [56] for a precise statement.

The basic example of an approximate identity on G is the family {Pr}r>0 of normalized

characteristic functions of a ball

Pr(g) =
1Br(g)

µ(Br)
, (2.104)

The vanishing support is often a valuable property; however, Pr is discontinuous across ∂Pr

and has an unbounded spectrum with frequency responsemPr(π) =
1

dπµ(Br)

´

Br
χπ(g)dµ(g).

We now introduce the notion of the heat kernel. Recall that the heat kernel on RN is

an integral kernel, which is the fundamental solution to the heat equation. Thinking of

convolutions, we may express the heat kernel as

Ht(x) =
1

(4πt)N/2
e−||x||22/4t, (2.105)

where || · ||2 is the Euclidean norm on RN and t > 0,

The heat equation on RN can be generalized to other spaces, such as Riemannian manifolds

(M, g), by replacing the standard Laplacian with the Laplace-Beltrami operator, which is

given in local coordinates by
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∆f =
1√
|g|
∂i

(√
|g|gij∂jf

)
. (2.106)

The initial value problem for the heat diffusion on G reads

∂tu(g, t) = ∆u(g, t), t > 0, g ∈ G (2.107)

with some initial datum u(g, 0) = f(g), where e.g. f ∈ C∞(G).

Equipping a compact group G with the bi-invariant Riemannian structure, stemming from

the negative Killing form, we can use the results from Section 2.2.5. Similarly to the case

of a flat N -dimensional torus RN/ZN , by fixing t and calculating the Fourier coefficients,

we have û(λ, t) = e−kλtf̂(λ), where kλ is the eigenvalue of ∆ on the πλ-isotypic component

Eπ. Fourier inversion can be expressed as

u(g, t) = (et∆f)(g) =
∑

λ

dλe
−kλtTr(f̂(πλ)πλ(g)), (2.108)

where et∆ forms so-called heat semigroup, which can be defined by means of the spectral

theorem, and for t > 0 the series converges uniformly for any f ∈ L2(G).

Recalling that convolution with dπχπ is the projector on the π-isotypic component, we

have

et∆f = f ∗Ht, (2.109)

where the fundamental solution reads

Ht(g) =
∑

λ∈Ĝ
dλe

−kλtχλ(g), (2.110)

and the (negative) eigenvalues are kλ := (λ + 2δ, λ). We call a function Ht(g) the heat

kernel. The solution given by convolution (2.109) is smooth for all t > 0. The Heat kernel

family {Ht}t>0 is a non-negative approximate identity on G. This can be proven, e.g., using

the properties of a heat semigroup. Alternatively, quantitative bounds on the vanishing

outside ε-balls can be obtained using the Gaussian bounds valid for compact Riemannian

manifolds with non-negative Ricci curvature. Namely, for all δ > 0 there exists aδ > 0

such that
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Ht(g) ≤
aδ

VolR(BR,
√
t)
exp

(
− d2R(g, e)

4(1 + δ)t

)
, t > 0, g ∈ G, (2.111)

where dR is the bi-invariant Riemannian metric and VolR(BR,
√
t) is the Riemannian volume

of the geodesic ball with radius
√
t [57].

Additionally, note that the solution via the convolution (2.109) can have meaning for f

being a finite measure or even a distribution.

Note that the eigenvalues kλ depend on the choice/normalization of (·, ·).

Example 2.6. For SU(d) with (X,Y ) = −2dTr(XY ), i.e. the negative Killing form, we

have

kλ =
1

2d




d∑

j=1

λ2j +
d∑

j=1

(d− 2j + 1)λj −
|λ|2
d


 . (2.112)

and the roots have squared length 1/d.

In particular, for d = 2,

Ht(ϕ) =
2t∑

m=0

(m+ 1)e−
1
8
(m2+2m)tχm(ϕ), (2.113)

For the normalized Killing form, (X,Y ) = −Tr(XY ), so that the roots have squared length

2 and the right-hand side of (2.112) is rescaled by 2d factor.

The heat kernel on compact, semi-simple, simply-connected Lie groups can also be ex-

pressed using the Poisson summation form, which resembles (2.105)

Ht(exp(X)) ∼ j(exp(X))−1e||δ||
2t(4πt)−N/2

∑

γ∈Γ
π(X♭ + γ)e−

1
4t
||X♭+γ||2 , (2.114)

where j is the Weyl denominator, δ is a certain group constant and π(X) :=
∏

α∈Φ+ α(X)

- see [58] for a precise statement and missing definitions.

The heat kernel is a low-pass filter with an unbounded spectrum but an exponentially

decaying frequency response mHt(πλ) = e−kλt, with a tunable effective window in ||λ|| ≲
1/

√
t.
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Finally, we note that (shifted) heat kernels on compact Lie groups can be obtained by

transporting the Euclidean heat kernel using the Dooley-Wildberger wrapping construction

[59].

We now provide another example of a “nice” approximate identity on G. Denoting the

norm induced by the Weyl-invariant inner product as ||λ||, wee define the Dirichlet kernel

with cutoff N as a sum of projectors (in the sense of convolution)

DT (g) =
∑

λ: ||λ||≤T

dλχλ, (2.115)

We can then define the Fejér kernel with cutoff T as an average of Dirichlet kernels

FT (g) :=
1

T

ˆ T

0
Dt(g)dt =

∑

λ:||λ||1≤T

(
1− ||λ||

T

)

+

dλχλ(g), (2.116)

where (x)+ := max{x, 0}.

The Fejér kernel family {FT }1/T is a non-negative approximate identity on G with net

parameter 1/T [60].

The Fejér kernel is a low-pass filter with a bounded spectrum and a decreasing ramp

frequency response mFT
(πλ) =

(
1− ||λ||

T

)
+
. The window has a cutoff at ||λ|| = T .

The norm ||λ|| can be replaced with other functions of λ defining the scale. For example,

the natural scale can come from the (absolute values) of the eigenvalue of the Laplacian,

kλ, or the 1-norm ||λ||1 =
∑

j |λj |.

Finally, we note that the function χr

χr =
1

rdim(T)


 ∑

||λ||≤r

χλ




2

(2.117)

introduced in [61] is an example of a non-negative approximate identity {χr}1/r normalized

between some group constants c, C

c ≤
ˆ

G
χr(g)dµ(g) =

#{λ| ||λ|| ≤ r}
rdim(T) ≤ C. (2.118)
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It is a low-pass filter with a cutoff ||λ|| ∼ r ≤ 2r, and its frequency response depends on the

tensor product decomposition rules (Richardson-Littlewood/Clebsch-Gordan coefficients

cλµ,ν)

mχr(πλ) =
1

dλrdim(T)

∑

||µ||,||ν||≤r

cλµ,ν , (2.119)

where χµχν =
∑

λ∈Ĝ c
λ
µ,νχλ.

2.3 Elements of quantum computation and information

2.3.1 Unitary channels and ε-nets

The pure quantum state of a d-dimensional quantum system is a ray in the d-dimensional

complex Hilbert space 11 H ∼= Cd, i.e. the equivalence class of unit vectors from H mod-

ulo the global phase. Although formally the pure quantum states are the elements of

the projectivisation P(H) ∼= CPd−1, pure quantum states are typically represented as the

normalized vectors from the vector space H, at the cost of introducing a global phase am-

biguity. The most general quantum state of such a system is given by a density operator

ρ : H → H, which is a positive semi-definite (hence Hermitian) operator with trace 1.

The transformations of quantum states are described as mappings of density matrices,

known as quantum channels. An important class of quantum processes on H consists of

those represented by the unitary quantum channels. Such channels act as unitary op-

erations when restricted to pure quantum states. Mathematically, the unitary quantum

channel is the completely positive trace-preserving map U(ρ) = UρU †, where ρ : H → H is

any quantum state and U ∈ U(d) is some fixed unitary representative. Since two unitaries

U, V which differ by a phase U = eiϕV define the same unitary channel, the group of all uni-

tary channels U(d) can be identified with the projective unitary group PU(d) = U(d)/U(1),

where the canonical projection U(d) → U(d) is mapping the unitary representatives to the

corresponding unitary channels U 7→ U.

Unitary quantum channels can be used to describe the action of ideal (loss-less) quantum

gates or communication channels. In this thesis, we consider only the unitary channels, so

from now on, by a channel we will understand an element from PU(d).
11People with a mathematical background may protest to name such a finite-dimensional space a Hilbert

space; however, in the physics community, such nomenclature is standard.
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In practice, one is often interested in the closeness of different channels. Various norms

(and induced metrics) can be used to quantify it. A prominent example is the diamond

norm || · ||♢ [62]. We denote the induced metric as d♢ (U,V) = ||U−V||♢.

The diamond metric has a clear operational meaning in terms of the statistical distinguisha-

bility of two channels (e.g. determines the maximal probability of success in a single-shot

channel discrimination task).

Example 2.7. Suppose an agent is given the unknown quantum channel - either U (with

probability p) or V (with probability 1-p). The task is for the agent to determine which

channel was given. The agent can prepare the quantum state ρ, pass it through the channel

and measure the output. The maximal probability of agent’s guess being correct is

psucc =
1

2
+

1

2
d♢ (pU, (1− p)V) . (2.120)

The relation between the diamond norm and the norm on PU(d) introduced in (2.24) is

given by (see [41])

dP (U,V) ≤ d♢(U,V) ≤ 2 dP (U,V). (2.121)

We say that a finite subset of channels A ⊂ U(d) is an ε-net if for every channel U ∈ U(d),

there exists a channel V ∈ A, such that dP (U,V) ≤ ε. In other words, A represents all

the possible channels, up to the error ε. Of course, the definition of ε-net can be applied

in any metric space.

2.3.2 Quantum circuit model

A quantum circuit [4, 12] is a universal model for quantum computation, in which quantum

information is processed through the application of a finite series of unitary operations,

known as quantum logic gates (or simply gates), to a register of qubits, culminating in

measurement. The model is used to describe the perfect unitary evolution of pure quantum

states of the register, also referred to as state vectors.

The state vectors of an n-qubit quantum register belong to Hilbert space H ∼=
(
C2
)⊗n

with computational orthonormal basis {|x⟩| x ∈ {0, 1}n}. The register is initialized in

some fiducial quantum state |ϕ⟩, typically |0⟩⊗n. The gates in the circuit can then be

represented as a sequence C = (U1, U2, . . . , Uℓ) of operations realizing the global unitary
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operation UC = Uℓ . . . U2U1 applied to the initial state. After the evolution, the projec-

tive measurement (possibly on a subset of qubits) is performed, resulting in the classical

bitstring with probability governed by the Born rule.

Although we focus on the case of qubits, the quantum circuit model can also be applied to

higher-dimensional building blocks, called qudits, for which H ∼=
(
Cd
)⊗n.

The state |ψ⟩ is called separable if it can be written as a tensor product of single-qubit

states

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩, |ψj⟩ ∈ C2. (2.122)

The states that are not separable are called entangled. We say a gate is entangling if it

can map separable states to entangled states. Prominent examples of such gates include

CNOT, CZ and iSWAP.

Typically, each of the gates acts non-trivially only on a proper subset of an n-qubit register,

say k ≤ n qubits, where usually k = 1 or 2. It is well known that an arbitrary global

operation on an n-qubit register can be realized using single-qubit gates and two-qubit

entangling gates (whose type can be fixed). The action of a k-local gate can be described

as the matrix from SU(2k), with the global action given by the appropriate tensor product

with identity matrices on the remaining qubits (possibly with qubit swaps).

Similarly to a classical computer, whose computation can be described using the classical

circuit model, every global quantum operation on a qubit-register can be realized using

a universal set of elementary operations. A set of such quantum logic gates is called the

universal gate-set S or, in the context of quantum hardware, the native gate-set. Typically,

such a universal gate set consists of single-qubit gates and two-qubit entangling gates 12.

The action of the circuit C is represented pictorially using “wires” for each qubit and k-

local gates as rectangles, circles or crosses through which the wires on which they act

pass through. Vertical lines may be used to connect parts of the gate acting on different

qubits. The wires represent the worldlines of an individual qubit, with the time passing

from left to right as the computation progresses. This is an analogous description to the

classical circuits describing the classical logical operations on classical bit registers. The

current pictorial description of quantum circuits can be traced back to Penrose diagrams,

which are used to describe tensor networks as a special case, adapted to represent the

time-ordered unitary evolution. Indeed, quantum circuits can be equivalently defined as
12Certain architectures, such as ion-trap-based quantum computers, naturally admit physical gates with

larger localities, including global entangling gates.
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tensor networks on d-qubits, with k-local gates being the rank 2k tensors of type (k, k) and

the wire connections between them, which correspond to tensor indices, determine tensor

contractions. The topology of the circuit (i.e. the connectivity pattern of the constituent

gates and wires) defines constraints on the temporal order of the execution of gates needed

to obtain a target global operation. This leads to the concept of a circuit layer, which is

a collection of gates, acting on disjoint subsets of qubits, that can be executed in parallel.

The circuit can be represented as a sequence of layers, with the number of layers referred

to as the circuit depth. The topology of the circuit can be captured, e.g., using the directed

acyclic graphs (DAGs), frequently used in quantum compilers.

|q0⟩

|q1⟩

|q2⟩

|q3⟩

g1 g2 g3 g4

Figure 2.1: A 4-qubit quantum register with four gates gi with increasing locality i,
ranging from one-qubit to four-qubit gates. Red circles indicate the qubits on which a

given gate acts.

|q0⟩

|q1⟩

|q2⟩

|q3⟩

|q4⟩

|q5⟩

g1

g2

g3

g4

g5 g6 g7

Figure 2.2: An example of a quantum circuit on 6 qubits of depth 5.

Importantly, the quantum circuits can be used not only to describe engineered quantum

computing processes occurring inside quantum computers, but also to model the unitary

dynamics of complex quantum systems [27, 28, 29]. In one direction, quantum circuits can

be used to realize an approximate digitized version of continuous Hamiltonian dynamics

through the product-formula decompositions (Trotterization). This is the subject of digital

quantum simulation, in which a finite sequence of local gates approximates continuous-time
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evolution [63, 64]. In another direction, quantum circuits can also be studied as discrete dy-

namical systems in their own right, without an underlying continuous Hamiltonian, serving

as toy models for complex many-body dynamics. Such an approach enables the controlled

analysis of key phenomena, including operator spreading, entanglement growth, and corre-

lation functions. Specific settings, such as brickwork architecture circuits with generic (e.g.

Haar-random) local gates and dual-unitary circuits, can capture many essential features of

chaotic and thermalizing dynamics [29, 65]. On the other hand, random quantum circuits

have found applications in describing entanglement growth and hydrodynamic universality

classes [28, 66], as well as serving as toy models in high-energy physics. In that context,

quantum circuits have been used to model information scrambling [30] and evaporation

[27], as well as growth, saturation, and recurrence of quantum complexity in black hole

interiors [67, 26, 68].

Finally, in the context of quantum computation and information, the group SU(d) is typi-

cally used as the group of all unitary quantum operations (noiseless quantum gates) acting

on n qubits, where d = 2n. However, the group elements are not in 1-1 correspondence

with such operations due to the partial ambiguity of the global phase. To lift such ambigu-

ity, the PU(d) can be used instead, which corresponds to the description via the quantum

unitary channels.

2.3.3 Words, complexity and universality

In this subsection, we use the group U(d); however, all definitions can be adjusted to SU(d)

and U(d).

In the setting of quantum computing, by S we denote a chosen set of elementary quantum

gates from U(d), which are the basic unitary channels used to construct more complicated

operations. It is convenient to think of circuits built out of S as the words over the alphabet

S. For S ⊂ U(d), we denote the set of all words over an alphabet S as S∗, the set of all

words of length ℓ as

Sℓ := {Ui1Ui2 · · ·Uiℓ | Uij ∈ S, 1 ≤ j ≤ ℓ}, (2.123)

and the set of all words with length at most ℓ by

S≤ℓ :=
⋃

1≤ℓ′≤ℓ

Sℓ′ . (2.124)
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By circuit length ℓ, we understand the length of the corresponding word.

The smallest number of elements from S needed to implement a target unitary operation

U with precision ε is called the quantum complexity Cε(U,S)

Cε(U,S) := minℓ{ℓ | dP (U,Sℓ) ≤ ε} (2.125)

Although the group of all unitary quantum channels on a smallest quantum register, i.e.

a single-qubit one, corresponds to a group PU(2), it is informative to consider an even

simpler example.

Example 2.8. Consider a unitary group U(1). By R(ϕ) = eiϕ we denote the rotation about

the fixed angle ϕ. Then a set S = {R(ϕ), 1} is universal for any irrational ϕ/π. Consider

a target operation U = R(ϕ)ℓ, which corresponds to the circuits Sℓ. It is clear that for

any accuracy ε > 0, the complexity of U can be upper bounded Cε(U,S) ≤ ℓ, however

Cε(R(ϕ)
ℓ∗ ,S) = 0 for some large enough ℓ∗.

This trivial example shows that the operations U realized by very long circuits (made of

non-trivial operations) can have minimal complexity due to some complexity shortcuts.

In fact, the computation of Cε(U,S) is known to be a very challenging problem, possibly

residing at higher levels of the so-called polynomial hierarchy - specifically, above the NP

complexity class. Checking whether a quantum circuit is almost equivalent to identity is

known to be QMA-complete [69].

We introduce the uniform bound on the complexity ℓ(S, ε)

ℓ(S, ε) := supUCε(U,S), (2.126)

which is the minimal circuit length for which every operation U can be ε-approximated.

The quantity ℓ(S, ε) can be also reframed as the diameter of U(d) at scale ε [61].

Although the computation of Cε(U,S) is very hard, the pessimistic case ℓ(S, ε) can be

upper-bounded (see Section 2.4.3).

We say that S is universal (in U(d)) if for any precision ε > 0, there exists a depth ℓε such

that every quantum operation from U(d) can be realized by a quantum circuit composed

from the gates in S of depth at most ℓε.
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Using the language of ε-nets, the set S is universal if for any ε > 0 there exists ℓε, such

that S≤ℓε is an ε-net in U(d) 13. Alternatively, using the language of topological groups,

the set S is universal if it topologically generates U(d), i.e. ⟨S⟩ = U(d).

For a universal gate-sets S and any ε > 0, the complexity Cε(U,S) is finite, for any target

operation U on n-qubits. Hence, we can say S is universal if ℓ(S, ε) <∞ for any ε > 0.

(a) The set Sℓ (red dots) does not re-
alize the target operation (black dot)
up to precision ε.

(b) The set Sℓ (red dots) realizes the
target operation (black dot) up to pre-
cision ε.

Figure 2.3: The set Sℓ filling the group as ℓ increases.

In contrast to classical logical circuits, quantum circuits built from a finite set S can

implement arbitrary n-qubit unitary operations only approximately, up to some precision

ε (in a suitable metric).

We define a n-qubit Clifford Cn group as the normalizer of the n-qubit Pauli group

Pn := {eiϕπ
2 σj1 ⊗ σj2 ⊗ . . .⊗ σjn | ϕ, jk ∈ {0, 1, 2, 3}}, (2.127)

up to the global phase

Cn := NU(2n)(Pn)

/
U(1), (2.128)

13If e ∈ S, then Sℓ1 ⊆ Sℓ2 for ℓ1 ≤ ℓ2 so that S≤ℓ = Sℓ.
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where σj denotes the Pauli matrices (including identity σ0). The Pauli matrices form a

basis for density matrices as well as the unitary operations for a single-qubit. The group

Cn is finite with 2n
2+2n

∏n
j=1(4

j − 1) elements.

Introducing the gates

H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
, (2.129)

the set {H,S}, where S = T 2, generates a single-qubit Clifford group C1 = ⟨H,S⟩. The Cn
group can be generated by the C1 generators for each qubit and entangling gates, such as

CNOT or CZ, acting on pairs of qubits (nearest neighbours are sufficient).

The Clifford circuits (i.e. circuits made of Clifford gates) are known to be efficiently sim-

ulable on classical computers. However, the Clifford gates are not universal. Surprisingly,

expanding the Clifford-generating gate set with any non-Clifford gate yields a universal

gate set. Gate sets that are constructed this way by adding a T gate are called Clifford+T.

Example 2.9. The set S = {H,T} is universal for a single qubit. Notice that T ̸∈ C1.
It can be extended to a universal n-qubit gate set by applying it for each qubit and adding

entangling operations (as for the Clifford group).

It is known that the necessary condition for the universality of a finite S is the equality of

the centralizers of the sets obtained by evaluating (2.85) on the whole group and on the

set S for t = 1. The set S is then universal if ⟨S⟩ is infinite, which can be checked by

verifying it forms an 1
2
√
2
-net in Hilbert-Schmidt metric (for SU(d)) [70, 71]. In [52], the

authors show that the infinite ⟨S⟩ condition can be replaced with a statement about S
forming δ-approximate t-designs (see 2.3.5) with t = 6 (for d = 2) and t = 4 (for d ≥ 3).

They also provide an alternative universality condition, which reduces to calculating the

dimensions of centralizers for t = 2 or t = 3 and can be verified using a computationally

efficient algorithm.

Finally, we note that universality is a generic property, i.e. for the fixed cardinality k of

gate-sets S, the set of universal gate-sets is a Zariski-open set in SU(d)×k. Essentially,

this means that almost all finite gate-sets are universal, and the ones that are not can be

expressed as a system of polynomial equations in the matrix entries and their conjugates

[72].
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2.3.4 Efficiency and cost

The circuit length ℓ(S, ε) can be understood as an absolute measure of the computational

efficiency of the chosen set of operations S at the scale of ε-approximations. Since, in prac-

tice, the required ε can be lower-bounded, ℓ(S, ε) fully characterizes the efficiency of S.

So far, we treated the efficiency rather abstractly, understanding it as the computational

efficiency of some chosen generators, where each generator is counted with the same weight

of 1, according to the definition of the quantum complexity (2.125). The quantum com-

plexity may be a relevant measure in some models, e.g., random quantum circuit models

of quantum scrambling.

However, to obtain measures that are of practical importance to quantum hardware, we

need to take into account the implementation details. This leads us to the notion of a cost.

Quantum compilation [16, 73, 4] is a process that has two main objectives. The first

objective is to approximate the target quantum circuit specified by a high-level, hardware-

agnostic representation used by quantum programmers to the form expressible by the native

physical gate set available for a specific quantum computer. The second objective of the

compiler is circuit optimization, which, loosely speaking, boils down to the reduction of

the cost of execution of quantum circuits, such as the depth of the circuit or the number

of costly quantum gates used.

The cost of a quantum circuit is a rather general concept that can have both spatial

and temporal components, depending on the specific context and architecture. The most

basic distinction is between the current hardware, which is almost exclusively the noisy

intermediate-scale quantum (NISQ) devices, and the fault-tolerant quantum computers,

which are slowly emerging.

The NISQ devices are characterized by a modest number of noisy qubits. The number of

qubits in current machines rarely exceeds 103, and the fidelity of the entangling operations,

which are the noisiest, is usually below 99.9%. The NISQ machines do not support fault-

tolerant quantum error correction schemes, so the depth of circuits that can be run on

such computers is severely limited due to the accumulation of errors. Indeed, it is easy to

calculate that the number of entangling gates is limited to hundreds or a few thousand.

Hence, in the NISQ setting, the reduction of the lengths of circuits, their depth, and

the number of noisy entangling gates is of utmost practical importance [13, 14, 15]. For

example, if the CNOT gates are used as entangling gates, the number of CNOT gates

(CNOT-count) is a widely used proxy for the overall cost of a circuit. The NISQ devices
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often use parametrized quantum gates (at least for single qubits), so that the universal

set S has infinitely many elements that can vary continuously. In such a case, an exact

synthesis is possible through decomposition using Euler angles (for single qubits) and the

Cartan/KAK decomposition (for 2 qubits) [4].

On the other hand, in the fault-tolerant regime, quantum error correction schemes enable

reducing the errors of logical operations to arbitrarily small values, at the cost of certain

spatial and temporal overheads in physical operations/qubits. In the fault-tolerant archi-

tectures, due to Eastin-Knill theorem, the cost mainly comes from the implementation of

so-called non-transversal gates [74, 75, 76, 77, 78, 79]. For example, in the Clifford+T

setting, the quantum error correction based on 2D color and surface codes, the T-count/T-

depth is a commonly used proxy for the overall cost of the circuit. This is because the

T-gate is then non-transversal and requires resource-heavy operations, such as magic state

distillation and injection, to be implemented fault-tolerantly. On the other hand, the Clif-

ford operations are relatively cheap. In such a scenario, reducing the T-count/T-depth

leads to improvements in time and number of qubits required for fault-tolerant execution

[18, 19, 20, 21, 22, 23, 24].

2.3.5 Approximate unitary t-designs

In this section, we introduce the notion of the (approximate) unitary t-design. Unitary t-

designs are constructions ubiquitous in quantum information and computation. They found

applications in quantum information protocols [80, 81], randomised benchmarking [82, 83],

process tomography [84], shadow estimation [85], derandomisation of probabilistic con-

structions [86], decoupling [87], entanglement detection [88], quantum state discrimination

[89], efficient quantum measurements [90], unitary codes [91] and the estimation of the prop-

erties of quantum systems [92]. Their connection with pseudo-random quantum circuits

[93] makes them applicable to equilibration of quantum systems [94, 93], quantum metrol-

ogy with random bosonic states [95], quantum complexity and information scrambling in

black holes [31, 96, 97, 98, 99, 100]. Additionally, due to their anti-concentration property

[101, 102], they have also been applied to the study of quantum speed-ups [103, 104, 105].

A (unitary) t-design is a probability measure ν on U(d) which mimics the Haar measure

when applied to averaging the balanced polynomials ft(U) ∈ Ht,
ˆ

U(d)
dν(U)ft(U) =

ˆ

U(d)
dµ(U)ft(U). (2.130)
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Similarly, one can define the related notion of t-designs for quantum states, called the

spherical t-designs. Unitary t-designs in U(d) are known to exist for any t and d, and many

explicit constructions are known [106]. Finally, the construction of certain special cases,

such as group designs and their generalizations, is an active area of research [107].

If the measure ν is supported on a finite number of points {νi, Ui}, left-hand side integral

of (2.130) becomes a sum

∑

Ui∈S
νift(Ui) =

ˆ

U(d)
dµ(U)ft(U), (2.131)

where S denotes a finite set supporting the measure ν. Representing ft as in (2.81), we

can bound the difference between both sides of (2.130) using (2.22)

∣∣∣∣
ˆ

dνS(U)ft(U)−
ˆ

dµ(U)ft(U)

∣∣∣∣ = |Tr(A(TνS ,t − Tµ,t))| ≤ ||A||1 · δ(νS , t), (2.132)

where ||A||1 is the trace norm (Schatten 1-norm).

Hence, using the notion of t-moment operators (2.84), we can relax the condition (2.130)

and say that ν is a δ-approximate t-design if δ(ν, t) < 1 (2.86). If δ(ν, t) = 0, we call ν

an (exact) t-design. We say S is a (δ-approximate) t-design, if it supports a probability

measure which is a (δ-approximate) t-design.

Although intuitively, δ-approximate t-designs and ε-nets are related, the quantitative re-

lations between them were rigorously studied only recently. In [41], the authors show for

the group U(d) that S is an ε-net if S is a δ-approximate t-design with

t ≃ d5/2

ε
, δ ≃

(
ε3/2

d

)d2

(2.133)

(see [41] for precise formulas with explicit constants). The authors of [41] additionally

prove that t has to grow at least as fast as d2/ε. Such relations can be used to obtain SKL

theorems discussed in Section 2.4.3.

Finally, in the opposite way, (discrete) ε-nets in U(d) are δ-approximate t-designs with

δ = 2εt. The authors of [41] prove this by constructing the discrete measure {νi, Ui} which

is, in general, non-uniform. In general, it is interesting to ask what can be said solely about

the uniform δ-approximate t-designs.



Chapter 2. Preliminaries 51

The proof from [41] relies on the construction of the polynomial approximate identity on

U(d) via the periodisation and spectral truncation of Gaussians. However, the argument

can be repeated for other polynomial or approximate identities. Below, we provide the

sketch of the proof.

Let {φt}1/t be an approximate identity with net parameter 1/t, so that φt ∈ Ht, and fix

any V ∈ U(d). If we assume ν is an exact t-design, then Tν acts as the projector onto

constant functions, so

ˆ

Bε(V)
dµ(U)(Tνφt)(U) = µ(Bε(V))). (2.134)

Intuitively, Tνφt = ν∗φt is a density obtained by smearing φt using ν. If the support of ν is

not an ε-net, then we can pick a point V0, such that dP (V0, supp(ν)) ≥ ε. Then applying

(2.134) to a ball Bε/2(V0) we have that the density mass in that ball is µ(Bε/2(V0))).

However, since φt is an approximate identity, as t → ∞, the density will concentrate

around the support of ν, e.g., for finitely-supported ν we have the Dirac delta-like picture.

Thus,

ˆ

Bε/2(V0)
dµ(U)(Tνφt)(U) → 0, (2.135)

as t → ∞. This contradiction proves that the support of ν forms an ε-net. To make this

statement quantitative, we need to be able to bound the rate at which (2.135) vanishes and

relate it to µ(Bε/2(V0)). This can be achieved using the bounds on φt for the vanishing

outside ε-balls (see Property 3 from Definition 2.5).

Finally, if ν is a δ-approximate t-design, the difference between both sides of (2.134) can

be bounded using the Cauchy-Schwartz inequality

|⟨1− Tνφt,1Bε(V)⟩| ≤ ||1− Tνφt||2
√
µ(Bε(V))), (2.136)

and since

||1− Tνφt||2 = ||(Tµ − Tν)φt||2 ≤ ||(Tµ − Tν)
∣∣
Ht

||∞||φt||2 ≤ δ||φt||2, (2.137)

we obtain
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∣∣∣∣∣

ˆ

Bε(V)
dµ(U)(Tνφt)(U)− µ(Bε(V))

∣∣∣∣∣ ≤ δ
√
µ(Bε(V))||φt||2. (2.138)

Hence, assuming that δ ∼
√

µ(Bε(V))

||φt||2 , the situation is analogous to t-designs.

2.4 State of the art and research problems

2.4.1 Spectral gap, efficient and optimal gate sets

As already mentioned, the spectral gap problem has a historical connection to Kazhdan’s

Property (T) [38, 53].

The study of gap(νS) = 1 − δ(νS) for finite universal S is a hard problem, as such a gap

cannot be directly calculated. However, the existence of gap has been proven for specific

types of gates; it is known that finite universal sets S ⊂ SU(d) with gates consisting of

algebraic entries have the gap [108, 109]. This result was later generalized to any compact

simple Lie group [110]. However, the question of whether the algebraic condition can be

lifted is an open problem. Even the following question remains unanswered.

Example 2.10 (Open problem). Consider S = {U, V, U−1, V −1} in SU(d), d ≥ 2. Does

νS have a spectral gap for almost every pair (U, V )?

There are many known gate sets in SU(d) that exhibit a gap. Such gates are called (com-

putationally) efficient as the existence of a gap implies the optimal asymptotic efficiency

ℓ(S, ε) = Θ (log(1/ε)) [111].

Moreover, there are known examples of universal gate sets that are not only efficient but

also optimal in the sense that δ(νS) is as small as possible. The optimal value is given by

the Kesten bound

δ(νS) ≥
2
√

|S| − 1

|S| , (2.139)

(c.f. with the weaker bound (2.80) and see Section (2.4.4) for explanation). A prominent

example is the optimal family of single-qubit gates constructed using quaternion alge-

bras/Hecke constructions with |S| = p+ 1 for p ≡ 1mod 4 [112, 113]. For p = 5, they are

known as V-gates [111]. Finally, some commonly used one-qubit gate sets are known to be
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optimal [34, 114, 115, 116, 117], due to the number-theoretic arguments. More recently, so-

called Golden and Super-Golden single-qubit gates have been proposed together with their

multi-qubit generalizations [54, 118]. In principle, Super-golden gate sets can approximate

generic two-qubit unitaries with asymptotically fewer costly T-type operations, compared

to the standard Clifford+T gate sets.

Despite the lack of proof, nowadays it is widely believed that the generic n-qubit gate-sets

S are efficient. This conjecture can be traced back to Sarnak’s conjecture for the existence

of a gap for universal discrete sets S ⊂ SU(2) [119]. However, the quantitative methods to

bound and compare the efficiency of various gate-sets S were not well-developed.

2.4.2 Decay of the spectral gap

An important property of a finite-scale spectral gap (2.77) is its poly-logarithmic decay as

r increases. Theorem 2.6 provides such a state-of-the-art result (Theorem 6 from [40]).

Theorem 2.6. For every semi-simple compact connected Lie group G, there are numbers

c, r0 and A such that the following holds. Let ν be an arbitrary probability measure on G.

Then

gapr(ν) > c · gapr0(ν) · log−Ar. (2.140)

For simple groups, the value of A can be found in Table 2.2. For semi-simple groups A

is the maximum of the corresponding values over all simple quotients of G. In particular,

A ≤ 2 for all groups.

Table 2.2: The value of A(G) in terms of the Dynkin diagram.

An Bn Cn Dn E6 E7 E8 F4 G2

1+ 2
n+1 1 + 1

n 1 + 1
n 1 + 1

n−1
7
6

10
9

16
15

7
6

4
3

However, note that Theorem 2.6 does not specify the constant c and (especially) r0, which

limits its practical applications.

2.4.3 Solovay-Kitaev-like theorems

In this section, we introduce the notion of the Solovay-Kitaev-like (SKL) theorem as a

theorem that provides a poly-logarithmic upper bound on the efficiency ℓ(S, ε). We start

with recalling the definition of the seminal Solovay-Kitaev (SK) theorem.
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Theorem 2.7 (Solovay-Kitaev). Assume S is a finite universal and symmetric set in

SU(d). For every U ∈ SU(d), ε > 0 and

ℓ > A(S) · logc
(
1

ε

)

there is Uℓ ∈ S≤ℓ such that ||U−Uℓ||∞ < ε (i.e. S≤ℓ is an ε-net in SU(d)), where c = 3+α

for any α > 0.

Using the notion of efficiency, the SK theorem implies ℓ(S, ε) = O(log3+α(1/ε)), for any

α > 0. In other words, all universal gate sets are rather efficient. Moreover, the proof of

the SK theorem is constructive, so that an (efficient) 14 algorithm exists that can find Uℓ.

The SK algorithm became the cornerstone of modern quantum compilation. and many

similar upper bounds on ℓ(S, ε) were provided since its introduction. We refer to all such

poly-logarithmic bounds ℓ(S, ε) = O(Poly(log(1/ε)) (constructive and non-constructive)

as Solovay-Kitaev-like (SKL) theorems.

In terms of constructive/algorithmic SKL theorems, the cubic scaling in the SK algorithm

was broken recently in [33], with the exponent of log(1/ε) lowered to logϕ(2) ≈ 1.44042,

where ϕ = 1+
√
5

2 is the golden ratio. Similarly as in the SK theorem, the construction

assumes that S is finite and inverse-closed. On the other hand, in [120] the authors provided

the version of the SK algorithm without the symmetricity condition on S, with ℓ(S, ε) =
O(logγd(1/ε)) and γd = log(8d2+1)

log(3/2) = Θ(log(d)).

Ultimately, all poly-logarithmic upper bounds on ℓ(S, ε) with log (1/ε) dependence on ε are

asymptotically tight. Indeed, this is a consequence of a simple volume counting argument

[111] which provides the lower bound ℓ(S, ε) = Ω(log (1/ε)).

In fact, the existence of a gap for S implies such optimal computational efficiency. For

SU(d) we can formulate the following SKL theorem [111]

ℓ(S, ε) ≤ (d2 − 1)

log(1/δ(νS))
log

(
2

avε

)
, (2.141)

where av is a constant (2.26).

Crucially, the existence of a gap is not necessary to obtain useful bounds on ℓ(S, ε). Indeed,

one can formulate the SKL theorems using the knowledge of a finite-scale spectral gap,

which is sufficient in practice as it corresponds to studying the efficiency at a certain finite
14At least for efficiently calculable gates from S.
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precision ε. Moreover, for small values of t and d, the finite-scale spectral gap can be

computed numerically. Such a finite-scale approach was studied in [61], where, aside from

the spectral gap decay results from Section (2.4.2), the first part of Lemma 5 provides a

SKL theorem for a compact connected semisimple Lie group G, of the following form

ℓ(S, ε) ≤ C

gapr(ε)(νS)
log

(
1

ε

)
, (2.142)

with r(ε) = D
ε2 dim(G)+2 and C and D are positive group constants. Notice that the denom-

inator of (2.142) is some function of ε with a priori unknown growth in 1/ε.

Additionally, the second part of Lemma 5 from [61] provides the estimation of the finite-

scale spectral gap from the diameter based on the argument of Jean Bourgain

gapr(νS) ≤
1

|S|ℓ2(S, ε(r)) , (2.143)

with ε(r) = 1/(Cr)C .

An improved SKL theorem akin to (2.142) was proved for U(d) in [41] and states that 15

ℓ(S, ε) ≲ d2 − 1

log (1/δ(νS , t(ε)))
log

(
1

ε

)
, (2.144)

where t(ε) ≃ d5/2

ε is the bound stemming from the δ-approximate t-design and ε-net corre-

spondence (see Section 2.3.5 and formula (2.133)). Note that for SU(d), dim(G) = d2 − 1,

so that r(ε) from (2.142) is D

ε2(d
2+1)+2

. In fact, (2.144) holds for an arbitrary probability

measure ν, whose support generates U(d).

Thus, we can say that δ(νS , t(ε)) determines the upper bounds on the efficiency of S in

U(d) at the level of ε approximations, where the necessary scale t(ε) is at least ≃ d2/ε and

≃ d5/2/ε is sufficient.

The proofs of both SLK theorems rely on the application of averaging operators to appro-

priate approximate identities with spectra bounded by the spectral gap scale [41, 61].

By combining the poly-logarithmic decay results with the SKL theorems based on finite-

scale spectral gap (such as (2.142) and (2.144)), one can obtain an SKL theorem with
15Original Proposition 2 in [41] has 1− δ(νS , t) = gapt(νS) in the denominator instead of log (1/δ(νS , t))

due to unnecessary bounding.
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clear ε-dependence. In particular, the decay (2.140) gives ℓ(S, ε) ∝ logA+1(1/ε), which for

SU(d) yields the exponent 2+ 2
d , that is better than the one from the SK theorem for d ≥ 3

16.

Of course, one can apply the SKL theorems with explicit ε-dependence to obtain the bound

on the finite-scale spectral gap of νS via (2.143). However, it is clear that (2.140) cannot

be improved this way.

2.4.4 Random walks, circuits and t-designs

We start by briefly explaining the connection between the averaging operators and random

walks. Let G be a group and let X1, X2, . . . , be a sequence of i.i.d. random elements of G

with law provided by the probability measure ν. For simplicity, we assume ν is symmetric.

The random walk in G is the sequence of random elements

Y1 = X1, Y2 = X2X1, . . . , Yℓ = XℓXℓ−1 . . . X1, . . . (2.145)

We may study how fast the distribution of Yℓ, which has the law ν∗ℓ, converges to Haar

measure by considering the averaging operator Tν

(Tνf)(g) = (ν ∗ f)(g) = EX1∼ν(f(X1g)), (2.146)

so that (T ℓ
νf)(1) = EYℓ∼ν∗ℓ(f(Yℓ)). Then, the existence of a gap for ν guarantees an

exponential weak convergence of the law of Yℓ to the Haar measure.

We now move our attention to the properties of random quantum circuits. It is known

that various architectures of random quantum circuits on n-qubits form δ-approximate

t-designs in depth at most polynomial in n and t. Such results were obtained for random

quantum circuits with fixed architecture (e.g., 1D brickwork) as well as nondeterministic

architectures (see [121] for a good summary). Recently, a generic bound was obtained for

all random quantum circuits with a fixed architecture of Haar-random two-site gates with

tighter bounds for architectures satisfying certain conditions [121].

Finally, we briefly discuss the Haar-random gate sets. By a random gate set, we mean a

gate set whose elements are Haar-randomly chosen elements.
16However worse that the striking recent improvement from [33].
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It is known that the random gate sets S ⊂ U(d) form decent t-designs with t = O(d1/6/log(d))

[122, 123]. Recently, the distribution of δ(νS , t) for random gate sets was studied in [124],

where the authors provide the bounds on the probabilities of S forming δ-approximate

t-designs and the number of random gates needed to create such t-designs with given

probability.

In [48], the authors propose a random matrix model based on Gaussian or Ginibre random

matrix ensembles that aims to describe the probability distribution of δ(νS , t) for random

S. They prove that as |S| → ∞, the block-diagonal operator determining the gap at scale

t (similar to (2.87) but without repetitions), converges in distribution to the corresponding

block-diagonal operator Tt with i.i.d. random matrix blocks, after rescaling by
√

|S|. They

provide numerical evidence that their model is almost exact for all |S|, with tail bounds

of δ(νS , t) upper bounded by the corresponding tail bounds of their random matrix model.

Since their random matrix model satisfies the spectral gap conjecture with probability 1,

they conjecture the same is true for δ(νS , t) for all |S|.

Following [48], we now comment on the limiting behaviour of the spectrum of the t-moment

operator and the resulting optimal bound on the spectral gap for U(d). We recall that a

spectral measure σHn of a self-adjoint matrix n × n, Hn, on a closed interval in R is the

number of eigenvalues of Hn in this interval divided by n.

For a symmetric gate-set S, the t-moment operator (2.84) is a bounded self-adjoint operator

so that it has a well-defined spectrum. Its spectral measure σS,t is compactly supported

so it determined by its moments

σ
(m)
S,t =

Tr(Tm
νS,t

)

d2t
. (2.147)

The asymptotic behavior of σ(m)
S,t moments, i.e., the limit limt→∞ σ

(m)
S,t is determined by

the number of length m spellings of the central elements

lim
t→∞

σ
(m)
S,t =

1

|S|m
∑

U1,U2,...,Um∈S
U1U2...Um∝I

1 (2.148)

For S consisting of free generators, this boils down to the number of spellings of identity

and was provided in [125]. Moreover in [125] it was shown that in this case there exists a

measure σS , such that σ(m)
S = limt→∞ σ

(m)
S,t . Such a measure is known as the Kesten-McKay

measure [113, 126]
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dσS(x) =
|S|
√
δ2opt(S)− x2

2π(1− x2)
1[−δopt(S), δopt(S)]dx, (2.149)

where δopt(S) is given by

δopt(|S|) :=
2
√
|S| − 1

|S| . (2.150)

It follows that that σS,t converges weakly to σS in the limit t→ ∞.

Analogous results can be obtained for any (i.e. not necessarily inverse-closed) finite S,

for which S ∪ S−1 generates a free group [48]. Note that in the general case, the t-

moment operator does not need to be self-adjoint, hence by the Kesten-McKay measure

we understand the measure describing the singular values of TνS , i.e. the spectral measure

of
√
TνST

∗
νS . Such a measure is given by

|S|
√
δ2opt(S)− x2

π(1− x2)
1[0, δopt(S)]dx. (2.151)

Crucially, although the moments converge to the Kesten-McKay measure only for the free

generators, the introduction of the relations can only increase the number of spellings of

the central elements, increasing the moments. Thus, the support remains contained in the

support of the Kesten-McKay measure and we obtain a universal bound on the spectral

gap for any universal discrete set S

1− gap(νS) ≥ δopt(|S|). (2.152)

Finally, the Kesten bound (2.152) is tighter than (2.80) starting from |S| ≥ 2.

2.4.5 Research problems

In this subsection, we formulate three main research problems related to the Thesis. Each

problem is divided into subproblems, or rather stages, and we indicate which subproblems

were addressed in the research part of the thesis (Chapters 3 to 5).

I. Decay of the spectral gap
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a. Obtain poly-logarithmic bounds on gapt(S) for U(d) with explicit or essentially

calculable constants (addressed in Chapter 3).

b. Recreate Varju’s result with exponent A or better for U(d) using more natural

and simplified construction in the t-design language. Provide a way to calculate t0
(not addressed in the thesis).

c. Show that t0 can be as small as possible, e.g. at the level of universality detection

t0 = 6 (for d = 2) and t0 = 4 (for d ≥ 3) - see Section 2.3.3 (not addressed in the

thesis).

II. The t-design ≡ ε-net correspondence

a. Obtain the t-design =⇒ ε-net correspondence for U(d) using more natural and

simplified construction (addressed in Chapter 4).

b. Improve the scaling of t and δ in d and ε (partly addressed in Chapter 4).

c. Saturate the optimal scaling of t ≃ d2/ε or prove a tighter lower bound. Provide

an upper bound on the scaling of δ and show it saturates (not addressed in the

thesis).

III. Efficiency of quantum gates

a. Find a good and essentially calculable measure of the relative efficiency of quantum

gate sets (addressed in Chapter 5).

b. Relate this measure to practically relevant proxies for physical efficiency/cost (ad-

dressed in Chapter 5).

c. Use this measure to analyse the physical efficiency of relevant gate sets (partly

addressed in Chapter 5).
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Chapter 3

Paper I: Calculable lower bounds on

the efficiency of universal sets of

quantum gates

3.1 Overview

In this first paper, we aimed to derive the poly-logarithmic lower bound on the finite-scale

spectral gap, gapt(S), which is given by an explicit formula with known or (in principle)

calculable constants.

By S = {U1, . . . , Uk, U
−1
1 , . . . U−1

k } we denote a universal symmetric set of d-dimensional

quantum gates. The proof can be divided into three main steps:

1. We consider sets of gates, which can be derived from S by squaring its elements

and removing a certain number of elements with their inverses {U2
i , U

−2
i }. Using

the reasoning based on Bourgain’s argument (see [40]), we obtain a lower bound on

gapt(S) which depends on the diameters of such derived gate sets, at specific scales

proportional to 1/t (c.f. (2.143)).

2. We then use the Solovay-Kitaev theorem (a version with calculable constants; c.f.

Theorem 2.7), to bound such diameters. The constant A in the theorem we use

depends on the circuit lengths needed to obtain the initial approximation for the

Solovay-Kitaev theorem.
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3. Finally, we use the SKL theorem based on the finite-scale spectral gap from [41] to

bound such initial circuit lengths (see also (2.144)).

The final bound is given in Theorem 1 (c.f. Theorem 2.6):

gapt(S) ≥ α · gt0(S) · log(βt)−2c (3.1)

where t ≥ t0 and the constants α and β are given by explicit formulas depending on d

and additional construction parameter ε0. The value of t0 is given by the t-design ε-net

correspondence and depends on d and ε0. The parameter ε0 can be understood as the

parameter used to set the value of t0, with the largest possible value of ε0 being 1/(d+2).

This corresponds to the smallest possible value of t0 being 509 for d = 2. We provide

numerical values for t0, α and β with varying ε0 for d = 2, 3, 4 in Tables 1 and 2. The value

of c depends on the Solovay-Kitaev theorem used, namely, it is the exponent of log(1/ε).

Finally, gt0(S) is the quantity which can be found numerically by the calculations of the

spectral gap of roughly 2k gate sets, with a varying number of elements, derived from S
at scale t0. We supplement our results with the numerical simulations of such bounds for

Haar-random single-qubit gate sets.

Although Theorem 1 requires a rather unusual condition, namely that for each 1 ≤ i ̸=
j ≤ k, the set {U2

i , U
2
j , U

−2
i , U−2

j } is universal, this condition is met for generic S, e.g.

Haar-random gates, with probability 1.

Another result provided in the paper is an alternative to [111] proof of the SKL theorem

based on the (global) spectral gap, gap(S) (Theorem 3).

We note that the Solovay-Kitaev theorem in our construction can be replaced with other

constructive SKL theorems with explicit ε-dependence and constants that are determined

by some initial circuit lengths.

One should clarify that the results presented in this paper are not directly applicable to

the efficiency bounds. Indeed, since our procedure involves Bourgain’s argument to bound

the spectral gap by the diameter, the resulting poly-logarithmic decay will have exponent

2c, where c is the exponent of the Solovay-Kitaev theorem used. Thus, the resulting SKL

theorem with explicit ε-dependence will have exponent 2c + 1. Therefore, although the

efficiency bounds are the motivation for studying the finite-scale spectral gap, the paper

actually focuses on the bounds on the spectral gap itself. This is motivated by the lack of

scale-defining constants in known poly-logarithmic bounds, such as (2.140).
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3.2 Contribution statement

My contribution to this article was:

1. Co-formulation of the idea of the proof of Theorem 1 and preparation of the proof.

2. Preparation of the proof of Theorem 3.

3. Conduction of numerical experiments for Haar-random gates on the supercomputing

cluster (based on the code to compute spectral gaps, shared with me by Piotr Dulian).

4. Writing the whole article.

3.3 Errata

1. Below (12), the regular representation restricted to space Vλ corresponds to πdλλ , not

just πλ.

2. Above (22), the Lie group su(d) should be replaced with suC(d) = sl(d,C).

3. In (71), the lower bound on volume should be used instead, which means Cv should

be replaced with av.
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Abstract
Currently available quantum computers, so called Noisy Intermediate-Scale
Quantum devices, are characterized by relatively low number of qubits and
moderate gate fidelities. In such scenario, the implementation of quantum error
correction is impossible and the performance of those devices is quite modest.
In particular, the depth of circuits implementable with reasonably high fidelity
is limited, and theminimization of circuit depth is required. Such depths depend
on the efficiency of the universal set of gates S used in computation, and can be
bounded using the Solovay–Kitaev theorem. However, it is known that much
better, asymptotically tight bounds of the form O(log(ϵ−1)), can be obtained
for specific S. Those bounds are controlled by so called spectral gap, denoted
gap(S). Yet, the computation of gap(S) is not possible for general S and in
practice one considers spectral gap at a certain scale r(ϵ), denoted gapr(S).
This turns out to be sufficient to bound the efficiency of S provided that one
is interested in a physically feasible case, in which an error ε is bounded from
below. In this paper we derive lower bounds on gapr(S) and, as a consequence,
on the efficiency of universal sets of d-dimensional quantum gates S satisfying
an additional condition. The condition is naturally met for generic quantum
gates, such as e.g. Haar random gates. Our bounds are explicit in the sense
that all parameters can be determined by numerical calculations on existing
computers, at least for small d. This is in contrast with known lower bounds on
gapr(S) which involve parameters with ambiguous values.
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1. Introduction and main results

Universal, scalable and fault-tolerant quantum computers are the holy grail of quantum com-
puting. Such devices require quantum error correction that, due to quantum threshold the-
orem, can be implemented if the levels of gate errors are small enough [1–3]. However, recent
quantum hardware, so called Noisy Intermediate-Scale Quantum (NISQ) devices, does not
offer gate fidelities required for quantum error correction and their performance is heavily
affected by gate imperfections [4–6]. Because of error accumulation effects, the depth of cir-
cuits feasible for NISQ devices is very modest. Hence it is imperative to find ways to minimize
such depths. One of the ways to address this issue is to focus on the efficiency of universal sets
[7, 8] of gates S used for the computations.

Spectral gap is a useful measure of efficiency of universal sets of quantum gates S ⊂ SU(d).
The value of gap for chosenS, denoted gap(S), lies between 0 (no gap) and some optimal value
gapopt < 1, depending only on the number of gates |S| [9]. The higher the value of gap(S), the
better is the upper bound on the minimal length (circuit depth) ℓ of a sequence of gates from S
required to ε-approximate any unitary operation from SU(d). Recall that the Solovay–Kitaev
theorem [10] provides such a bound for depth ℓ,

ℓ= Ã(S) · log3+δ(1/ϵ)), δ > 0. (1)

However, the existence of gap, i.e. gap(S)> 0, implies that

ℓ= A(S) · log(1/ϵ))+B(S) (2)

is enough, with the constants A and B proportional to log−1(1/(1− gap(S))) [11]. In fact,
ℓ=O(log(1/ϵ))) is optimal, which can be seen from a simple volumetric argument.

One should note that some properties of S with optimal spectral gap are known. For
instance, if the gates from the universal set S have algebraic entries then the gap exists [12,
13]. Moreover, it has been conjectured that any universal S has the gap and there are expli-
cit constructions of examples of S with the optimal spectral gap for SU(2) with |S|= p− 1
for p≡ 1mod4 [14, 15]. Finally, some commonly used one-qubit universal sets turned out to
have the optimal spectral gap [16–19]. However, the construction of many-qubit gates with
the optimal spectral gap remains an open problem.

The calculation of gap(S) is challenging and in practice one often considers the gap up
to the certain scale r, denoted gapr(S), such that gap(S) is the infimum of gapr(S) over all
scales r1. Since it is impossible to implement gates without any error, in practice ε can be
bounded from below. In such a case, in order to bound ℓ it is sufficient to have the knowledge
of gapr(S) at some scale r(ϵ) instead of gap(S). This is due to the existence of the Solovay–
Kitaev-like theorems involving gapr(S). Specifically, it is known that for any universal S one
can bound ℓ∝ gap−1

r (S) · log(1/ϵ) at some scale r(ϵ) (see the first part of lemma 5 in [20] and
the improved version with r(ϵ)≃O(1/ϵ · log(1/ϵ))—proposition 2 in [21]). Thus, bounding
gapr(S) is imperative. From the seminal paper [20] it is known, in more general setting of

1 The exact definition of a scale depends on the approach.
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semisimple compact connected Lie groups, that there exist group constants c,A and r0 such
that

gapr(S)⩾ c · gapr0(S) · log
−A(r), (3)

for any r⩾ r0. Thus, the knowledge of gap at the certain scale r0 enables to bound the rate at
which gapr(S) vanishes with growing r⩾ r0. However it is unclear what is the magnitude of
the minimal scale r0 fromwhich the bound (3) holds, even for SU(2). Our preliminary analysis
of this bound suggests that the value of r0 for SU(2) resulting from the proof is enormous—
orders of magnitude larger than the scale for which the numerical calculation of gapr0(S) is
remotely possible.

In this paper we exploit Bourgain’s argument for bounding gapr(S) by the diameter of S,
which was communicated in the proof of the second part of lemma 5 from [20]. By introducing
an additional assumption on S we obtain calculable bounds on gapr(S) for universal sets of
quantum gates. Our additional assumption on S is satisfied e.g. for generic quantum gates,
such as Haar random gates (with probability 1). The main result of the paper is the following.

Theorem 1. LetS = {U1, . . . ,Uk,U
−1
1 , . . .U−1

k } be a universal symmetric set of d-dimensional
quantum gates, such that for any Ui,Uj ∈ S , i ̸= j, the set {U2

i ,U
2
j ,U

−2
i ,U−2

j } is universal.
Then

gapt(S)⩾ α · gt0(S) · log−2c(βt), (4)

where c= log(5)/log(3/2)≈ 4, α and β are known constants and gt0(S) can be determined
by the numerical calculations of gaps at a known scale t0 of certain universal sets that can be
derived from S .

The quantity gt0(S) is defined in equation (137), see also equations (138) and (96). Cru-
cially, we provide explicit formulas (136) and (139), (78) for α= α(d, ϵ0), β = β(d) and
t0 = t0(d, ϵ0), where ε0 is the parameter in the construction leading to different bounds. The
value of t0 is small enough to enable numerical calculations of gt0(S), at least for d= 2,3 and
4. Hence, our bounds can be made explicit by numerical experiments for fixed S . We provide
examples of specific values of t0, α and β, for d= 2,3 and 4 in tables 1 and 2. The minimal
possible values of t0 are indicated by bold font and given by

tmin := ⌈5d5/2/ϵ0,max · τ(ϵ0,max,d)⌉, ϵ0,max := 1/(d+ 2), (5)

where τ(ϵ,d) is defined in equation (78). We present the values of t0 up to the ones giving α
around 1.

The value of α grows quickly with t0 as can be seen in figure 1. Values of β and c do not
depend on t0. On the other hand, the value of gt0(S) can decrease with increasing t0.

In order to check the behavior of our bound (4) and demonstrate that it can be calculated on
existing hardware, we performed a numerical simulation on a supercomputer. For the sake of
this simulation, we chose 1000Haar random sets S for d= 2, each consisting of three gates and
their inverses. The computations took approximately two weeks and utilized 1008 CPU cores.
We calculated the values of the lower bound for t0 ranging from 550 to 900 (with increment
10) and plotted the bounds for t from t0 to 1000. We also calculated the ratio of our bound
and the true value of the gap at given t. We present those results averaged over all sets S in
figure 2.

3

66



J. Phys. A: Math. Theor. 56 (2023) 115304 O Słowik and A Sawicki

Table 1. Examples of values of t0, α and β for d= 2 (left) and d= 3 (right). The para-
meter ε0 is an element of the construction determining t0 (along with d). Bold font
indicates the choice of the smallest possible t0.

ε0 t0 α β ε0 t0 α β

0.04 4599 9.68×10−1 0.393 0.02 29199 7.25×10−1 0.251
0.05 3544 3.67×10−1 0.393 0.03 18353 1.73×10−1 0.251
0.06 2860 1.49×10−1 0.393 0.04 13170 5.07×10−2 0.251
0.07 2384 6.29×10−2 0.393 0.05 10166 1.65×10−2 0.251
0.08 2035 2.72×10−2 0.393 0.06 8219 5.69×10−3 0.251
0.09 1769 1.18×10−2 0.393 0.07 6861 2.01×10−3 0.251
0.1 1559 5.15×10−3 0.393 0.08 5864 7.10×10−4 0.251
0.11 1391 2.22×10−3 0.393 0.09 5103 2.47×10−4 0.251
0.12 1252 9.38×10−4 0.393 0.1 4504 8.31×10−5 0.251
0.13 1137 3.85×10−4 0.393 0.11 4022 2.65×10−5 0.251
0.14 1039 2.62×10−4 0.393 0.12 3625 7.81×10−6 0.251
0.15 955 5.68×10−5 0.393 0.13 3295 2.07×10−6 0.251
0.16 883 1.99×10−5 0.393 0.14 3014 4.75×10−7 0.251
0.17 820 6.36×10−6 0.393 0.15 2775 8.82×10−8 0.251
⪅0.25 509 ⪆0 0.393 ⪅0.20 1958 ⪆0 0.251

Table 2. Examples of values of t0, α and β for d= 4. The parameter ε0 is an element
of the construction determining t0 (along with d). Bold font indicates the choice of the
smallest possible t0.

ε0 t0 α β

0.01 134232 8.46×10−1 0.175
0.02 61313 1.06×10−1 0.175
0.03 38602 2.18×10−2 0.175
0.04 27738 5.49×10−3 0.175
0.05 21435 1.52×10−3 0.175
0.06 17347 4.34×10−4 0.175
0.07 14494 1.24×10−4 0.175
0.08 12398 3.43×10−5 0.175
0.09 10797 8.86×10−6 0.175
0.1 9537 2.07×10−6 0.175
0.11 8522 4.14×10−7 0.175
0.12 7687 6.59×10−8 0.175
0.13 6990 7.37×10−9 0.175
0.14 6400 4.54×10−10 0.175
⪅0.1(6) 5195 ⪆0 0.175

The value of the lower bound looks qualitatively the same as the ratio in figure 2 rescaled
by a constant. This is because the true value of the gap is practically constant for any chosen
S in the inspected range of t. From figure 2 it is clear that our bound is far from being tight, at
least in a tested range. However, obtained results are not far from our expectations taking into
account the generality of our bounds. Moreover, evidently, the lower bounds improve quickly
with t0, due to the rising value of constant α that dominates possible deterioration of gt0(S). In
fact, the value of gt0(S) is also constant for any S in the inspected range. Needless to say, such
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Figure 1. The value of α as a function of t0 for d= 2.

Figure 2. Ratio of lower bound (4) to true value of gap as a function of t ∈ [t0,1000].
The ratio was averaged over 1000 Haar random sets S with d= 2 and 3 gates on each set
together with inverses. Each line corresponds to a lower bound calculated for different
value of t0 ∈ [550,900] with increment 10.

improvement cannot continue indefinitely, since the ratio must be at most 1. Unfortunately, we
did not have enough resources to push our simulations further.

The structure of this paper is as follows. In section 2 we introduce the mathematics used
in the paper, such as the averaging operators and their relevant spectral gaps. In section 3 we
provide an alternative proof of the efficiency bound (2) from [11] with A and B proportional
to gap−1(S). In section 4 we present the proof of our main result, theorem 1.
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2. Averaging operators and their spectral gaps

ByGd we denote the projective unitary group PU(d), which is the quotient of the unitary group
U(d) by its center

U(1) = {eiθ|θ ∈ [0,2π)}. (6)

Consider the space L2(Gd) of square integrable complex functions on Gd with respect to µ,
equipped with the standard scalar product ⟨·, ·⟩ (linear on the second slot). Since Gd is com-
pact we consider only unitary representations. A group Gd acts on L2(Gd) via (left) regular
representation Reg. Given a function f ∈ L2(Gd) and element g ∈ Gd

(Reg(g)f)(x) = f(g−1x), (7)

so the regular representation acts on functions by shifts. Regular representation is not irredu-
cible. In fact, due to Peter–Weyl theorem, it decomposes into an orthogonal direct sum of all
the irreducible unitary representations (irreps) with multiplicities equal to their dimensions

L2(Gd) =
⊕̂

λ∈Λ

V⊕dλ
λ , (8)

where Λ is the set of highest weights of Gd (enumerating all irreps up to isomorphism), Vλ is
the representation space of irrep πλ with highest weight λ and dimension dλ and hat denotes
the closure of an infinite direct sum. Moreover for each λ ∈ Λ{√

dλ(πλ)ij|1⩽ i, j⩽ dλ
}
, (9)

is an orthonormal basis of Vλ where matrix elements (πλ)ij are functions in L2(Gd) given by

(πλ)ij(g) := ⟨ei,πλ(g)ej⟩, (10)

for some fixed orthonormal basis of Vλ, {ek|1⩽ k⩽ dλ}. Clearly, sum of all such basis form
an orthonormal basis of L2(Gd)

{√
dλ(πλ)ij|λ ∈ Λ,1⩽ i, j⩽ dλ

}
. (11)

Hence any function f ∈ Vλ, as a linear combination of matrix elements, is given by

f(g) = Tr[Aπλ(g)], g ∈ Gd (12)

for some complex dλ × dλ matrix A. The regular representation restricted to functions in Vλ

is isomorphic to representation πλ. If π is any (possibly reducible) representation of Gd, then
π is isomorphic to the direct sum of irreps which can be identified with function spaces from
Peter–Weyl decomposition V⊗m1

λ1
⊕ . . .⊕V⊗mk

λk
, for some k⩾ 1 and multiplicities mi ⩾ 1. If

mi ⩽ dλi for all 1⩽ i⩽ k, then representation π will appear as a subrepresentation of L2(G).
The corresponding space of functions consists of all functions obtained via

f(g) = Tr[Aπ(g)], g ∈ Gd (13)

for all matrices A.
We now comment on how one may naturally choose a scale up to which one would like to

consider irreps of Gd.
The Lie algebra of Gd is isomorphic to su(d) since

Gd = PU(d)∼= PSU(d) = SU(d)/Z(SU(d)), (14)

where Z(SU(d))≃ Zd, the center of SU(d), is discrete.

6
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The adjoint representation Ad of U(d) descents into the quotient group Gd forming the
adjoint representation Ad of a group Gd acting on its representation space su(d) via

AdU(X) = ÛXÛ−1, U ∈ Gd,X ∈ su(d), (15)

where Û ∈ U(d) is any representative of U ∈ Gd. Importantly Ad is faithful hence every rep-
resentation of Gd is realized inside Ad⊗n for n large enough. The defining representation U of
U(d) does not descend into a well-defined representation U of Gd but U⊗U does, where U is
the adjoint of U. In fact,

U⊗U∼= Ad⊕ I, (16)

where by I we denote the one-dimensional trivial representation. Thus each irrep ofGd appears
in rep (U⊗U)⊗t for some t. Moreover this rep contains only projective irreps of U(d) hence
reps of Gd.

Consider t⩾ 2. Then

(U⊗U)⊗t ∼= (U⊗U)⊗t−1 ⊗ (Ad⊕ I)∼= [(U⊗U)⊗t−1 ⊗Ad]⊕ (U⊗U)⊗t−1 (17)

and applying this reasoning inductively we see that all irreps of (U⊗U)⊗s appear in (U⊗U)⊗t

for s⩽ t. Thus we see that with t increasing the rep (U⊗U)⊗t contains more and more irreps
of Gd and each irrep of Gd is contained in this rep for t large enough. In the language of
Peter–Weyl theorem the corresponding functions in L2(G) are

f(U) = Tr[A(U⊗U)⊗t],g ∈ G (18)

so they are balanced polynomials inU andU of degree t. Thus increasing t corresponds to con-
sidering polynomials with higher degrees. This motivates us to consider the following function
spaces in L2(Gd),

L2
t (Gd) =

⊕

λ∈Λt

Vλ, (19)

where Λt is the set of unique (i.e. without repetitions and up to isomorphism) highest weights
of irreps of Gd appearing in (U⊗U)⊗t. In the case t= 0, we set

L2
0(Gd) = I. (20)

Additionally we define the following related symbols. The set Λ̃t which equals Λt without
the weight of the trivial representation and the set of all unique highest weights

Λ∞ :=
∞⋃

t=0

Λt. (21)

Fortunately the weights Λt have a nice description in terms of the sequences of integers.

Lemma 2. The set Λt consists precisely of weights indexed by nonincreasing length d integer
sequences λ such that |λ|= 0 and |λ+|⩽ t, where |λ| denotes the sum of entries and λ+ is the
subsequence of positive entries.

Each sequence λ= (λ1, . . . ,λd) ∈ Λt corresponds to a weight (the linear functional on the
Cartan subalgebra h⊂ su(d))

λ= λ1L1 + . . .λdLd, (22)

7
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where Li are the standard basis elements2. Since L1 + . . .+Ld = 0 in h∗, adding a constant
sequence, (c, . . . ,c) for some c ∈ Z, to λ does not change the weight.

Example 1. Consider the system of two qutrits C3 ⊗C3 and t= 2. Then, from lemma 2, we
have

Λt = {(2,0,−2),(2,−1,−1),(1,1,−2),(1,0,−1),(0,0,0)} (23)

which is equivalent to

Λt = {(4,2,0),(3,0,0),(3,3,0),(2,1,0),(0,0,0)}, (24)

and for example λ= (2,1,0) corresponds to the highest weight 2L1 +L2 i.e. to the adjoint
representation. Similarly we can represent Λ̃t as

Λ̃t = {(4,2,0),(3,0,0),(3,3,0),(2,1,0)}. (25)

We introduce the following norm on the space of weights of Gd

||λ||1 :=
d∑

i=1

|λi|. (26)

It is clear that for each λ ∈ Λt,

||λ||1 ⩽ 2t. (27)

From now on we represent each irrep λ by the sequence with smallest ||λ||1. In particular, the
trivial representation is given by λ= (0,0, . . . ,0).

By choosing the orthonormal basis of function spaces (11) we have the isomorphisms

Vλ ≃Hλ, (28)

where Hλ := Cdλ . We define

Ht :=
⊕

λ∈Λt

Hλ ≃ L2
t (Gd), (29)

and analogously we define H∞3. By H we denote the vector space isomorphic to L2(Gd).
Clearly,

L2(Gd)≃H :=
⊕

λ∈Λ∞

H⊕dλ
λ . (30)

For any representation of Gd and any finite Borel measure ν on Gd we define the operator

π(ν) :=

ˆ

Gd

π(g)dν(g), (31)

acting on the representation space of π. We use can use equation (31) to define various aver-
aging operators. By S we denote a finite set of generators ofGd and νS is the counting measure
of S on Gd.

The t-averaging operator wrt to S, TνS ,t :Ht →Ht is

TνS ,t :=
⊕

λ∈Λt

πλ(νS), (32)

2 The linear functional Li returns the ith diagonal entry of a matrix in h.
3 Here we use the closure of the direct sum.

8

71



J. Phys. A: Math. Theor. 56 (2023) 115304 O Słowik and A Sawicki

and can be represented as a block-diagonal matrix. Analogously we define the ∞-averaging
operator wrt to S , TνS ,∞ :H∞ →H∞,

TνS ,∞ :=
⊕

λ∈Λ∞

πλ(νS). (33)

Finally, the (global) averaging operator wrt to S, TνS :H→H is

TνS :=
⊕

λ∈Λ∞

πλ(νS)
⊕dλ . (34)

In the language of functions, introduced averaging operators correspond to restrictions of
Reg(νS) to corresponding function subspaces. We denote such isomorphic averaging oper-
ators using the same symbols. For example, the global averaging operator is

TνS = Reg(νS), (35)

so the action on f ∈ L2(Gd) is

(TνS f)(h) =
ˆ

Gd

(Reg(g)f)(h)dνS(g) =
1
|S|

|S|∑

i=1

f(g−1
i h). (36)

The justification for the name averaging operator is clear from equation (36). Indeed, TνS
replaces the function f with the averaged function, whose value at h is the average of the values
of f over all translates of h by the elements of S.

Similarly, the t-averaging operator is

TνS ,t = Reg(νS)
∣∣
L2
t (Gd)

, (37)

so it acts just like TνS but on a restricted domain of functions.
Since TνS ,t is a sum of |S| left shift operators, normalized by 1/|S|, and due to left-

invariance of Haar measure, each such operator is unitary on L2
t (Gd), we see that ||TνS ,t||op ⩽

1, where by || · ||op we denote the operator norm. On the other hand TνS ,t acts trivially onHλ0 ,
where λ0 = (0,0, . . . ,0) so ||TνS ,t||op ⩾ 1 and hence ||TνS ,t||op = 1.

The subspace Hλ0 corresponds to the subspace of constant functions L2
0(Gd) = Vλ0 , with

orthogonal compliment being the space of functions with Haar-average zero. Let Tµ denote
the projector onto Hλ0 . At the level of function spaces, Tµ is the projector onto L2

0(Gd) which
assigns to each function f the constant function with value being the Haar average4 of f,

(Tµf)(h) =
ˆ

Gd

f(g)dµ(g). (38)

In order to assess how quick the words in S fill the group Gd, we compare the averaging
operator TνS with Tµ by checking the operator of their difference. Since TνS

∣∣
Hλ0

= Tµ
∣∣
Hλ0

,

the norm ||TνS −Tµ||op equals the norm of the operator

T̃νS :=
⊕

λ∈Λ̃∞

πλ(νS)
⊕dλ . (39)

Similarly, we define T̃νS ,t and T̃νS ,∞. Clearly,

σ(TνS ) = σ(TνS ,∞), (40)

4 From now on the symbol µ denotes the Haar measure on Gd .
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so we have

||TνS −Tµ||op = ||T̃νS ||op = ||T̃νS ,∞||op. (41)

This motivates us to define the spectral gap of S as

gap(S) := 1− ||T̃νS ||op. (42)

The spectral gap is an useful numerical value describing the set S via the properties of the
corresponding averaging operator.

Similarly, we define spectral gap of S at scale t as

gapt(S) := 1− ||T̃νS ,t||op. (43)

In general we can define analogous gaps for any finite Borel measure ν on Gd. For example,

gapt(ν) := 1− ||T̃ν,t||op, (44)

where T̃ν,t is defined as in equation (32) with νS substituted by ν. It is clear that

gap(S) = inf
t
gapt(S), (45)

and the gaps (42)–(44) belong to [0,1].
We argue that we can assume that S is symmetric without the loss of generality. For a

measure ν on Gd we define its conjugate ν̃ via the property
ˆ

Gd

f(g)dν̃(g) =
ˆ

Gd

f(g−1)dν(g) (46)

for all continuous functions f on Gd. We say a measure ν is symmetric if ν = ν̃. For two
measures ν1 and ν2 on Gd, their convolution ν1 ∗ ν2 is a measure on Gd defined via

ν1 ∗ ν2(Ω) =
ˆ

Gd

1Ω(gh)ν1(g)ν2(h). (47)

Going back to the definition (31) we have

π(ν1 ∗ ν2) = π(ν1)π(ν2). (48)

It is easy to see that π(ν̃) = π(ν)∗. In particular if ν is symmetric then π(ν) is self-adjoint and
hence σ(π(ν)) is real. Note also that ν ∗ ν̃ is automatically symmetric. We can write

π(ν̃ ∗ ν) = π(ν̃) ·π(ν) = π(ν)∗ ·π(ν), (49)

which means that

||π(ν̃ ∗ ν)||op = ||π(ν)||2op. (50)

Finally, because
√
1− x⩽ 1− x

2 for any 0⩽ x⩽ 1,

gapt(ν̃S ∗ νS)⩾ gapt(S)⩾
1
2
gapt(ν̃S ∗ νS). (51)

Since S is symmetric, TνS ,t is Hermitian and so its spectrum σ(TνS ,t) is contained in
[−1,1]. The same is true for TνS,∞ and TνS . Note that since the subspaceHλ0 is excluded, the
question if gap(S)> 0 is non-trivial. The gap exists, i.e. gap(S)> 0, if and only if 1 belongs
to the spectrum σ(TνS ) i.e. it is the accumulation point of σ(TνS ). In such a case we say that
TνS has a spectral gap.

Let’s denote by Sℓ a set of words in Gd of length ℓ built from elements of S
Sℓ := {g1g2 . . .gℓ|g1,g2, . . .gℓ ∈ S}. (52)
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The corresponding averaging operator is T ℓ
νS . Indeed,

T ℓ
νS = T

ν
∗(ℓ)
S

, (53)

and since ν∗(ℓ)S is the law for Sℓ, T ℓ
νS is the averaging operator with respect to Sℓ. At the level

of functions we have

(T ℓ
νS f)(h) =

1
|S|ℓ

∑

w∈Sℓ
f(w−1g). (54)

Importantly, gap(S) can be interpreted as the exponential rate of convergence of the (global)
averaging operator TνS to Tµ in the operator norm with ℓ increasing. Indeed, due to left-
invariance of Haar measure

TνSTµ = Tµ = TµTνS , (55)

so we have

||T ℓ
νS −Tµ||op = ||(TνS −Tµ)

ℓ||op ⩽ ||(TνS −Tµ)||ℓop = ||T̃νS ||ℓop, (56)

and using the notion of a spectral gap (42) we have

||T ℓ
νS −Tµ||op ⩽ (1− gap(S))ℓ ⩽ e−ℓgap(S). (57)

Thus, if the gap exists then T ℓ
νS converges to Tµ as ℓ→∞ exponentially fast in the operator

norm. Moreover, the rate of convergence improves exponentially with gap(S) increasing. This
motivates us to study gap(S).

3. Bound on gates efficiency from spectral gap

In [11] it has been shown in case of group SU(d) that if S is universal and TνS has a spectral
gap then words of length ℓ=O

(
log
(
1
ϵ

))
form an ε-net.

In this section we present an alternative proof of this fact forGd. ByD(·, ·)we denote aGd-
invariant metric on Gd defined as follows. For g,h ∈ Gd let ĝ, ĥ ∈ U(d) be the corresponding
representatives. Then

D(g,h) := infθ∈[0,2π)||eiθĝ− ĥ||op. (58)

Equivalently, we can take the infimum over representatives

D(g,h) = infĝ,ĥ||ĝ− ĥ||op. (59)

We introduce B(x,r) as the closed ball in Gd with radius r centered at x with respect to D
and B(r) is such ball centered at I.

By Vol(Ω) we mean the Haar volume of a subset Ω⊂ Gd,

Vol(Ω) =
ˆ

Gd

1Ω(g)dµ(g), (60)

where 1Ω denotes the indicator function of Ω.
We start with the following simple observation. Let f ∈ L2

t (Gd),
´

Gd
f(g)dµ(g) = 1, and pick

some region Ω⊆ Gd. Since

Vol(Ω) =
ˆ

Ω

1dµ(g) (61)
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we have that
ˆ

Ω

1dµ(g)−
ˆ

Ω

(T ℓ
νS ,t f)(g)dµ(g) = ⟨1−T ℓ

νS ,t f |1Ω⟩⩽ ||1−T ℓ
νS ,t f ||2 ·

√
Vol(Ω) (62)

and

||1−T ℓ
νS ,t f ||2 = ||(T ℓ

νS ,t−Tµ)f ||2 ⩽ ||(T ℓ
νS ,t−Tµ)||op · || f ||2 ⩽ e−ℓgapt(S) · || f ||2, (63)

where Tµ is a projector onto L2
0(Gd) on L2

t (Gd). Thus,
ˆ

Ω

(
T ℓ
νS ,t f

)
(g)⩾ Vol(Ω)− e−ℓgapt(S)|| f ||2

√
Vol(Ω). (64)

Clearly, analogous results are true for other averaging operators, in particular for TνS .

Theorem 3. Assume S is such that TS has a spectral gap. Then Sℓ is an ε-net for every ℓ

ℓ⩾ dimGd

gap(S) log
(
1
ϵ

)
+B.

Proof. Pick an elementU0 ∈ Gd and a ballΩ= B(U0, ϵ/2) centered at it. Pick ℓ such that there
is no wℓ ∈ Sℓ which ε-approximates U0, i.e. such that D(wℓ,U0)⩽ ϵ. Let f be a normalized
indicator function of B(I, ϵ/2), i.e.

f(x) =
1

Vol(B(I, ϵ/2))
1B(I,ϵ/2)(x). (65)

We have
ˆ

Ω

(
T ℓ
νS f
)
(g)dµ(g) =

1
|S|

∑

wℓ∈Sℓ

ˆ

Gd

f(w−1
ℓ g)dµ(g) (66)

but for each g in Ω

D(w−1
ℓ g,I) = D(g,wℓ)> ϵ/2, (67)

hence
ˆ

Ω

(
T ℓ
νS f
)
(g)dµ(g) = 0. (68)

Using equation (64) we get

e−ℓgap(S) ⩾ Vol(Ω), (69)

since || f ||2 = 1/
√

Vol(Ω). Hence, if

e−ℓgap(S) < Vol(Ω), (70)

we get a contradiction, which means that Sℓ is an ε-net. On the other hand

Vol(Ω)⩽ CV(ϵ/2)
dimGd , (71)

where CV is some group constant. Thus,

ℓ⩾ dimGd

gap(S) log
(
1
ϵ

)
+B, (72)
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with

B=− log(CV)− dimGd · log(2)
gap(S) . (73)

We have dimGd = d2 − 1 and in the case of Gd can put CV = (9.5)d
2−1, so

B=− d2 − 1
gap(S) log(4.75). (74)

The values of constant CV bounding the volume of a ball in various groups can be obtained by
techniques from [22].

Note that theorem 3 cannot be stated in analogous form for the t-averaging operators TνS ,t,
since the normalized indicator function (65) does not belong to L2

t (Gd) for any t so we cannot
write equation (68) for TνS ,t instead of TνS . However, by considering appropriate approxim-
ations of Dirac delta by polynomials from L2

t (Gd), we can show that
ˆ

Ω

(
T ℓ
νS ,t f

)
(g)dµ(g) (75)

is sufficiently small and hence obtain analogous results. In particular, it is known that

ℓ⩾
C · log

(
1
ϵ

)

gapr(S)
, (76)

where r= D/ϵ2(d
2−1)+2 and C,D are some constants [20]. This result has been improved in

case of U(d) in [21], where

ℓ⩾
(d2 − 1)(2log

(
1
ϵ

)
+ log(4C3/2

b d))+ log(32)

gapt(S)
, (77)

for some absolute constant Cb and t⩾ 5d5/2/ϵ · τ(ϵ,d), where τ(ϵ,d) is

τ(ϵ,d) = log
1
2 (6Cb/ϵ) ·

√
1
32

log
1
2 (6Cb/ϵ)+ log

(
d
ϵ
· log 1

2 (6Cb/ϵ)

)
. (78)

4. Calculable lower bound on spectral gap

In this section, we derive lower bounds on the spectral gap at scale t for S ⊂ Gd, such that any
two pairs in S (of gate with its inverse) form an universal set themselves. This condition can
be verified numerically by known universality criteria, see e.g. [23].

Our bound for any t can be calculated from the knowledge of certain gaps up to some fixed
t0 = t0(d) and is of the form

gapt(S)⩾ α · gt0(S) · log(βt)−2c, (79)

where α,β,c> 0 are some specific calculable constants and gt0(S) can be determined numer-
ically by calculating gaps of certain sets derived from S up to some calculable scale t0.

We study the action of the t-averaging operator wrt to S,

TνS ,t :=
⊕

λ∈Λt

πλ(νS), (80)
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acting on the Hilbert space

Ht =
⊕

λ∈Λt

Hλ. (81)

By S(Hλ) we denote the unit sphere in Hλ,

S(Hλ) = {w ∈Hλ| ||w||= 1}. (82)

We choose the orthonormal basis

{wλ
ij |1⩽ i, j⩽ dλ, λ ∈ Λt} (83)

ofHt, induced by the basis (11). Clearly, ||TνS,t ||op ⩽ 1 and our goal is to improve this bound.
The irreps Λt of Gd can be divided into three disjoint sets, based on the type of the represent-
ation of U(d) they come from:

Λt = Λt,H ∩Λt,R ∩Λt,C, (84)

whereH, R and C stands for quaternionic, real and complex representations. In fact, Λt,H = ∅
since quaternionic representations of U(d) do not contribute to projective representations.

Since

||T̃νS ,t||op =maxλ∈Λ̃t
||πλ(νS)||op, (85)

we fix any λ ∈ Λ̃t and consider ||πλ(νS)||op.
Additionally we assume S = {U1, . . . ,Uk,U

−1
1 , . . .U−1

k } is generic so that for each 1⩽ i ̸=
j⩽ k, the set {U2

i ,U
2
j ,U

−2
i ,U−2

j } is a universal symmetric set.

4.1. Strategy of the proof

Our strategy is to show that for any λ ∈ Λ̃t, any w ∈ S(Hλ) and any generator Um ∈ S , except
for at most one, say Uk,

||(πλ(Ui)+πλ(U
−1
i ))w||⩽ 2− (bi/2)

2 (86)

for some coefficients b2i = b2i (λ)> 0 which can be bounded by gaps of certain subsets of the
set S2 = {U2

1, . . . ,U
2
k ,U

−2
1 , . . .U−2

k } at some known scale t0. Hence,

||πλ(νS)w||⩽
1
|S|


 ∑

1⩽i<k

||(πλ(Ui)+πλ(U
−1
i ))w||+ 2


⩽ 1− 1

4|S|

|S|/2−1∑

i=1

b2i (λ), (87)

which implies

gapt(S)⩾minλ∈Λ̃t

1
4|S|

|S|/2−1∑

i=1

b2i (λ)> 0. (88)

This means that we can obtain a non-trivial lower bound on gapt(S) for any t⩾ t0. Crucially,
the value of t0 can be easily determined and is not large, so the numerical calculations of the
bound are feasible.

4.2. The main reasoning

Since πλ(gi) is unitary we have

||(πλ(gi)+πλ(g
−1
i ))w||2 = 4− ||(πλ(gi)−πλ(g

−1
i ))w||2 (89)
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for any w ∈ S(Hλ). Let ıλ denote the Frobenius–Schur indicator of πλ,

ıλ =

ˆ

Gd

χλ(g
2)dµ(g) =





−1, ifλ ∈ Λt,H,

0, ifλ ∈ Λt,C,

1, ifλ ∈ Λt,R.

. (90)

Note that
ˆ

Gd

πλ(g
2)dµ(g) =

ıλ
dλ

Iλ (91)

since the LHS is a self-intertwiner.
Observe that since ||λ||1 > 0, for any i, j and p,q we have

ˆ

G
⟨πλ(g

2)wλ
ij ,w

λ
pq⟩dµ(g) =

ıλ
dλ

||wλ
ij ||2δipδjq. (92)

Hence, for any w ∈ S(Hλ)
ˆ

G
⟨πλ(g

2)w,w⟩dµ(g) = ıλ
dλ

, (93)

so for any λ ∈ Λt, there exists h= h(w) ∈ Gd such that Re⟨πλ(h2)w,w⟩< ıλ
dλ

and

||(πλ(h)−πλ(h
−1))w||>

√
2

(
1− ıλ

dλ

)
. (94)

Note that if λ is quaternionic the bound is even better.
We want to connect h2 with a square of some generator g2i , so that the large value of the

norm (94) will propagate to the large value of ||(πλ(g2i )−πλ(e))w||. Let
S2 := {U2

1, . . . ,U
2
k ,U

−2
1 , . . .U−2

k } (95)

and by S2
j1...jm we denote the set S2 without elements U2

j1 , . . . ,U
2
jm (and their inverses),

S2
j1...jm := S2 \ {U2

j1 ,U
−2
j1 . . . ,U2

jm ,U
−2
jm }. (96)

By the assumption, each set S2
j1...jm is universal for 1⩽ m⩽ k− 2. Consider any S2

j1...jm (we
allow S2 as the special case with m= 0). We find an ϵj1...jm-approximation of h2 in terms
of squares generators, namely we write h̃= g21g

2
2 . . .g

2
ℓj1...jm

, where each g2i ∈ S2
j1...jm , so that

D(h2, h̃)< ϵ and we specify 1> ϵj1...jm > 0 later. We have
√

2

(
1− ıλ

dλ

)
< ||(πλ(h

2)−πλ(e))w||⩽ ||(πλ(e)−πλ(h̃))w||

+ ||(πλ(h̃)−πλ(h
2))w|| (97)

so

||(πλ(e)−πλ(h̃))w||⩾
√

2

(
1− ıλ

dλ

)
− ||(πλ(h̃)−πλ(h

2))w||

⩾
√

2

(
1− ıλ

dλ

)
− ||πλ(h̃)−πλ(h

2)||op. (98)
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From the unitary invariance of operator norm

||πλ(h̃)−πλ(h
2)||op = ||πλ(e)−πλ(h̄)||op, (99)

where h̄= h̃−1h2 and D(e, h̄)< ϵj1...jm . Let us fix a maximal torus T⊂ Gd with Lie algebra
t⊂ su(d). We can write h̄= gtg−1, where t ∈ T and g ∈ G. Clearly,

Spec(πλ(h̄)) = Spec(πλ(t)). (100)

Let {eiγ1 , . . . ,eiγdλ} be the spectrum of πλ(t) and {w1, . . . ,wdλ} be an orthonormal basis of
Hλ in which

πλ(t)wj = eiγjwj (101)

for 1⩽ j⩽ dλ. By the definition of a real weight we have

|γj|= |⟨µj,H⟩|= |(Hµj ,H)|⩽ ||λ||1 ·maxi|θi| (102)

for some weight µj of irrep πλ and H= log(t) = diag(iθ1, . . . , iθd) ∈ t5. We assume θi ∈
(−π,π] for each i. Since D(e, t)< ϵj1...jm we have

|θi|/π ⩽ |sin(θi/2)|< ϵj1...jm/2 (103)

for each i, so

|γj|⩽ π||λ||1ϵj1...jm/2. (104)

Finally,

||πλ(e)−πλ(h̄)||op = ||πλ(e)−πλ(t)||op ⩽ 2maxi |sin(γi/2)|⩽maxi |γi| (105)

hence

||πλ(e)−πλ(h̄)||op ⩽ C||λ||1 · ϵj1...jm , (106)

where C= π/2. Thus,

||(πλ(e)−πλ(h̃))w||⩾
√

2

(
1− ıλ

dλ

)
−C||λ||1 · ϵj1...jm . (107)

We use triangle inequality to propagate the result into some generator
√

2

(
1− ıλ

dλ

)
−C||λ||1ϵj1...jm ⩽ ||(πλ(e)−πλ(h̃))w||

= ||(πλ(e)−πλ(g
2
1g

2
2 . . .g

2
ℓ))w||⩽ ||(πλ(e)−πλ(g

2
1)))w||

+ ||(πλ(g
2
1)−πλ(g

2
1g

2
2)))w||+ . . .

+ ||(πλ(g
2
1g

2
2 . . .g

2
i−1)−πλ(g

2
1g

2
2 . . .g

2
i )))w||+ . . .+ ||(πλ(g

2
1g

2
2 . . .g

2
ℓ−1)

−πλ(g
2
1g

2
2 . . .g

2
ℓ)))w|| (108)

so there exists i such that

||(πλ(g
2
1g

2
2 . . .g

2
i−1)−πλ(g

2
1g

2
2 . . .g

2
i )))w||⩾ bj1...jm(λ), (109)

5 Note that D(e, h̄) = D(e, t)< ϵj1...jm < 1 so log(t) exists.
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where

bj1...jm(λ) =

√
2
(
1− ıλ

dλ

)
−C||λ||1ϵj1...jm

ℓj1...jm
(110)

and from the unitary invariance of operator norm

||(πλ(g
2
1g

2
2 . . .g

2
i−1)−πλ(g

2
1g

2
2 . . .g

2
i )))w||= ||(πλ(e)−πλ(g

2
i )))w||. (111)

Since g2i is an element from S2
j1...jm and

||(πλ(e)−πλ(g
2
i ))w||= ||(πλ(e)−πλ(g

−2
i ))w||, (112)

there exists iq, where 1⩽ q⩽ m, such that

||(πλ(e)−πλ(U
2
iq))w||⩾ bj1...jm(λ)⩾ bm(λ), (113)

where

bm(λ) :=mini1,...,imbi1...im(λ) (114)

is the bound for the worst choice of i1, . . . , im, which we denote S2
m
6. The set S2

m has the cor-
responding εm and ℓm via equation (110).

We proceed as follows. First, we consider above procedure for S2 and obtain

||(πλ(e)−πλ(U
2
i1))w||⩾ b0(λ), (115)

for some U2
i1 ∈ S2. Next, we repeat the argument for S2

i1 and get

||(πλ(e)−πλ(U
2
i2))w||⩾ bi1(λ)⩾ b1(λ), (116)

for some U2
i2 ∈ S2

i1 . We proceed in this manner until m= k− 2, which gives

||(πλ(e)−πλ(U
2
ik−1

))w||⩾ bi1i2...ik−2(λ)⩾ bk−2(λ), (117)

for some U2
ik−1

∈ S2
i1...ik−2

.

This way we obtain bounds for each pair generators except for one pair {U2
ik ,U

−2
ik }, where

1⩽ ik ⩽ k is the remaining index. Thus, using equation (89), for all im with m ∈ {1, . . . ,k− 1}
we have

||(πλ(Uim)+πλ(U
−1
im )))w||⩽

√
4− b2m−1(λ) (118)

provided that

ϵm ⩽

√
2
(
1− ıλ

dλ

)

C||λ||1
, ϵm < 1. (119)

For ℓm−1 ≫ 1, the good approximation is
√

4− b2m−1(λ)⩽ 2−
(
bm−1(λ)

2

)2

. (120)

Hence,

gapt(S)⩾minλ∈Λ̃t

1
8k

k−2∑

m=0

b2m(λ)> 0. (121)

6 Note that bm(λ) ⩾ bn(λ) for m< n.
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Using similar argument by considering only S2
i1...ik−2

we have the following, weaker bound

gapt(S)⩾minλ∈Λ̃t

k− 1
8k

b2k−2(λ)> 0. (122)

Indeed, comparing equations (121) and (122) we have the inequality

1
8k

k−2∑

m=0

b2m(λ)⩾
k− 1
8k

b2k−2(λ). (123)

Moreover, the ratio between LHS and RHS of equation (123) is

1
k−1

∑k−2
m=0 b

2
m(λ)

b2k−2(λ)
, (124)

i.e. it is ratio between the average of a nonincreasing sequence b20,b
2
1, . . . ,b

2
k−2 and its smallest

element b2k−2. Since we expect this sequence to (generically) quickly decrease, we suppose
that the bound (121) is (relatively) much better than (122), at least generically.

It remains to somehow simultaneously bound the coefficients bm(λ) for all λ ∈ Λ̃t. Since
ℓm ⩽ diamϵ(G,S2

m), from (121), (110) we obtain the bound for the gap from the diameter

gapt(S)⩾minλ∈Λ̃t

1
8k

k−2∑

m=0

(√
2

(
1− ıλ

dλ

)
−C||λ||1ϵm(λ)

)2
1

diamϵm(λ)(G,S2
m)

2
(125)

valid for

0< ϵm(λ)⩽

√
2
(
1− ıλ

dλ

)

C||λ||1
, ϵm(λ)< 1, (126)

which can be weakened to the following simplified bound

gapt(S)⩾
1
8k

k−2∑

m=0

(1− 2Ctϵm)
2 1
diamϵm(G,S2

m)
2

(127)

valid for

0< ϵm ⩽ 1
2Ct

, ϵm < 1. (128)

We have a trade-off between the contribution of εm to the numerator of multiplicative term
(the smaller the εm the better) and to the diameter (the larger the εm the better).

Because we do not know how diamϵm(G,S2
m) depends on εm, in order to proceed we can

use Solovay–Kitaev theorem for S2
m to bound

diamϵm(G,S2
m)⩽ Am · logc

(
1

c2s ϵm

)
, Am =

1[
2log

(
1

csϵ0,m

)]c ℓ0,m (129)

where c= log(5)/log(3/2)≈ 4, cs is some constant (cs = d+ 2+O(ϵ)), ϵ0,m is the ε of initial
approximation in Solovay–Kitaev algorithm and ℓ0,m is the word length of this approximation.
Thus,

gapt(S)⩾
1
8k

k−2∑

m=0

(
1− 2Ctϵm

Am

)2

log−2c(c−2
s ϵ−1

m ) (130)
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for any

0< ϵm ⩽ 1
2Ct

, ϵm < 1. (131)

We can bound ℓ0,m by equation (77),

ℓ0,m ⩾
(d2 − 1)(2log

(
1

ϵ0,m

)
+ log(4C3/2

b d))+ log(32)

gapt0,m(S2
m)

, (132)

for Cb = 9π and t0,m ⩾ 5d5/2/ϵ0,m · τ(ϵ0,m,d).
For simplicity, we set the common ϵ0,m = ϵ0 and put ϵm = 1/(4Ct), which yields

gapt(S)⩾
1

32k

k−2∑

m=0

1
A2
m
log−2c(4c−2

s Ct)

=
1

32k

k−2∑

m=0

1
ℓ20,m

[
2log(c−1

s ϵ−1
0 )
]2c

log−2c(4c−2
s Ct), (133)

and by setting the common scale t0,m = t0 := 5d5/2/ϵ0 · τ(ϵ0,d) and using equation (132) to
set the value of ℓ0,m we obtain

gapt(S)⩾
1

32k

k−2∑

m=0

gap2t0(S2
m)(

(d2 − 1)(2log(ϵ−1
0 )+ log(4C3/2

b d))+ log(32)
)2

×
[
2log(c−1

s ϵ−1
0 )

log(4c−2
s Ct)

]2c
, (134)

which can be rewritten as

gapt(S)⩾ α · gt0(S) · log−2c(βt), (135)

where α and β are

α :=

[
2log(c−1

s ϵ−1
0 )
]2c

16 ·
(
(d2 − 1)(2log(ϵ−1

0 )+ log(4C3/2
b d))+ log(32)

)2 , β :=
4C
c2s

, (136)

and

gt0(S) :=
1
|S|

|S|/2−2∑

m=0

gap2t0(S
2
m). (137)

Finally, we can redefine gapt0(S2
m) to be the smallest value of a gap at scale t0 over all sets

S2
i1...im ,

gapt0(S
2
m) := argmini1,...,imgapt0(S

2
i1...im) (138)

and this way gt0(S) can be determined numerically by the calculations at scale

t0 := 5d5/2/ϵ0 · τ(ϵ0,d). (139)
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Chapter 4

Paper II: Fundamental solutions of

the heat equation on unitary groups

establish an improved relation

between ϵ-nets and approximate

unitary t-designs

4.1 Overview

In this second paper, our goal was to establish the quantitative correspondence between

unitary (δ-approximate) t-designs and ϵ-nets using heat kernels on the space of unitary

channels U(d).

Our point of reference was the work [41], in which authors prove that δ-approximate t-

designs form ϵ-nets for t ≃ d5/2/ϵ and δ ≃
(
ϵ3/2/d

)d2 (see [41] for precise statement

and formulas). The authors construct polynomial approximations to the Dirac delta by

periodising Gaussians on the torus. Our approach is, in our opinion, more natural as it is

based on trimming the heat kernels.

The main idea of our proof is the same as in [41], and is based on the following observation

(see also Section 2.3.5). Let ν be a discrete probability measure on U(d) which does

not form an ϵ-net. Then, we can pick an element V0, so that every element from the

85
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support of ν is at least ϵ-separated from V0. We choose some polynomial approximate

identity φt ∈ Ht on U(d), apply the averaging operator (2.71) and integrate the resulting

smeared density, over ϵ/2-ball around V0. Then, from (2.134), the value of the integral is

µ(Bϵ/2(V0)), but since φt is an approximate identity, the value of this integral must vanish

as φt goes towards the Dirac-delta distribution, i.e. t → ∞. A similar argument can be

applied to the δ-approximate case, using (2.138) instead. Such a proof by contradiction

can be used to extract the scaling of t and δ in d and ϵ. Clearly, the resulting scaling

depends on the polynomial approximate identity used.

We obtain the heat kernel on PU(d) by applying the averaging map to the heat kernel

on SU(d) written in two forms: the character decomposition (c.f. 2.110) and the Poisson

form [58]. Each form is applied to a different part of the proof. Intuitively, the Poisson

summation formula moves the parameter σ to the denominator of the exponent, which

helps bound the behaviour of the heat kernel for small σ and obtain the bounds on the

vanishing of integrals outside ϵ-balls. On the other hand, the character form is used to

determine the L2 trimming error.

The proof can be divided into 5 main steps.

1. We “trim” the heat kernel on PU(d) to obtain a balanced polynomial approximation

of order t. Moreover, we prove an L2-norm error bound for this approximation and

argue that the trimming procedure is optimal.

2. We show that the heat kernel on PU(d) is an approximation to the Dirac delta. In

particular, its integral vanishes outside any ϵ-ball as σ → 0. We provide bounds on

the rate at which such an integral vanishes.

3. We combine bounds from 1. and 2. to obtain a bound for the integral of the absolute

value of the trimmed heat kernel outside an ϵ-ball. We use such bounds to show that

the trimmed heat kernel is a polynomial approximation to the Dirac delta.

4. We provide the upper bounds on the L2-norm of the heat kernel on PU(d).

5. Using the bounds from 3. and 4., we obtain the scaling of t and δ sufficient for a

unitary δ-approximate t-design to form an ϵ-net. This step essentially uses the main

idea of the proof outlined above.

The resulting bounds on t and δ are provided as explicit formulas in the main theorem of

the paper - Theorem 2, and enjoy the scaling of t ≃ d5/2/ϵ and δ ≃
(
ϵ3/2/d

)d2 . Essentially,
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compared to [41], we were able to significantly improve the scaling of δ while retaining the

same scaling of t. We also provide the proof for the (ideal) t-design case, with the same

scaling of t. Additionally, we summarise the properties of the polynomial approximations

to the Dirac delta on PU(d) we constructed, as approximate identities. Such character-

isation is provided in Theorem 3 and includes the bounds on the vanishing of integrals

outside ϵ-balls, blow-up of the L2-norm, and approximate non-negativity (via the L1-norm

estimates). All the formulas are provided with explicit constants for PU(d).

In Section III, we comment on the possible applications of our results in areas such as the

efficiency of quantum gates (in particular, Quantum Circuit Overhead, which is a subject

of Paper III), inverse-free SKL theorems, and quantum complexity and black hole physics.

Finally, we suspect that our construction of polynomial approximations of the Dirac delta

based on heat kernels can find applications in other domains of science. In particular, due

to tunable filtering properties (see Section (2.2.6)) and good analytic control, we suspect

that trimmed heat kernels can be used to obtain an alternative and appealing proof to the

poly-logarithmic spectral gap decay results for PU(d), analogous to (2.140).

4.2 Contribution statement

My contribution to this article was:

1. Writing the bulk of Sections I-III and VII and a significant portion of Section IV in

the main text. In particular: Remark 1, Applications 1-3, Examples 1 and 2.

2. Co-writing of Sections V, VI, and VIII. In particular: Remarks 2-5, proof of Lemma

1, joint proof of Theorem 1 and Theorem 2, proof of Theorem 3.

3. Preparation of Appendix C, D, and E. In particular: the proofs of Lemmas 9-16 and

Corollary 1.
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Abstract
The concepts of ϵ-nets and unitary (δ-approximate) t-designs are important
and ubiquitous across quantum computation and information. Both notions are
closely related and the quantitative relations between t, δ and ϵ find applic-
ations in areas such as (non-constructive) inverse-free Solovay–Kitaev like
theorems and random quantum circuits. In recent work, quantitative relations
have revealed the close connection between the two constructions, with ϵ-nets
functioning as unitary δ-approximate t-designs and vice-versa, for appropri-
ate choice of parameters. In this work we improve these results, significantly
increasing the bound on the δ required for a δ-approximate t-design to form an

ϵ-net from δ '
(
ϵ3/2/d

)d2
to δ '

(
ϵ/d1/2

)d2
. We achieve this by constructing

polynomial approximations to the Dirac delta using heat kernels on the pro-
jective unitary group PU(d)∼= U(d), whose properties we studied and which
may be applicable more broadly. We also outline the possible applications of
our results in quantum circuit overheads, quantum complexity and black hole
physics.
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1. Introduction

Unitary t-designs are a fundamental construction, finding widespread applications across
quantum information and computation. They have been employed in areas such as randomised
benchmarking [1, 2], process tomography [3], quantum information protocols [4, 5], unitary
codes [6], derandomisation of probabilistic constructions [7], decoupling [8], entanglement
detection [9], quantum state discrimination [10], shadow estimation [11], efficient quantum
measurements [12] and estimation of the properties of quantum systems [13]. Moreover, their
link to pseudo-random quantum circuits [14] makes them applicable in areas such as the equi-
libration of quantum systems [14, 15], quantum metrology with random bosonic states [16],
quantum complexity and information scrambling in black holes [17–20]. They have also been
applied to the study of quantum speed-ups [21–23], due to their anti-concentration property
[24, 25].

Epsilon-nets are of similar importance, finding broad application and, in particular, serving
as the natural language for quantum compilation. Solovay–Kitaev like (SKL) theorems [26,
27] provide joint bounds on the complexity of quantum operations U, for a given error ϵ and
gateset S. In other words, they bound how many operations are required for circuits of gates
from a given gateset to form an ϵ-net. Moreover, constructive SKL theorems say how to find
the approximating circuits, which makes them the cornerstone of quantum compilation. The
original SK theorem, which is constructive, bounds the length of the sequence of gates as
ℓ=O(logc

(
1
ϵ

)
), where c≈ 3.97. In fact, it is well-known that any c> 3 works and recently a

constructive SKL theorem with c≈ 1.44 was provided in [26], which is significantly closer to
the optimal value c= 1.

The parameter δ of the (unitary) δ-approximate t-design generated by S can be studied
on finite scales, say given by the highest considered degree t, denoted δ(νS , t). Such a finite-
scale approach was explored in [28, 29]. For fixed ϵ and S, the knowledge of δ(νS , t) at
a suitably chosen scale t(ϵ), is sufficient to bound ℓ via a non-constructive SKL theorem
ℓ=O( 1

log(1/δ(νS,t(ϵ)))
log
(
1
ϵ

)
) with explicit form (see e.g. [28]). Such SKL theorems can be

used to bound the efficiency of various gate sets S, e.g. their (T-)Quantum Circuit Overhead
[27]. In particular, if the supremum of δ(νS , t) over all t is smaller than 1, then we obtain
an asymptotically optimal scaling ℓ=Θ(log( 1ϵ )) [30, 31]. However, the analysis of such a
supremum is a hard problem and is computationally intractable. Hence, the SKL theorems
based on a finite-scale δ(νS , t(ϵ)) are of significant practical interest. The tightness of such
theorems depends on the tightness of the t(ϵ) scaling, which can be understood as the t suffi-
cient for a (δ-approximate) t-design to form an ϵ-net.

In light of the importance of both ϵ-nets and t-designs, it is interesting that there is a strong
link between the two constructions. Indeed a (possibly approximate) t-design of sufficiently
large t forms an ϵ-net, while an ϵ-net of sufficiently small ϵ forms an approximate t-design.
To our knowledge, the first systematic study of the quantitative relations between them was
surprisingly recent, in [28], where the authors show that an ϵ-net is formed by δ-approximate

t-designs on the space of unitary channels U(d) for t' d5/2

ϵ and δ '
(

ϵ3/2

d

)d2
, where' can be

understood as ‘ignoring logarithmic factors’ and ‘infinitesimal corrections to the exponents’.
The authors of [28] were able to prove that t has to grow at least as 1/ϵ (for fixed d) and as
d2 (for fixed ϵ). Thus they were able to show that this scaling of t with ϵ is essentially optimal,
while the scaling of t with d is (at worst) not very far from optimal, with a ‘gap’ of

√
d between

the known lower and upper bounds. They conjectured that a scaling of t' d2 was possible but
were not able to prove this.

2
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In this work we build on these results, obtaining (up to logarithmic factors) the same scaling
of t as the authors of [28], but dramatically improving the scaling of δ with ϵ and d in the δ-
approximate case. We are able to show that a δ-approximate t-design forms an ϵ-net if delta

obeys an inequality which scales like δ '
(

ϵ

d
1
2

)d2
.

Our method involves the construction of a polynomial approximation to a Dirac delta on
the space of quantum unitary channels PU(d). Our construction of the approximate Dirac delta
is a natural one, based on the properties of the heat kernel on SU(d). As running the evolution
of the heat equation ‘forwards’ leads to ‘heat’ spreading out over time, naturally running it
backward and considering very small times leads to a sharp delta-like peak at times close to
0. As has been known since the work of Fourier himself, the heat equation has a close link
to Fourier analysis on the appropriate space. Indeed, our key bounds are based on the results
from [32], which may be viewed as a generalization of the well-known Poisson formula [33]
to compact semi-simple simply-connected Lie groups. The heat kernel is at the heart of many
important methods across mathematical physics and beyond. As a tool to study the eigenvalues
and eigenfunctions of the Laplacian, it has been used as far back as Kac’s seminal 1966 paper
‘Can One Hear the Shape of a Drum’ [34] and has been of prime importance in the study
of the Laplacian on Riemannian manifolds throughout the subject’s history [35]. It has been
applied extensively in the context of quantum field theory [36], mathematical finance [37] and
quantum gravity [38] and used to prove a diverse range of important theorems, including the
Atiyah–Singer index theorem [39, 40] and the Poincaré conjecture [41, 42]. For a thorough
review, we invite the reader to the textbooks [37, 43].

Our core results—the bounds on t and δ are the subjects of theorem 1 (for t-designs) and
theorem 2 (for δ-approximate t-designs).We also provide a technical result about the properties
of our approximate Dirac delta (theorem 3), which may be useful for other applications.

Outline of the proof—the proof of the main theorem (theorem 2) can be divided into five
steps:

1. We ‘trim’ the full heat kernel on PU(d) to obtain an approximation of it by a balanced
polynomial of order t, and prove an error bound for this approximation.

2. We prove that the heat kernel on PU(d) is an approximation to the Dirac delta. In particular,
its integral vanishes outside any ϵ-ball as σ→ 0 at a rate we can bound.

3. By combining the above two bounds, we obtain a bound for the integral of the absolute
value of the trimmed heat kernel outside an ϵ-ball, thereby showing the trimmed heat kernel
is also an approximation to the Dirac delta.

4. We derive the bounds on the L2-norm of the heat kernel on PU(d).
5. We combine the bounds to obtain a bound for the t and δ sufficient for a projective unitary

δ-approximate t-design to be an ϵ-net. Essentially, this argument follows from applying the
t-design property to the order t balanced polynomial we obtained in step 1.

Structure of the paper—the paper is organised as follows:

• In section 2, we briefly explain the main ideas behind the paper, such as ϵ-nets, t-designs
and heat kernels.

• In section 3 we summarise the main results and their applications.
• In section 4 we address step 1 of the proof.
• In section 5, we address steps 2 and 3 of the proof and combine them to prove a bound for

the t sufficient for a projective unitary t-design to be an ϵ-net (theorem 1).

3
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• In section 6 address step 4 of the proof and combine the bounds from steps 2–4 to derive the
bounds on t and δ sufficient for a projective unitary δ-approximate t-design to be an ϵ-net,
realising step 5 of the proof (theorem 2).

• In section 7, we summarize the technical properties of trimmed heat kernels as approxima-
tions to the Dirac delta (theorem 3).

• Finally, in section 8, we provide a summary and outline the future research directions.
• The appendix contains the proofs of various technical lemmas.

2. Main ideas

Central in quantum information theory is the concept of unitary channels. Such channels act
via unitary operations (lossless quantum gates) when restricted to pure quantum states.

The unitary channel U acting on a Hilbert space H∼= Cd is the CPTP map defined via
U(ρ) = UρU†, for any quantum state ρ :H→H and some fixed unitary U ∈ U(d). Since
two unitaries U and V which differ by a phase U= Veiϕ define the same unitary channel,
the set of all unitary channels can be identified with the projective unitary group PU(d) =
U(d)/Z(PU(d)), where Z(PU(d)) = {eiϕI, ϕ ∈ (−π,π]} ∼= U(1) is the centre of U(d).

Since we prefer to work with the SU(d) group, in our considerations we assumeU ∈ SU(d)
and use PU(d) = SU(d)/Z(SU(d)), where Z(SU(d)) = {ei 2π

d kI, k ∈ Z} ∼= Zd is the centre of
SU(d) (group of dth roots of unity). From now on we denote Γ := Z(SU(d)) and use square
brackets to denote the elements of the projective group as equivalence classes of elements of
SU(d), i.e. U is mapped to the unitary channel U under the quotient map π : SU(d)→ PU(d).

In practice, one is often interested in the closeness of different unitary channels. Various
norms (and induced metrics) can be used to quantify this. A prominent example is the diamond
norm || · ||♢, which has a clear operational meaning in terms of the statistical distinguishability
of two channels (e.g. determines the maximal probability of success in a single-shot channel
discrimination task). We denote the induced metric as d♢ (U,V) = ||U−V||♢.

We define d(·, ·) to be a metric on SU(d) induced by the operator norm

d(U,V) := ‖U−V‖∞. (1)

Since we want to work with the group SU(d), we define the metric on PU(d) in terms of the
former

dP (U,V) :=min
γ∈Γ

d(U,γV) . (2)

Clearly, due to the unitary invariance of the operator norm, the metrics d(·, ·) and dP(·, ·) are
translation-invariant.

One may show [28] that d♢(·, ·) and dP(·, ·) are related as

dP (U,V)⩽ d♢ (U,V)⩽ 2dP (U,V) . (3)

We say that a finite subset of channelsA⊂ PU(d) is an ϵ-net if for every channelU ∈ PU(d),
there exists a channel V ∈ A, such that dP(U,V)⩽ ϵ. In other words, A represents all the
possible channels, up to the error ϵ.

To consider unitary designs, we need to define integration of functions on PU(d). The Haar
measure µP on PU(d) is the pushforward of the Haar measure µS on SU(d), i.e. µP(A) =
µS(π

−1(A)), whenever π−1(A) is µS-measurable.

4

91



J. Phys. A: Math. Theor. 58 (2025) 445301 O Słowik et al

Every function f on PU(d) can be lifted to a unique function f̃ on SU(d), so that f̃(U) = f(U).
Clearly, such a function is constant on the equivalence classes (fibres of π), i.e. all the elements
U that define the same unitary channel. Conversely, every function f̃ on SU(d)which is constant
on the equivalence classes, descends to a unique function f on PU(d), so that f̃(U) = f(U).
Hence, we can write

ˆ

PU(d)
fdµP =

ˆ

SU(d)
f̃dµS. (4)

IfX⊆ PU(d) is someHaar-measurable set then inserting indicator functions into (4) we obtain

ˆ

X
fdµP =

ˆ

X̃
f̃dµS, (5)

where X̃= π−1(X). This allows us to move freely between the PU(d) and SU(d) settings.
The (unitary) t-design on PU(d) is the probability measure ν on PU(d) which mimics the

averaging properties of the Haar-measure with respect to the polynomials of degree at most
t. Specifically, let Ht denote the space of homogeneous polynomials of degree t in the matrix
elements of U and in U.

A probability measure ν on G is a unitary t-design if for any f ∈Ht we have
ˆ

G
dν (U) f(U) =

ˆ

G
dµ(U) f(U) . (6)

From the practical point of view, one is often interested in the case of ν being a discrete
finitely supported measure, so that the averaging takes place over a finite set of elements
{νi,Ui}

∑

i

νi f(Ui) =

ˆ

G
dµ(U) f(U) . (7)

For example, ν can be the probability measure supported on a finite universal set of quantum
gates S = {U1,U2, . . . ,Uk}, which we denote as νS . In this work, we assume all t-designs have
finite support since we directly apply lemma 2 of [28]. However, this lemma can be generalised
to infinitely supported or even continuous measures, so that our results hold for such cases as
well, if the definition of the ϵ-net is relaxed by removing the finiteness condition.

Moreover, it is useful to consider the cases in which (6) is satisfied only approximately. To
do so, it is useful to define so-called t-moment operators

Tµ,t :=
ˆ

G
dµ(U)Ut,t, Tν,t :=

ˆ

G
dν (U)Ut,t. (8)

One may check that the spaceHt is spanned by the entries of Ut,t := U⊗t⊗ Ū⊗t. Indeed for
every f ∈Ht there exists a matrix A such that f(U) = Tr(AUt,t).

This way, the deviation from ν being a t-design (6) can be measured as (see [28])

δ (ν, t) := ‖Tν,t−Tµ,t‖∞ ∈ [0,1] , (9)

where ‖ · ‖∞ is an operator norm, leading to the notion of δ-approximate t-designs, for which
δ(ν, t)< 1 and exact t-designs, for which δ(ν, t) = 0.

Finally, we recall that for s< t we have Hs ⊂Ht, hence t-designs are also s-designs.
The techniques used in this paper are similar to the ones from [28] and include the usage of

the approximations to the Dirac delta on compact groups. However, in this paper, we employ
approximations based on the heat kernel—a natural and well-known object, contrary to the
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periodised Gaussian construction from [28]. We will first introduce the heat kernel with an
elementary classical example.

Example 1 (heat equation on a circle and the Poisson summation formula). Consider a
circle S1 ∼= R/Z as an example of a 1-dimensional flat torus. Denoting the coordinate as ϕ,
the metric tensor induced from the Euclidean metric on R is g= dϕ2. Hence∆= ∂2

∂ϕ2 and the

heat equation 3 on such amanifold reads ut(t,ϕ) = uϕϕ(t,ϕ)with the initial condition u(0,ϕ) =
f(ϕ). We assume that f(ϕ) is square integrable, i.e. f(ϕ) ∈ L2(S1). Such a problem is typically
solved by considering the corresponding equation onRwith the periodic boundary conditions,
separation of variables and the expansion of the initial data f(ϕ) to the Fourier series. Here, we
take a different approach—we find the fundamental solution to the corresponding problem on
R and periodise it. We use the definition of the Fourier transform of a (complex) function in
L2(R) as the unique unitary extension of the map g 7→ ĝ, g ∈ L1(R)∩L2(R), where

ĝ(ξ) =
ˆ ∞

−∞
e−i2πξ xg(x)dx, ∀ξ ∈ R. (10)

From now on, we fix t and consider the corresponding single-variable functions on R. We
unwrap the initial datum f into an interval [0,1)⊂ R. We denote the corresponding functions
on R using the same symbols as for S1. Applying the Fourier transform, we obtain

ût (ξ, t)+ 4π2ξ2û(ξ, t) = 0 (11)

with the initial condition û(ξ,0) = f̂(ξ), where 4π2ξ2 is the eigenvalue of−∆. Multiplying (11)

by e4π
2ξ2t we obtain ∂

∂t

(
e4π

2ξ2tû(ξ, t)
)
= 0. Hence e4π

2ξ2tû(ξ, t) is some function of ξ and from

the initial condition we see that û(ξ, t) = e−4π2ξ2t f̂(ξ). Denoting the inverse Fourier transform
of e−4π2ξ2t as HR(ϕ, t) we obtain

HR (ϕ, t) =
1√
4π t

e−
ϕ2

4t . (12)

Thus, the solution on R is the convolution (with respect to the ϕ variable)

u(ϕ, t) = (HR (·, t) ∗ f)(ϕ) =
ˆ ∞

−∞
KR (ϕ,ϕ

′, t) f(ϕ ′)dϕ ′, (13)

where

KR (ϕ,ϕ
′, t) = HR (ϕ−ϕ ′, t) =

1√
4π t

e−
(ϕ−ϕ ′)2

4t , (14)

and u(ϕ, t) is smooth for all t> 0. To find the fundamental solution on S1 we periodiseHR(ϕ, t)
obtaining a 1-periodic function on R and an equivalent function on R/Z

HS1 (ϕ, t) =
1√
4π t

∑

n∈Z
e−

(ϕ+n)2

4t , ϕ ∈ R/Z. (15)

To rewrite (15) we can use the Poisson summation formula, which states that for a complex-
valued function s(x) on R whose all derivatives decay at infinity (i.e. a Schwartz function)

∞∑

n=−∞
s(n) =

∞∑

k=−∞
ŝ(k) . (16)

3 Physically we consider heat equations with unit conductivity.
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Treating (15) as a one-periodic function on R we apply the Poisson summation formula with

s(x) = e−
(ϕ+x)2

4t and obtain

HS1 (ϕ, t) =
∑

k∈Z
e−i2π kϕe−(2π k)2t, ϕ ∈ R/Z, (17)

which is the complex Fourier series expansion. Rewriting it into the sine-cosine form yields

HS1 (ϕ, t) = 1+ 2
∞∑

k=1

cos(2π kϕ)e−(2π k)2t ϕ ∈ R/Z, (18)

which is a linear combination of eigenfunctions 2cos(2π kϕ) with eigenvalues −4π2k2 and is
of the same form as the fundamental solution obtained via the typical Fourier series expansion
approach.

Generalizing the heat kernel on R shown in equation (12), the heat kernel on Rd has the
form

K(t,x,y) =
1

(4π t)d/2
e−||x−y||2/4t, (19)

where || · || is the Euclidean norm, defined for any x,y ∈ Rd and t> 0. This is the fundamental
solution to the heat equation

ut (t,x) = ∆u(t,x) , (20)

where∆ is the Laplacian on Rd. One can consider the generalisation of the heat equation (20)
to other spaces, e.g. Riemannian manifolds (M, g), by replacing ∆ with the Laplace-Beltrami
operator (in local coordinates)

∆f =
1√
|g|

∂i

(√
|g|gij∂jf

)
, (21)

acting on differentiable functions f on M.
Following the method demonstrated in example 1, we can derive the heat kernel for the

flat d-dimensional torus Rd/Λ by taking the heat kernel on Rd shown in equation (19) and
periodising the solution over the latticeΛ∼= Zd. The Poisson formula also generalises to higher
dimensions. A thorough introduction to this topic may be found in [44].

However, in our work, we are interested in heat kernels on Lie groups. To make sense of
the heat equation on a Lie group, the proper Riemannian structure needs to be chosen. For
compact semi-simple Lie group G, the Riemannian structure (G, g) can be defined via Ad-
invariant positive definite inner product (·, ·) stemming from the Killing form4.

Notice that although the group U(d) is compact, it is not semi-simple. Hence, the metric
tensor stemming from the Killing form is only positive semi-definite. Indeed, one can check
that such a metric tensor for U(1)∼= S1 is identically zero, so it does not equip S1 with the
Riemannian structure. This is in contrast with the construction from example 1.

Of course, general Lie groups are not commutative. Hence, in order to study the heat
equation on a compact Lie group G, non-commutative Fourier/harmonic analysis is needed.
Fourier coefficients on a compact Lie group are calculated with respect to the irreducible rep-
resentations (irreps) of the group. Generally, the object being transformed is the regular Borel

4 Taking the negative of the negative-definite Killing form leads to the positive-definite scalar product.
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measure on G. However, we focus on the related case of integrable functions f. In this case
(see e.g. [45]), the Fourier coefficient f̂(λ) is the operator in End(Vπλ

) defined via

f̂(λ) =
ˆ

G
πλ

(
g−1
)
f(g)dµ(g) , (22)

where by Vπλ
we denote the representation space of irrep πλ with highest weight λ. Equipping

the space End(Vπλ
) with the norm

√
dλ|| · ||HS, where dλ := dim(Vπλ

) and the Hilbert–
Schmidt norm ||u||2HS = Tr(uu∗), one can show that such the Fourier transform is an isomorph-
ism of Hilbert spaces

L2 (G)∼=
⊕

π∈Ĝ

End(Vπλ
) , (23)

where Ĝ is the set of equivalence classes of irreps of G. Namely, we obtain a generalisation of
the Plancherel’s theorem

||f||22 =
ˆ

G
|f(g) |2dµ(g) =

∑

λ∈Ĝ

dλ||f̂(λ) ||2HS. (24)

This is a consequence of the Peter–Weyl theorem.

Remark 1. The transform (22) is a generalization of the Fourier series. Indeed, suppose a
compact group G is additionally abelian and connected (so is a torus). Take one-dimensional
torus U(1)∼= S1 for example. The unitary irreps πλ of U(1) are the homomorphisms U(1)→
U(1) so they are of the form eiϕ 7→ eiλϕ for some integer λ. All irreps are one-dimensional
and Ŝ1 ∼= Z. The Fourier coefficients of a function f : U(1)→ C are

f̂(λ) =
1
2π

ˆ π

−π

e−iλϕf
(
eiϕ
)
dϕ, (25)

which coincides with the Fourier coefficients of the corresponding 2π-periodic complex-
valued function f̃ : R→ C, f̃(x) = f(eix). Similarly, other results such as the completeness,
orthogonality relations and Plancherel’s theorem generalise to the non-abelian case via the
Peter–Weyl theorems and representation theory.

Heat kernels on simply-connected compact semi-simple Lie groups were studied in [32],
together with a useful Poisson form. In section 4 we show how to apply those results for PU(d),
which is not simply-connected.

3. Main results and applications

Below we summarise the main results of this paper and outline some of their applications.

Result 1. The main technical result of the paper is the construction of the polynomial approx-
imation to the Dirac delta function H(t)

P (·,σ) on PU(d), together with some of its properties.
This allows us to summarise the key properties of the family of polynomial approximations of
Dirac delta based on the trimmed heat kernels (see theorem 3 for a precise statement).

Result 2. The supports of exact t-designs in PU(d) with d⩾ 2 are ϵ-nets for t' d
5
2

ϵ (see the-
orem 1 for a precise statement).

8

95



J. Phys. A: Math. Theor. 58 (2025) 445301 O Słowik et al

Result 3. The supports of approximate t-designs in PU(d)with d⩾ 2 are ϵ-nets for t' d
5
2

ϵ and

δ '
(

ϵ
d1/2

)d2
. (see theorem 2 and its proof for a precise statement). This provides an ‘essentially

yes’ answer to the conjecture about the optimal scaling of t(ϵ,d) from section IV in [28].

Application 1 (efficiency of quantum gates). This result is analogous to proposition 2 from
[28] and is a simple consequence of result 3. For example, using the bound (129) from the
proof of theorem 2, one may prove that if ν is a discrete probability measure on PU(d) with
d⩾ 2, which is a δ-approximate t-design with δ = δ(ν, t) for

t⩾ 32
d

5
2

ϵ
log(d) log

(
4
avϵ

)
, (26)

where C= 9π, then the support of ν∗ℓ forms an ϵ-net in PU(d) for

ℓ⩾
log(1/κ(d))+

(
d2 − 1

)(
5
4 log

(
1
ϵ

)
+ 3

4 log(Dd)
)

log(1/δ (ν, t))
, (27)

where

D= 8C2/3log1/3 (2C) , (28)

and log(1/κ(d))< 5. Moreover log(1/κ(d))< 0 for d⩾ 9. Hence, in the case of the measure
νS , the support of ν∗ℓS are the length ℓ words built out of the elements of S and this result is
the SKL theorem with log( 1ϵ ) term but also the multiplicative factor log−1(1/δ(ν, t)), which
depends on t (or ϵ e.g. by taking (26) as equality). Such SKL theorems can be used to bound
the overhead of quantum circuits [27].

Application 2 (inverse-free SK theorem). Similarly as in [28], application 1 can be turned
into the inverse-free non-constructive SKL theorem without the ϵ-dependent multiplicative
factor log−1(1/δ(ν, t)), by bounding the decay of 1− δ(ν, t) with growing t, using the results
from [29]. Namely, let νS be a uniform probability measure on S ⊂ PU(d). Then the support
of ν∗ℓS is an ϵ-net in PU(d) for

ℓ⩾ A
log3

(
1
ϵ

)
+B

log(1/δ (ν, t0))
, (29)

where A,B and t0 are some positive group constants. However, the constants are unknown due
to the ambiguity of constants presented in [29].

Application 3 (quantum complexity and black hole physics). This application comes from
the [20] in which the authors use the approximation of Dirac delta construction from [28]
to prove the results about the approximate equidistribution of δ-approximate t-designs in the
space U(d). This is then used to obtain results about the saturation and recurrence of the com-
plexity of random local quantum circuits with gate set S without the assumptions on the spec-
tral gap or inverse-closeness of S . Such circuits can be used to model the chaotic dynamics of
quantum many-body systems, which may be applicable in areas such as the physics of black
hole interiors.

We believe that after some work, using our construction, one may obtain the approximate
equidistribution of δ-approximate t-designs (theorem 16 from [20]) with better scaling in ϵ
and d, which translates to the saturation and recurrence results.
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4. The heat kernel on the projective unitary group

In the sequel, we employ formulae which are known for the heat kernel on SU(d), but which
do not appear to be readily available for that on PU(d). Using standard techniques, we are able
to write the latter in terms of the former in order to generalise the formulae we need.

Before we do so, we recall some facts from the representation theory of Lie groups (see
e.g. [46–48]) and fix some notation and relevant conventions.

We work over the field of complex numbers. Let K be a (real) compact simply-connected
Lie group (e.g. SU(d)). Due to compactness, we can restrict ourselves to unitary complex
representations. The complex representation theory of K is equivalent to the complex repres-
entation theory of its Lie algebra k, which is equivalent to the complex representation theory
of its complexification g= k+ ik.

The Cartan subalgebra of Lie algebra g is an abelian and diagonalisable subalgebra of g,
which is maximal under set inclusion. In general, there are many ways to choose the Cartan
subalgebra. In our case, we can fix it by choosing the maximal torus in the Lie group. Let T
be the maximal torus in K with Lie algebra t. Then the corresponding Cartan subalgebra h of
g is h= t+ it.

For K= SU(d), we have g= sl(d,C), which is a finite-dimensional complex semi-simple
Lie algebra. The theory of finite-dimensional complex representations of such algebras is well-
known and particularly nice. For example, such algebras are classified by their root system-
s/Dynkin diagrams and such representations are characterised by the theorem of the highest
weight. Here, to match the notation of [32], we take a slightly different approach than usual,
which is more suitable for compact groups K. In particular, we consider real weights and roots.

Let (Π,V) be a (finite-dimensional) representation of K and π be the associated represent-
ation of g. The (real) weight of V with respect to t is an element λ from the dual space t∗, such
that the corresponding weight space

Vλ := {v ∈ V| π (H)v= iλ(H)v,∀H ∈ t} (30)

is not zero. Hence, the (real) root of gwith respect to t is the non-zero element α from the dual
space t∗, such that the corresponding root space

gα := {E ∈ g| [H,E] = iα(H)E,∀H ∈ t} (31)

is not zero. We denote the root system of g as Φ, the set of all positive roots as Φ+ and the set
of simple roots as ∆.

Additionally, we assume thatK is simply-connected. The algebra k is equipped with Ad(K)-
invariant positive-definite inner product (·, ·) defined as the negative of its Killing form (which
is non-degenerate and negative-definite)

(X,Y) :=−Tr(ad(X) ◦ ad(Y)) . (32)

The restriction of (·, ·) to t is non-degenerate (hence, it defines the inner product on t). Thus,
can use (·, ·) to identify t∼= t∗ via X 7→ λX for X ∈ t, where λX(Y) = (X,Y) for any Y ∈ t and
λ 7→ Xλ for λ ∈ t∗, where λ(Y) = (Xλ,Y) for any Y ∈ t. This way we also define (·, ·) on t∗ as
(λ,κ) = (Xλ,Xκ) for λ,κ ∈ t∗ and the induced norm || · ||. The inner product (32) defines the
Riemannian metric on K, hence also the Laplace-Beltrami operator∆. Thus, we can study the
corresponding heat kernels.

Additionally for λ ∈ t∗,λ 6= 0 we define

λ∗ :=
2

(λ,λ)
λ (33)
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and the Weyl vector

δ :=
1
2

∑

α∈Φ+

α. (34)

We aim to describe the heat kernel on PU(d) in terms of the heat kernel on SU(d).
Specialising to the case K= SU(d), we introduce

Γ =

{
exp

(
2kπ
d

)
I |k ∈ Z

}
∼= Zd, (35)

so that K/Γ∼= PU(d). Our approach is based on the averaging map

f(x) 7→ 1
|Γ|
∑

γ∈Γ

f(γx) . (36)

Every irrep of PU(d) extends to an irrep of SU(d) by making it constant on Γ-cosets. It follows
from lemmas 3 in appendix A that every irrep of PU(d) is obtained by applying the averaging
map to a corresponding irrep of SU(d). Let’s consider an elementary example.

Example 2 (irreps of SU(2) and SO(3)). In this example we consider the irreps of SU(2) and
aim to find the corresponding representations of PU(2)∼= PSU(2)∼= SO(3).

The irreps of SU(2) can be enumerated by the corresponding particle spin j = 0, 1
2 , 1, . . .

and have dimensions 2j+ 1 (i.e. single irrep in each dimension). The centre Γ∼= Z2 acts by
π-shifts. We want to find the irrep obtained via the averaging map applied to the irrep with
spin j. We start with the spin j character of SU(2)

χj (θ) =
sin((2j+ 1)θ)

sin(θ)
. (37)

Averaging (37) yields

1
2

(
sin((2j+ 1)θ)− sin((2j+ 1)θ+(2j+ 1)π)

sin(θ)

)
=

{
χj (θ) , for j being full-integer,

0, for j being half-integer.

(38)

Hence, we obtain a well-known fact that the full-integer spin irreps of SU(2) are projective.

Thus, we can focus on the description of the heat kernel on SU(d). The first formula we
employ is the standard expression for the heat kernel as the combination of characters, valid
for compact semi-simple simply-connected Lie groups

HS (g,σ) =
∑

λ

dλ exp(−kλσ)χλ (g) , (39)

where λ is the highest weight vector and the sum is over complex irreps, dλ is the dimension
of the irrep, χλ is the character and kλ := (λ+ 2δ,λ)—see [32, 45, 49]. The parameter σ> 0
plays the role of time and the subscript S indicates that this is the heat kernel on SU(d); later
we will use HP to denote the equivalent object on PU(d). The formula (39) is, in fact, the
decomposition in terms of the eigenfunctions of the Laplace–Beltrami operator ∆, which are
the characters χλ, where

∆χλ =−kλχλ. (40)
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In order to describe the highest weights λ for SU(d) using vectors, we introduce the linear
functionals on t (see (57)) acting as

Lj :




iϕ1

iϕ2

. . .
iϕd


 7→ ϕj, (41)

so that λ=
∑d

i=1λiLi . Then the highest weights of U(d) can be labelled by integer-valued
vectors (λ1,λ2, . . . ,λd) with non-increasing entries, i.e. λi ⩾ λi+1 for 1⩽ i ⩽ d− 1. One can
show that any irreducible representation of U(d) restricts to an irreducible representation of
SU(d), while any irreducible representation of SU(d) extends to one of U(d). However, this
mapping is not one-to-one. Since

∑d
i=1Li (x) = 0 for any x ∈ sl(d,C) any irreducible repres-

entations of U(d) labelled by vectors which differ by a constant vector (n,n, . . . ,n) for some
n ∈ Z correspond to the same irreducible representation of SU(d).

We will also need to consider the irreducible representations of PU(d), which consists of
equivalence classes of members of U(d) under the equivalence relation U∼ eiϕU. Any irrep
of PU(d) extends to an irrep of U(d) by choosing it to be constant on equivalence classes so
we can again label irreps of PU(d) with the same labels as those of U(d). An irrep of U(d)
corresponds to an irrep of PU(d) exactly when it is constant on equivalence classes, which
happens when the highest weight vector satisfies

∑
jλj = 0. We denote5

||λ||1 :=
d∑

i=1

|λi|. (42)

By restricting to ||λ||1 ⩽ 2t, we obtain the set of vectors labelling the projective irreps cor-
responding to the t-design, i.e. appearing in the decomposition of the representation Ut,t [50].
For SU(d) the dimension of the representation dλ and the eigenvalue kλ may be expressed as
(see [45])

dλ = χλ (e) =

∏
j<l (λj−λl+ l− j)∏

j<l (l− j)
⩽ (1+ ‖λ‖1)

d(d−1)/2
, (43)

kλ =
1
2d

∑

j

(
λ2
j +(d− 2j+ 1)λj

)
− 1

2d2


∑

j

λj




2

. (44)

If we have
∑

jλj = 0, so the SU(d) irrep is also a PU(d) irrep then we have the bound

kλ ⩾ ‖λ‖21
2d2

+
1
4
‖λ‖1. (45)

Since SU(d) and PU(d) share a Lie algebra and dλ with kλ can be computed in terms of prop-
erties of the Lie algebra, these are identical for special and projective unitary representations.
Therefore, the averaging map may be applied term-wise to the formula for the heat kernel on

5 Not to be confused with the norm || · || stemming from the Killing form.
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SU(d) to obtain the corresponding one for PU(d)

1
|Γ|
∑

γ∈Γ

HS (γg,σ) =
1
d

∑

γ∈Γ

∑

λ

dλ exp(−kλσ)χλ (γg) (46)

=
∑

λ

dλ exp(−kλσ)
1
d

∑

γ∈Γ

χλ (γg) (47)

=
∑

λ

dλ exp(−kλσ)δP (λ)χλ (g) (48)

= HP (g,σ) , (49)

where HS and HP are the special and projective unitary heat kernels, respectively, and from
equation (35), we have |Γ|= d. Here δP is a Kronecker-delta like function, taking value 1 for
irreps of SU(d) which are also irreps of PU(d) (i.e. projective representations) and value 0
otherwise. In fact,

δP (λ) =

{
1,

∑
jλj = 0

0, otherwise.
(50)

Notice that the heat kernel (39) is a class function, hence it can be defined instead on the
maximal torus of SU(d). With a mild abuse of notation, we will not distinguish between the
two descriptions.

Let us formulate a second formula for the heat kernel on compact, semi-simple, simply-
connected Lie groups from [32]

j(exp(X)) = (2i)m
∏

α∈Φ+

sin

(
α(X)
2

)
, (51)

K(X,σ) =
∑

γ∈Γ

π (λX+ γ)exp

(
− 1

4σ
‖λX+ γ‖2

)
, (52)

H(exp(X) ,σ) =
c

π (δ)
(2π)l+m imj(exp(X))−1 exp

(
‖δ‖2σ

)
(4πσ)−N/2K(X,σ) , (53)

where

π (λ) :=
∏

α∈Φ+

(λ,α) , λ ∈ t∗, (54)

m= |Φ+|, N is the group dimension, c is a (known) dimension-dependent group constant and
Γ is a lattice generated by l= dim(t) elements α∗

j (see (33)) corresponding to the simple roots
∆= {α1, . . . ,αl}

Γ := 2π
l∑

j=1

Zα∗
j . (55)

Formally, the heat kernel given by (53) is only defined for the regular elements X from t,
i.e. the ones with distinct eigenvalues. However, the corresponding set of group elements
for which formula (53) is not well defined is of Haar-measure zero. The function defined by
the formula (53) extends to a unique continuous function, that defined by (39) on the whole
group. Hence, with a slight abuse of notation, we treat (53) as defined on the whole group,
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e.g. when integrating. More explicitly, one can see that the non-definedness of (53) at non-
regular elements arises exactly from the factor of j(exp(X))−1 giving factors of sin(α(X)/2)−1

as α(X)→ 0. However, these apparently singular terms are balanced by terms linear in α(X)
arising from the term π(λX+ γ). We will sketch this in more detail in appendix F.

The formula (53) is equivalent to (39) via the Poisson summation formula and we refer to it
as the Poisson form (of the heat kernel). The Poisson form is relevant to us exactly because of
the factor of σ−1 appearing in the exponent in (52). Roughly speaking, this formula is useful
for bounding the behaviour of the heat kernel when the σ is small, while equation (39) is useful
when σ is large.

The maximal torus T of SU(d) may be identified with the group of determinant 1 diagonal
matrices parametrised by a vector ϕ ∈ Rd−1 as

T(ϕ) :=




eiϕ1

eiϕ2

. . .
eiϕd−1

e−i
∑d−1

j=1 ϕj



. (56)

The Lie algebra t of T consists of traceless diagonal purely imaginarymatrices parametrised
by ϕ ∈ Rd−1 as

X(ϕ) := i




ϕ1

ϕ2

. . .
ϕd−1

−∑d−1
j=1 ϕj



. (57)

Clearly, one can restrict the parameters e.g. ϕi ∈ (−π,π] for 1⩽ i ⩽ d− 1.
The complexified Lie algebra of K is g= sl(d,C) and consists of traceless complex

matrices. Let Eij ∈ sl(d,C) where i 6= j denote the matrix with 1 in the (i, j) position and 0
elsewhere. The root system of g with respect to t is Φ = {αij| 1⩽ i 6= j ⩽ d} where the lin-
ear functionals αij act as

αij : X(ϕ) 7→ ϕi −ϕj (58)

and the corresponding one-dimensional root spaces are gαij = CEij. Noting that αji =−αij
we choose positive roots Φ+ = {αij| 1⩽ i < j ⩽ d} and a set of simple roots to be ∆=
{αi,i+1| 1⩽ i ⩽ d− 1}. We identify the Lie algebra twith its dual t∗ under the inner product
obtained from the Killing form

(X,Y) =−2d tr(XY) . (59)

Under this identification αij is mapped to a diagonal matrix Xαij from t with ±i/2d appearing
as the only two non-zero entries of the ith and jth positions on the diagonal, respectively. Let
Xδ be the element of t which is identified with the Weyl vector δ, defined in equation (34).
Then

Xδ =
1
2

∑

i<j

Xαij , (60)
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(Xδ)kk = i

(
d+ 1
4d

− k
2d

)
, (61)

‖δ‖2 = ‖Xδ‖2 (62)

= 2d
d∑

k=1

(
d+ 1
4d

− k
2d

)2

(63)

=
d2 − 1
24

. (64)

The duals of elements of Γ may be indexed by length d− 1 integer vectors k

X(k) := 2π i




k1
k2

. . .
kd−1

−∑d−1
j=1 kj



. (65)

To simplify the notation we rename X(ϕ) and X(k) as Xϕ and Xk. Specialising the Poisson
form of the heat kernel (53) to this parametrisation of the maximal torus of SU(d), one obtains

HS (exp(Xϕ) ,σ) := C(d,σ) j(exp(Xϕ))
−1

∑

k∈Zd−1

π (Xϕ +Xk)exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
,

(66)

where

C(d,σ) :=
c

π (δ)
(2π)l+m im exp

(
‖δ‖2σ

)
(4πσ)−N/2 (67)

and for convenience we have written everything in terms of elements of the Lie algebra, con-
verting elements of the dual where necessary, e.g. π(X) =

∏
α∈Φ+(α,λX) =

∏
α∈Φ+ α(X).

In order to obtain the corresponding heat kernel on PU(d) we proceed as above, and again
we average this expression over the normal subgroup Γ given by dth roots of unity. We obtain
an expression for the heat kernel on PU(d) in the Poisson form

HP (exp(Xϕ) ,σ) :=
1
|Γ|
∑

γ∈Γ

HS (γ exp(Xϕ) ,σ) (68)

=
C(d,σ)
|Γ|

∑

γ∈Γ

j(exp(Xϕ))
−1

∑

k∈Zd−1

π (Xϕ +Xk+ log(γ))

× exp

(
− 1

4σ
‖Xϕ +Xk+ log(γ)‖2

)
, (69)

where we have used that j(γeX) = j(eX) and to match how we parametrised the torus in (57)
we choose the logarithm to be

log
(
ei

2π r
d I
)
= i

2π
d




r
. . .

r
−r(d− 1)


 . (70)
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We stress that formally HP(exp(Xϕ),σ), is a function on SU(d) that is a lift of the heat
kernel on PU(d).

5. Bounds for exact t-designs

In this section, we prove an error bound for a polynomial approximation to the heat kernel. In
order to connect to projective t-designs, it is necessary for this approximation to be in terms
of balanced polynomials. We call a function on PU(d) a balanced polynomial of order t if

f(U) = tr
(
(U⊗U∗)⊗tA

)
, (71)

holds for all U ∈ π−1(U), where A is some fixed matrix and recalling that in our present nota-
tion each U ∈ PU(d) is an equivalence class of elements π−1(U)⊂ SU(d).

The approximation we seek follows directly from the formula

HP (g,σ) =
∑

λ

dλ exp(−σkλ)χλ (g) , (72)

where
∑

i λi = 0, given by (49), upon noticing that each character χλ, of the projective unitary

group is a balanced polynomial of order ∥λ∥1
2 . This follows since they may be written in terms

of Schur functions, see e.g. [45] for details. Let us denote by H(t)
P (g,σ) the restriction of the

sum in (72) to balanced polynomials of order at most t, that is

H(t)
P (g,σ) =

∑

λ,∥λ∥1⩽2t

dλ exp(−σkλ)χλ (g) , (73)

where
∑

i λi = 0. We refer to the polynomial approximations H(t)
P of the heat kernel HP as

trimmed heat kernels.
We seek to bound the 2-norm of the difference between the trimmed heat kernel H(t)

P and
the full heat kernel HP, where the 2-norm here is the one induced by the Haar measure

‖ f‖22 =
ˆ

SU(d)
|f|2 dµ. (74)

Using expressions (72) and (73) one may bound the trimming error
∥∥∥HP(·,σ)−H(t)

P (·,σ)
∥∥∥
2

for t large enough (for fixed σ and d). For a precise statement and proof, see lemma 4 from
appendix B. This allows us to focus on the properties of the full heat kernel HP.

Remark 2. (optimality of the trimming procedure). The trimming procedure given by (73) is
optimal in the following sense. The trimmed heat kernel H(t)

P (·,σ) is the unique function inHt

closest to the heat kernel HP(·,σ) in L2-norm. Indeed, H(t)
P (·,σ) is the orthogonal projection

of HP(·,σ) onto a finite-dimensional subspace Ht of the Hilbert space L2(PU(d)). Hence, the
result follows from Hilbert’s projection theorem.

The next step is to bound the complement of the integral of an absolute value of a heat
kernel on PU(d) over the complement of a small ball BP,ϵ. As explained in section 4, we
reduce this problem to considerations on SU(d). Recall that an element of PU(d) consists of
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an equivalence class of elements of SU(d) where two matrices are equivalent if they differ by
an element of Γ. By Bϵ(V) we denote the closed operator-norm ϵ-ball in SU(d) centred at V

Bϵ (V) := {U ∈ SU(d) |d(U,V)⩽ ϵ} . (75)

By BP,ϵ(V) be denote a closed ϵ-ball centred at V in metric dP(·, ·)

BP,ϵ (V) := {U ∈ PU(d) |dP (U,V)⩽ ϵ} . (76)

By B̃P,ϵ(V)⊆ SU(d), where V ∈ π−1(V), we denote the inverse image of BP,ϵ(V) under the
quotient map π : SU(d)→ PU(d)

B̃P,ϵ (V) := π−1 (BP,ϵ (V)) =
⋃

γ∈Γ

γBϵ (V) . (77)

If the centre V is not specified, the ball is centred at the group identity. By Hd
r we denote an

∞-norm closed ball/hypercube in Rd of radius r

Hd
r :=

{
v ∈ Rd | ||v||∞ ⩽ r

}
(78)

and by Zd−1 we denote the hyperplane in Rd consisting of vectors y with
∑d

j=1 yj = 0.
Every element U ∈ SU(d) can be written as U= VDV−1 for some V ∈ SU(d) and D ∈ T.

Since the operator norm is unitary invariant, a ball Bϵ corresponds to a unique ball BT,ϵ ⊂ T,
via Bϵ =

⋃
V∈SU(d)VBT,ϵV

−1, where BT,ϵ = {D ∈ T |d(D, I)⩽ ϵ}.
Hence, a ball Bϵ ⊂ SU(d) corresponds to a ball in T⊂ SU(d) which is an image of Hd−1

ϵ̃

(identified with a subset of t), under the exponential map exp : t→ T, where

ϵ̃= 2 · arcsin(ϵ/2) ∈ [0,π] , (79)

so ϵ⩽ ϵ̃.
We first prove a lemma allowing us to remove the summation over Γ obtained when we

express the PU(d) heat kernel in terms of that of SU(d).

Lemma 1. 1 Let φ be a non-negative function on SU(d) Haar-normalised to 1. Fix ϵ> 0 and
consider a set B̃P,ϵ defined by (77), let its complement be B̃cP,ϵ. Then

ˆ

B̃cP,ϵ

1
|Γ|
∑

γ∈Γ

φ (γg)dµ(g)⩽
ˆ

Bcϵ

φ (g)dµ(g) . (80)

Proof.
ˆ

B̃P,ϵ

1
|Γ|
∑

γ∈Γ

φ (γg)dµ(g) =
1
|Γ|
∑

γ∈Γ

ˆ

∪κ∈ΓκBϵ

φ (γg)dµ(g) (81)

=
1
|Γ|
∑

γ∈Γ

ˆ

∪κ∈γΓκBϵ

φ (g)dµ
(
γ−1g

)
(82)

=
1
|Γ|
∑

γ∈Γ

ˆ

∪κ∈ΓκBϵ

φ (g)dµ(g) (83)

=

ˆ

∪κ∈ΓκBϵ

φ (g)dµ(g) (84)
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⩾
ˆ

Bϵ

φ (g)dµ(g) (85)

hence

1−
ˆ

B̃P,ϵ

1
|Γ|
∑

γ∈Γ

φ (γg)dµ(g)⩽ 1−
ˆ

Bϵ

φ (g)dµ(g) . (86)

The bound in lemma 1 may seem crude, however, the more of a mass of φ is concentrated
in a ball Bϵ the tighter it becomes. This corresponds e.g. to the heat kernel HS(g,σ) with
decreasing σ (see also figure 1).

Applying lemma 1 with φ = HS and the Weyl integration formula (see e.g. [45]) we can
bound the integral of HP(g,σ) over B̃cP,ϵ as follows

ˆ

B̃cP,ϵ

HP (g,σ)dµ(g)⩽
ˆ

Bcϵ

HS (g,σ)dµ(g) (87)

=
C(d,σ)
|W|

∑

k∈Zd−1

ˆ

Hd−1
π \Hd−1

ϵ̃

j(exp(Xϕ))
∗
π (Xϕ +Xk)exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
dµ(ϕ) ,

(88)

where dµ(ϕ) = dϕ1dϕ2...dϕd−1

(2π)d−1 stems from the Haar measure on T,W is the Weyl group and we

have cancelled the j−1 with part of the |j|2 term in the Weyl integration formula.
Using the triangle inequality, we obtain

ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g)⩽
C(d,σ)
|W|

∑

k∈Zd−1

ˆ

Hd−1
π \Hd−1

ϵ̃

|j (exp(Xϕ))π (Xϕ +Xk) |

× exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
dµ(ϕ) . (89)

We seek to express the right-hand side of (89) in terms of the dominant term I0 (k= 0) and
some smaller correction R which we will bound in terms of I0

ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g)⩽ I0 +R, (90)

where

I0 :=
C(d,σ)
|W|

ˆ

Hd−1
π \Hd−1

ϵ̃

|j(exp(Xϕ))π (Xϕ) |exp
(
− 1

4σ
‖Xϕ ‖2

)
dµ(ϕ) , (91)

and

R :=
C(d,σ)
|W|

∑

k∈Zd−1\{0}

ˆ

Hd−1
π \Hd−1

ϵ̃

|j
(
exp
(
Xϕ
))

π
(
Xϕ +Xk

)
|exp

(
− 1
4σ

∥∥Xϕ +Xk
∥∥2
)
dµ(ϕ) .

(92)

We provide the bounds on I0 and R via lemma 8 proved in appendix C and lemma 13 in
appendix D respectively. Our bounds apply for σ small enough (for fixed ϵ and d).
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Figure 1. Illustration of the distribution of the components of a heat kernelHP on PU(3),
obtained via the averaging map applied to a heat kernel HS in Poisson form. Actual
shapes and relative sizes are not depicted. The averaging takes place over Γ, which
consists of three roots of unity, denoted by red, green and blue points in the central
square region. The elements of Γ act by shifting by the roots of unity along the dotted
grey lines, corresponding to a torus. The heat kernel HS corresponds to the red peaks.
Each repeated square region corresponds to the contribution from a different k-vector in
the Poisson form, which lies on the grey dashed grid. Notice that only the central square
region (k= 0) corresponds to points in a group. However, the tails of the peaks from
non-central square regions (k ̸= 0) overlap with the central square region, contributing
to the heat kernel. A ball B̃P,ϵ corresponds to a sum of three balls in a central region,
denoted by dotted lines. A ball Bϵ corresponds to the red ball at the origin, and the grey
region corresponds to its complement. lemma 1 states that the integral of HP over B̃P,ϵ
can be upper bounded by the integral of HS (proportional to the red component) over
the grey region. This is outlined by the opacity of the blue and green peaks. Lemma 13
shows that this integral can be bounded by bounding the contribution from the central
(k= 0) red peak, which is obtained in lemma 8.

By combining the trimming error bound with the vanishing properties of the full heat kernel
HP (lemmas 4, 8 and 13) we obtain a bound for the vanishing of the absolute value of the
trimmed heat kernel H(t)

P , stated in lemma 2.

Lemma 2. Provided that

2t⩾ d2√
σ

√
2log

(
d4

σ

)
(93)

and

σ ⩽ ϵ2

32dlog(d)
(94)
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for any

η ⩾ 1
∏d

k=1 k!
(95)

we have
ˆ

B̃cP,ϵ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g)⩽ 2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)

+
1+ η

2
exp

(
− d

16σ
ϵ2 +

d2 − 1
24

σ

)
. (96)

Proof.
ˆ

B̃cP,ϵ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g)⩽
ˆ

B̃cP,ϵ

|H(t)
P (g,σ)−HP (g,σ) |dµ(g)+

ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g) (97)

=

ˆ

SU(d)
|H(t)

P (g,σ)−HP (g,σ) |χB̃cP,ϵ (g)dµ(g)+
ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g) , (98)

where χX denotes the indicator function of the set X. Applying Hölder’s inequality to the first
term of (98) gives
ˆ

B̃cP,ϵ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g)⩽
∥∥∥H(t)

P (g,σ)−HP (g,σ)
∥∥∥
2
+

ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g) . (99)

Finally, substituting the bounds from lemmas 4, 8 and 13 with γ = 1/2 and applying ϵ⩽ ϵ̃
gives the result. The condition (94) is the result of multiplying the bounds on σ we require for
each lemma; one could obtain a slightly improved, but more complicated, bound by taking the
minimum rather than the product.

We are now able to prove our first theorem

Theorem 1. Let ν be an exact t-design in PU(d), d⩾ 2, then supp(ν) is an ϵ-net provided

t⩾ 32
d

5
2

ϵ
log(d) log

(
4
avϵ

)
, (100)

where C= 9π.

Proof. We proceed via a proof by contradiction. Assume supp(ν) is not an ϵ-net, then accord-
ing to [28], lemmas 1 and 2, we know there exists a V0 ∈ PU(d) such that for any κ⩽ ϵ

Vol(BP,κ (V0))⩽ max
V∈B̃cP,ϵ

ˆ

B̃P,κ(V)
H(t)
P (g,σ)dµ(g) . (101)

Note that BP,κ(V)⊂ BcP,ϵ−κ, hence also B̃P,κ(V)⊂ B̃cP,ϵ−κ, so

max
V∈B̃cP,ϵ

ˆ

Bκ(V)
H(t)
P (g,σ)dµ(g)⩽ max

V∈B̃cP,ϵ

ˆ

B̃P,κ(V)

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g) (102)

⩽
ˆ

B̃cP,ϵ−κ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g) . (103)

20

107



J. Phys. A: Math. Theor. 58 (2025) 445301 O Słowik et al

The Haar (µP) volume of κ-ball (described in metric dP(·, ·) ) in PU(d) can be bounded
from below as follows:

Vol(BP,κ)⩾ (avκ)
d2−1

, (104)

where av = 1
9π (see [28]). Such a volume does not depend on the centre of the ball, due to the

translation-invariance of the Haar measure and the metric dP(·, ·). We take κ= ϵ
2 and therefore

have a contradiction if

ˆ

B̃cP,ϵ/2

∣∣∣H(t) (g,σ)
∣∣∣dµ(g)<

(
1
2
avϵ

)d2−1

. (105)

Hence, under the assumptions of lemmas 2 (with ϵ/2 instead of ϵ), with the choice of η= 1,
in order to get a contradiction, we can demand for example

exp

(
− d

64σ
ϵ2 +

d2 − 1
24

σ

)
<

1
2

(
1
2
avϵ

)d2−1

, (106)

2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
<

1
2

(
1
2
avϵ

)d2−1

. (107)

The inequality (106) constrains σ as a function of ϵ and d and is satisfied whenever

σ < σ∗ =
ϵ2

128d log(d) log
(

2
avϵ

) , (108)

which may be seen by taking logarithms of both sides of (106) and bounding the term contain-
ing (d2 − 1) σ

24 using assumption (94). We can now bound the sufficient t, assuming σ = σ∗,
using (107). Simply taking logarithms of (107) and substituting in σ = σ∗ we obtain

t2 ⩾ 128
d5

ϵ2
log(d) log2

(
4
avϵ

)
, (109)

however we additionally need t to satisfy the assumption of lemma 2, so we obtain a final
scaling

t2 ⩾ 1024
d5

ϵ2
log2 (d) log2

(
4
avϵ

)
, (110)

6. Bounds for δ-approximate t-designs

In order to derive the version of theorem 1 for δ-approximate t-designs, we bound the L2-norm
of the heat kernel.

Since we want to apply the results from the previous sections, we use the Poisson form of
the heat kernel, which allows us to group the terms as follows
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‖HS(·,σ)‖22 =
C(d,σ)2

|W|

ˆ ∑

k∈Zd−1

∑

l∈Zd−1

π(Xϕ +Xk)π
∗(Xϕ +Xl)

× e−
1
4σ (∥Xϕ+Xk)∥2+∥Xϕ+Xl)∥2)dµ(ϕ) (111)

⩽ C(d,σ)2

|W|

ˆ ∑

k∈Zd−1

∑

l∈Zd−1

|π(Xϕ +Xk)π
∗(Xϕ +Xl)|

× e−
1
4σ (∥Xϕ+Xk)∥2+∥Xϕ+Xl)∥2)dµ(ϕ) (112)

= I2
0,0 +R2

∗,0 +R2
0,∗ +R2

∗,∗, (113)

where I2
0,0 is the k= 0 and l= 0 term, R2

∗,0 is the sum of the terms with k 6= 0 and l= 0, R2
0,∗

is the sum of the terms with k= 0 and l 6= 0 and R2
∗,∗ is the sum of the terms with k 6= 0 and

l 6= 0. We bound the contributions from I2
0,0,R2

∗,0 andR2
∗,∗ separately in appendix E. The joint

bound for ‖H(t)
P (·,σ)‖2 is provided in lemma 16 from appendix E.

We now have all the prerequisites to prove our main theorem, which is a generalisation of
theorem 1 to δ approximate t-designs.

Theorem 2. Let ν be a δ-approximate t-design in PU(d), d⩾ 2, with

δ ⩽
(

1

4Clog1/4
(
2C
ϵ

)
log1/4 (d)

ϵ

d1/2

)d2−1

(114)

where

C= 9π , (115)

then supp(ν) is an ϵ-net provided

t⩾ 32
d

5
2

ϵ
log(d) log

(
4
avϵ

)
. (116)

Proof. We proceed as in the proof of theorem 1. Assume supp(ν) is not an ϵ-net, then accord-
ing to [28], lemma 2 and 3, we know there exists a V0 ∈ PU(d) such that for any κ⩽ ϵ

Vol(BP,κ (V0))⩽
ˆ

B̃cP,ϵ−κ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g)+ δ
√

Vol(BP,κ (V0))||H(t)
P (·,σ) ||2 (117)

⩽ 2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
+

1+
(
1+ δ

√
Vol

(
BP,ϵ/2

)
d
√
d!

2m−1

)
1∏
k k!

2

× exp

(
− d

64σ
ϵ2 +

d2 − 1
24

σ

)
(118)

+ δ
√

Vol
(
BP,ϵ/2

)
dI0,0 (119)

⩽ 2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
+ exp

(
− d

64σ
ϵ2 +

d2 − 1
24

σ

)

+ δ
√

Vol
(
BP,ϵ/2

)
dI0,0 (120)
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where we put κ= ϵ/2 and used lemmas 2 and 16 with η = 1∏d
k=1 k!

. Moreover, we assumed δ

is not too large, so that

(
1+ δ

√
Vol

(
BP,ϵ/2

)d
√
d!

2m−1

)
1

∏d
k=1 k!

⩽ 1, (121)

e.g.

δ ⩽ 1

2
√
2
⩽ 2m−1

d
√
d!
√

Vol
(
BP,ϵ/2

) . (122)

We take κ= ϵ
2 and therefore have a contradiction if, under the assumptions of lemmas 2 we

have three inequalities

exp

(
− d

64σ
ϵ2 +

d2 − 1
24

σ

)
<

1
2

(
1
2
avϵ

)d2−1

(123)

2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
<

1
4

(
1
2
avϵ

)d2−1

(124)

δdI0,0 <
1
4

(
1
2
avϵ

) d2−1
2

. (125)

Inequality (123) is the same as (106) from the proof of theorem 1, hence it is satisfied for the
same σ = σ∗. Inequality (124) differs from (107) by the factor of 1/4 instead of 1/2, one may
check that this inequality is still satisfied as long as t satisfies the bound in equation (100).

It remains to ensure that (125) is satisfied. Using lemmas 14, 7 and 11, then taking the
logarithms of both sides of (125) and bounding the terms that do not depend on ϵ or σ by the
Θ(d2log(d)) term, we obtain

log

(
1
δ

)
⩾
(
d2 − 1

4

)
log

(
1
σ

)
+
d2 − 1
24

σ+

(
3d2

16
+ 4

)
log(d)+

d2 − 1
2

log

(
2
avϵ

)
.

(126)

Plugging σ = σ∗ leads to

δ ⩽
( av
29/2

) d2−1
2


 ϵ

log1/4
(

2
avϵ

)
log1/4 (d)




d2−1 exp

(
− (d2−1)ϵ2

3072dlog(d)log( 2
avϵ )

)

d
7
16 d

2+ 15
4

. (127)

One may check that (127) is stronger than (122). Moreover, since ϵ⩽ 2, we can lower bound
the exponential term as

exp


−

(
d2 − 1

)
ϵ2

3072dlog(d) log
(

2
avϵ

)


⩾ exp


− d

768log(d) log
(

1
av

)


= d

− d

768log2(d)log( 1
av ) .

(128)
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Hence,

δ ⩽
( av
29/2

) d2−1
2


 ϵ

log1/4
(

2
avϵ

)
log1/4 (d)d1/2




d2−1

κ(d) , (129)

where

κ(d) := d
d2

16 − 17
4 − d

768log2(d)log( 1
av ) . (130)

We now observe that the function κ(d)
1

d2−1 is increasing for d⩾ 2, which may be demon-
strated by computing the derivative. We may, therefore, lower bound it by bounding the value
at d= 2. For example,

κ(d)
1

d2−1 ⩾ 2−
3
2 . (131)

Combining this bound with the above reasoning, we obtain

δ ⩽


 1

16
√
9πlog1/4

(
2
avϵ

)
log1/4 (d)

ϵ

d1/2




d2−1

, (132)

which may easily be seen to imply the bound shown in the Theorem statement.

Remark 3. The bound on δ provided in theorem 2 is significantly looser than e.g. (127)
or (129). In the provided form theorem 2 is appropriate for comparison with the results of [28],
however in applications we expect one of the more precise bounds to be more appropriate.

7. Trimmed heat kernel as a polynomial approximation of Dirac delta

In this section, we summarise various properties of our construction of the polynomial approx-
imation of the Dirac delta. These properties are either obvious or were addressed in previous
sections. The only missing property was the behaviour of the L1-norm of the trimmed heat
kernel, which also bounds its negativity.

Theorem 3. The trimmed heat kernel H(t)
P (·,σ) for U(d) with d⩾ 2 has the following

properties:

1. H(t)
P (·,σ) ∈Ht.

2. H(t)
P (·,σ) is Haar-normalised to 1 and also approximately non-negative for t large enough

(see point 5).
3. Controllable vanishing outside the ball of radius ϵ as σ→ 0

ˆ

B̃cP,ϵ

∣∣∣H(t)
P (g,σ)

∣∣∣dµ(g)⩽ 2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
+

1+ η

2
exp

(
− d

16σ
ϵ2 +

d2 − 1
24

σ

)

(133)
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for

t⩾ t∗ :=
d2

2
√
σ

√
2log

(
d4

σ

)
(134)

and

σ ⩽ ϵ2

32dlog(d)
(135)

with η ⩾ 1∏d
k=1 k!

. Hence, for any ϵ> 0,

lim
σ→0

ˆ

B̃cP,ϵ

|H(t∗)
P (g,σ) |dµ(g) = 0. (136)

4. Controllable blow-up of the L2-norm

||H(t)
P (·,σ) ||2 ⩽ c

(
d
σ

) d2−1
4

(137)

for σ ⩽ 1
dlog(d) and some positive group constant c. One can take c= 8 for d⩾ 2 and c= 1

for d⩾ 12.
5. Bounded L1-norm

||H(t)
P (·,σ) ||1 ⩽ 1+ 2

d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
(138)

for t⩾ t∗. Hence, for fixed d

lim
σ→0

||H(t∗)
P (·,σ) ||1 = 1. (139)

Proof. Point 1 follows from the construction detailed above. Point 2 is a consequence of the
orthogonality of characters and point 5. Point 3 is the lemma 2. Point 4 is corollary 1 from
appendix E. Point 5 can be proved using the triangle inequality andHölder’s inequality. Indeed,
since HP(·,σ) is normalised to 1 and non-negative, using lemma 4 we can write

||H(t)
P (·,σ) ||1 ⩽ ||HP (·,σ) ||1 + ||

(
H(t)
P (·,σ)−HP (·,σ)

)
χSU(d)||1 (140)

⩽ 1+ ||H(t)
P (·,σ)−HP (·,σ) ||2 (141)

⩽ 1+ 2
d
2 exp

(
−σ

t2

d2
− 1

2
σt

)
(142)

for

t⩾ d2

2
√
σ

√
2log

(
d4

σ

)
. (143)
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Remark 4. One can also write down similar properties of the (full) heat kernelHP(·,σ), which
follow from the proofs of the same Lemmas as theorem 3. In this case, point 1 is not true for
any t. The normalisation from point 2 is true, but HP(·,σ) is non-negative so ||HP(·,σ)||1 = 1.
The bound from point 4 is valid. The bound from point 3 simplifies to

ˆ

B̃cP,ϵ

|HP (g,σ)|dµ(g)⩽
1+ η

2
exp

(
− d

16σ
ϵ2 +

d2 − 1
24

σ

)
(144)

for

σ ⩽ ϵ2

32dlog(d)
(145)

and η ⩾ 1∏d
k=1 k!

. Hence, for any ϵ> 0

lim
σ→0

ˆ

B̃cP,ϵ

|HP (g,σ) |dµ(g) = 0. (146)

Remark 5. Formally, theorem 3 shows in particular that for fixed d⩾ 2, the family of L1-
integrable functions {kλ}λ>0, where kλ(g) := Ht∗(λ)

P (g,1/λ) and t∗(λ) := d2

2

√
2λ log(d4λ),

is an approximate identity on PU(d).

8. Summary and future work

We have improved on the state-of-the-art for constructing ϵ-nets in the group of unitary chan-
nels from unitary t-designs, that of [28]. Our method involves the construction of a polynomial
approximation to aDirac delta on the space of quantum unitary channels PU(d) stemming from
the natural object—a heat kernel on SU(d).

In the case of exact t-designs we obtain results very close to those of [28], but in the more
practically relevant approximate case, our results significantly improve on the state-of-the-
art, showing that δ-approximate t-designs form ϵ nets for much larger values of δ than was
previously known.

While our scaling of δ with d and ϵ for approximate t designs substantially improves on
prior work, it is not obvious that it is optimal. We leave for future work the task of either
improving this scaling even further or proving that no improvements are possible.

The construction of [28] is used in [20] to prove saturation and recurrence results for the
complexity of random quantum circuits without the assumptions on the gap of the universal
set S . In future work, it may be possible to apply our construction to improve the known
results in this setting. It would also be interesting to understand the unknown constants A and
B appearing in (29), obtaining an inverse-free non-constructive SKL theorem from our results.
This amounts to deriving explicit constants of the polylogarithmic spectral gap decay (see
Theorem 6 from [29]), especially r0. We expect that the trimmed heat kernel construction
may be applied to obtain explicit bounds on such decay.
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Appendix A. Connecting the heat kernels on the projective and special unitary
groups

In this appendix, we prove lemma 3, which can be used to show how one can obtain a heat
kernel on PU(d) using the heat kernel on SU(d) via averaging.

Lemma 3. Let K be a simply-connected compact Lie group and Γ a finite normal subgroup
so that K/Γ is a compact Lie group. Let ρ be a finite-dimensional unitary irrep of K. Then the
function

ρ̃ : g 7→ 1
|Γ|
∑

γ∈Γ

ρ(γg) , (A1)

is either

1. identical to ρ if ρ is constant on Γ-cosets in K or
2. identically zero.

Proof. We observe

ρ̃(g) ρ̃(g ′) = ρ̃(gg ′) , (A2)

so ρ̃ is a group homomorphism exactly if it maps the identity in K to the identity operator.
Since ρ̃(e) is self-adjoint and is easily seen to be idempotent, it is an orthogonal projector.
Since ρ̃(e) commutes with every operator in the image of K under ρ and ρ is irreducible by
Schur’s lemma, ρ(e)∝ I and is therefore equal to either I or 0.

In the case that ρ̃(e) is the identity operator compute

ρ
(
g−1
)
ρ̃(g) =

1
|Γ|
∑

γ∈Γ

ρ
(
g−1
)
ρ(γg) (A3)

=
1
|Γ|
∑

γ∈Γ

ρ
(
g−1γg

)
(A4)

=
1
|Γ|

∑

γ ′∈Γ

ρ
(
g−1gγ ′g−1g

)
(A5)

= ρ̃(e) = I, (A6)

so that for all g ∈ K we have ρ(g) = ρ̃(g) implying that the ρ is constant on Γ-cosets.
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Proof of (A2).

ρ̃(g) ρ̃(g ′) =
1

|H|2
∑

h,h ′∈H
ρ(hg)ρ(h ′g ′) (A7)

=
1

|H|2
∑

h,h ′∈H
ρ(hgh ′g ′) (A8)

=
1

|H|2
∑

h∈H

∑

h′ ′∈H
ρ
(
hgg−1h ′ ′gg ′) (A9)

=
1

|H|2
∑

h∈H

∑

h′ ′∈H
ρ(hh ′ ′gg ′) (A10)

=
1
|H|
∑

h∈H
ρ(hgg ′) = ρ̃(gg ′) (A11)

Appendix B. Bounding the polynomial approximation of the heat kernel

In this appendix, we prove lemma 4, which quantifies the L2-norm difference between the heat
kernel HP and the trimmed heat kernel H(t)

P .

Lemma 4 (‘Trimming’ the heat kernel). The trimmed heat kernel H(t)
P satisfies

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2
⩽ 2

d
2 exp

(
−2σ (1− γ)

t2

d2
− 1

2
σt

)
, (B1)

for any 0< γ < 1, provided that

2t⩾ d2√
γσ

√
log

(
d4

2γσ

)
. (B2)

Proof. In terms of L2-norm, as a function of x the approximation error may be computed

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
=

∥∥∥∥∥∥
∑

λ,∥λ∥1>2t

dλ exp(−σkλ)χλ (x)

∥∥∥∥∥∥

2

2

(B3)

=

ˆ

G
dµ(x)

∣∣∣∣∣∣
∑

λ,∥λ∥1>2t

dλ exp(−σkλ)χλ (x)

∣∣∣∣∣∣

2

(B4)

=
∑

ν,∥ν∥1>2t

∑

λ,∥λ∥1>2t

dλdν exp(−σ (kλ + kν))
ˆ

G
dµ(x)χ∗

ν (x)χλ (x)

(B5)

=
∑

λ,∥λ∥1>2t

d2λ exp(−2σkλ) , (B6)
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using the orthonormality of the characters. The weights λ are integer-valued d dimensional
vectors with non-increasing entries, which satisfy the condition

∑
jλj = 0. We now need a

bound for α( j), the number of highest weights λ satisfying ‖λ‖1 = j. Each highest weight
is uniquely determined by an integer-valued d− 1 dimensional vector with non-increasing
entries, since e.g. the last element of the vector is fixed by the constraint

∑
jλj = 0. In order to

simplify the reasoning we will ignore the non-increasing property and obtain a slightly looser
bound than we would by including it. Such d− 1 dimensional vector clearly has 1-norm less
than ||λ||1. Since the infinity-norm lower bounds the one-norm it follows that the number
of highest-weight vectors with 1-norm equal to j is upper bounded by the number of integer
vectors with infinity norm less than j, which is exactly the number of integer points in an d− 1
dimensional hypercube of side length 2j. We therefore obtain the very crude upper bound

α( j)⩽ (1+ 2j)d−1
. (B7)

Substituting this, along with the bounds from (43) and (45) into (B6) we obtain

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
=

∑

j>2t

α( j)d2λ exp(−2σkλ) (B8)

⩽
∑

j>2t

(1+ 2j)(d−1) (1+ j)d(d−1) exp

(
−2σ

(
j2

2d2
+
j
4

))
(B9)

⩽
(
2+

1
2t

)d−1(
1+

1
2t

)d(d−1)∑

j>2t

j(d+1)(d−1) exp

(
−2σ

(
j2

2d2
+
j
4

))
.

(B10)

Our approach is to bound the expression by a Gaussian integral, so we first bound the polyno-
mial term in the sum by a Gaussian. An easy bound follows from the bound on the Lambert
W function

W−1
(
−eu−1

)
>−1−

√
2u− u, (B11)

obtained in [51], namely that

j2 ⩾ d4

γσ
log

(
d4

2γσ

)
=⇒ (1+ 2j)(d+1)(d−1) ⩽ exp

(
γσ

j2

d2

)
. (B12)

Assuming that

j > 2t⩾ d2√
γσ

√
log

(
d4

2γσ

)
=⇒ (1+ 2j)(d+1)(d−1) ⩽ exp

(
γσ

j2

d2

)
, (B13)

where 0< γ < 1 is a constant we have introduced. We substitute this bound to obtain
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∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
⩽
(
2+

1
2t

)d−1(
1+

1
2t

)d(d−1)∑

j>2t

exp

(
−σ

(
(1− γ)

j2

d2
+
j
2

))
.

(B14)

The summand is decreasing in j, so we may bound the sum by an integral to obtain

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
⩽
(
2+

1
2t

)d−1(
1+

1
2t

)d(d−1)

×
ˆ ∞

2t
exp

(
−σ

(
(1− γ)

x2

d2
+
x
2

))
dx. (B15)

We compute the integral and employ the standard bound

erfc(x)⩽ 1
x
√
π
exp
(
−x2

)
, (B16)

to obtain

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
⩽
(
2+

1
2t

)d−1(
1+

1
2t

)d(d−1) 2d2

σ

1
d2 + 8t(1− γ)

× exp

(
−4σ (1− γ)

t2

d2
−σt

)
. (B17)

Recalling that we are still assuming that 2t⩾ d2√
γσ

√
log
(

d4
2γσ

)
we can obtain the very simple

bound

∥∥∥HP (·,σ)−H(t)
P (·,σ)

∥∥∥
2

2
⩽ 2d

e
1+ d2

1
5− 4γ

exp

(
−4σ (1− γ)

t2

d2
−σt

)
(B18)

⩽ 2d exp

(
−4σ (1− γ)

t2

d2
−σt

)
. (B19)

Appendix C. Bounding the dominant term I0

In this appendix, we provide a proof of lemma 8, which bounds the I0 term (91). To do that,
we use the following lemmas 5–7.

Lemma 5. Let GUE0
d denote a GUE ensemble of traceless d× d matrices. Then for any r⩾ 0

(see e.g. [52])

Pr
A∼GUE0

d

(∥A∥∞ ⩽ r) =




d∏

j=1

1
j!


(2π)−

d−1
2 2

d2−1
2

ˆ

Zd−1∩Hd
r

dyexp


−

d∑

j=1

y2j


 ∏

1⩽i<j⩽d

(
yi − yj

)2
.

(C1)

30

117



J. Phys. A: Math. Theor. 58 (2025) 445301 O Słowik et al

Lemma 6. For any r⩾ 2
√
d (see [53])

Pr
A∼GUE0

d

(‖A‖∞ ⩾ r)⩽ 1
2
exp

(
−d

2

(
r√
d
− 2

)2
)
. (C2)

Proof. From [53] we have

Pr
A∼GUE0

d

(
1√
d
‖A‖∞ ⩾ 2+ x

)
⩽ 1

2
exp

(
−dx2

2

)
(C3)

valid for x⩾ 0. The result follows via x= r√
d
− 2.

Lemma 7. For SU(d) we can evaluate (see (67))

C(d,σ)
|W| =

√
d(2d)(d−1)/2+m

∏d
k=1 k!

(2π)d−1+m e
d2−1
24 σ (4πσ)−(d

2−1)/2 , (C4)

where m= d(d− 1)/2.

Proof. From [32] we know that c= 2l/2
√
D∏l

i=1 |αi| , where D is the determinant of the Cartan

matrix. It is known that for Ad−1 root system, D= d and |W|= d!. Moreover, we have that
N= d2 − 1, l= d− 1, m= d(d− 1)/2, |αi|= 1/

√
d. The expression π(δ) can be calculated

from equation (61) as

π (δ) = (2d)−m im
∏

1⩽p<q⩽d

(q− p) = (2d)−m im
d−1∏

k=1

k!. (C5)

Lemma 8. Assume σ ⩽ ϵ̃2

32 . Then

I0 ⩽ I0 :=
1
2
exp

(
− d

16σ
ϵ̃2 +

d2 − 1
24

σ

)
. (C6)

Proof. The I0 can be bounded as

I0 ⩽
C(d,σ)2m

|W|

ˆ

Hd−1
π \Hd−1

ϵ̃

dµ(ϕ)

∣∣∣∣∣
∏

α>0

α(Xϕ)sin

(
α(Xϕ)

2

)∣∣∣∣∣exp
(−1

4σ
‖Xϕ‖2

)
(C7)

⩽C(d,σ)
|W|

ˆ

(Hd−1
ϵ̃ )

c
dµ(ϕ)

(∏

α>0

α(Xϕ)
2

)
exp

(−1
4σ

‖Xϕ‖2
)
. (C8)

Recalling (59) and (57) we can write

‖Xϕ‖2 = 2d




d−1∑

j=1

ϕ2
j +




d−1∑

j=1

ϕj




2

 , (C9)

and it is convenient to introduce the variables yj := ϕj

√
d
2σ and yd :=−∑d−1

j=1 yj. The expres-
sion in (C8) is then equal to
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C(d,σ)
|W|

(
2σ
d

)m+ l
2

(2π)−(d−1) 1√
d

ˆ

Zd−1∩
(
Hd

ϵ̃

√
d
2σ

)c


 ∏

1⩽i<j⩽d

(yi − yj)
2




× exp


−

d∑

j=1

y2j


dµZ (y) (C10)

= e∥δ∥
2σ

(
d∏

k=1

1
k!

)
2

1
2 (d−1)dπ

1
2− d

2

ˆ

Zd−1∩
(
Hd

ϵ̃

√
d
2σ

)c


 ∏

1⩽i<j⩽d

(yi − yj)
2




× exp


−

d∑

j=1

y2j


dµZ (y) , (C11)

where µZ is the Euclidean measure on the hyperplane Zd−1 and a factor of d−
1
2 appears

in (C10) from changing the measure from the Euclidean one on the d− 1 variables y1...yd−1 to
the Euclidean measure intrinsic to the hyperplane. The transition from (C10) to (C11) comes
from the application of lemma 7.

Using the normalisation of the probability to 1, we can apply lemma 5 with r=
√

d
2σ ϵ̃

to (C11) to write

I0 ⩽ e∥δ∥
2σ Pr

A∼GUE0
d

(
‖A‖∞ ⩾ ϵ̃

√
d
2σ

)
. (C12)

Applying lemma 6 with r=
√

d
2σ ϵ̃ to (C12) and assuming

ϵ̃⩾ 2
√
2σ

1−β
, (C13)

for some 0< β < 1 (which is stronger than the assumption in lemma 6)we obtain the following
bound

I0 ⩽
1
2
exp

(
− d

4σ
ϵ̃2 +

4d

2
√
2σ

ϵ̃− 2d+ ‖δ‖2σ
)

(C14)

⩽ 1
2
exp

(
−dβ2

4σ
ϵ̃2 + ‖δ‖2σ

)
(C15)

=
1
2
exp

(
−dβ2

4σ
ϵ̃2 +

d2 − 1
24

σ

)
. (C16)

We set β = 1/2 and for σ ⩽ ϵ̃2

32 (C13) we get

I0 ⩽
1
2
exp

(
− d

16σ
ϵ̃2 +

d2 − 1
24

σ

)
. (C17)
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Appendix D. Bounding the correction term R

In this appendix, we bound the remaining terms R, defined in (92). Our strategy is to bound
R by the volume of the complement of ϵ-ball times the upper bound on the integrand outside
of the ball (lemma 12). We then show that R is indeed a correction to I0 (see (91)), which
relatively decays very fast with growing d (lemma 13). To do so, we employ the following
lemmas 9–11.

Lemma 9. The number of k-vectors in each || · ||∞ norm shell of radius r> 0

Sr,d :=
{
(n1, . . . ,nd) ∈ Zd| max

i
|ni|= r

}
(D1)

can be upper bounded as

|Sr,d|⩽ 2d (2r)d−1
. (D2)

Proof. Consider the corresponding balls

Br,d :=
{
(n1, . . . ,nd) ∈ Zd| max

i
|ni|⩽ r

}
. (D3)

It is easy to see that |Br,d|= (2r+ 1)d. Thus,

|Sr,d|= (2r+ 1)d− (2r− 1)d . (D4)

Using the binomial expansion, we can write

|Sr,d|= 2

⌊ d−1
2 ⌋∑

k=0

(
d

2k+ 1

)
(2r)d−2k−1 ⩽ 2(2r)d−1

⌊ d−1
2 ⌋∑

k=0

(
d

2k+ 1

)
= 2d (2r)d−1

. (D5)

Lemma 10. Let Γ(s,x) denote the upper incomplete Gamma function

Γ(s,x) :=
ˆ ∞

x
ts−1e−tdt. (D6)

Then, assuming s⩾ 1 and x> s− 1

Γ(s,x)⩽ e−xxs

x− s+ 1
. (D7)

Proof.

Γ(s,x) = e−x
ˆ ∞

0
(t+ x)s−1 e−tdt⩽ e−xxs−1

ˆ ∞

0
e
t
x (s−1)−tdt (D8)

This bound can be improved using continued fraction representation.

Lemma 11.
(
d
4

)−d2/8

⩾ 1
∏d

k=1 k!
(D9)

Proof. We first lower bound the value of log(k!) from below. It is clear that a sum

log(k!) = log(1)+ log(2)+ . . .+ log(k) (D10)
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can be lower bounded by (k− j+ 1)log( j) for any 1⩽ j ⩽ k. Picking j = b k2c and using the
monotonicity of x log(x) we obtain

k
2
log

(
k
2

)
⩽ log(k!) . (D11)

Using this bound and repeating the argument for

log

(
d∏

k=1

k!

)
= log(1!)+ log(2!)+ . . .+ log(d!) (D12)

we obtain

d2

8
log

(
d
4

)
⩽ log

(
d∏

k=1

k!

)
. (D13)

The result follows via exponentiation.

Lemma 12.

R⩽R :=
C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−1e−
dπ2

2σ (D14)

for σ ⩽ 2π2d
d2+d−2 .

Proof. Consider a summand for some fixed k 6= 0

C(d,σ)2m

|W|

ˆ

Hd−1
π \Hd−1

ϵ̃

dµ(ϕ)

∣∣∣∣∣
∏

α>0

α(Xϕ +Xk)sin

(
α(Xϕ)

2

)∣∣∣∣∣exp
(
− 1

4σ
‖Xϕ +Xk‖2

)

(D15)

⩽C(d,σ)2m

|W|

ˆ

Hd−1
π \Hd−1

ϵ̃

dµ(ϕ)

∣∣∣∣∣
∏

α>0

α(Xϕ +Xk)

∣∣∣∣∣exp
(−1

4σ
‖Xϕ +Xk‖2

)
. (D16)

We have
∏

α>0

α(Xϕ +Xk) =
∏

1⩽i<j<d

(ϕi −ϕj+ 2π (ki− kj))
∏

1⩽i⩽d−1

(ϕi −ϕd+ 2π (ki− kd)) (D17)

and on the domain of integration we can bound |ϕi −ϕj|⩽ 2π and |ki− kj|⩽ d||k||∞ for
i < j⩽ d. Thus,

∣∣∣∣∣
∏

α>0

α(Xϕ +Xk)

∣∣∣∣∣⩽ (2π + 2πd||k||∞)
m (D18)

= (2π)m (1+ d||k||∞)
m
. (D19)

Let us find lower bounds on the exponents. We have

||Xϕ +Xk||2 = 2d

(
d−1∑

i=1

(ϕi+ 2π ki )
2
+(ϕd+ 2π kd)

2

)
. (D20)

The first term of (D20) is just the square of the Euclidean distance from the origin in coordin-
ate space. This way, figure 1 can be used to understand the summation and bounding process
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better. The second term is non-negative and is a square of the sum of all coordinates. As such,
it has a minimum of zero on the hyperplane crossing the origin. To simplify the reasoning, we
discard the second term altogether and obtain the isotropic bound

||Xϕ +Xk||2 ⩾ 2d(2π ||k||∞ −π)
2 (D21)

= 2dπ2 (2||k||∞ − 1)2 . (D22)

Denoting

Ψ(ϕ,k) :=
ˆ

Hd−1
π \Hd−1

ϵ̃

dµ(ϕ)

∣∣∣∣∣
∏

α>0

α(Xϕ +Xk)sin

(
α(Xϕ)

2

)∣∣∣∣∣exp
(
− 1

4σ
‖Xϕ +Xk‖2

)

(D23)

and assuming σ is small enough, namely

σ ⩽ 2π2d
d2 + d− 2

, (D24)

we can use lemmas 9 and 10 to bound the correction term R as follows6

R⩽ C(d,σ)2m

|W|
∑

k̸=0

Ψ(ϕ,k) (D25)

⩽ C(d,σ)2m

|W|
∑

k̸=0

·(1−Vol(Bϵ))
∞∑

k=1

|Sk,d−1|(2π)m (1+ dk)m exp

(
−dπ2

2σ
(2k− 1)2

)

(D26)

⩽ C(d,σ)2m

|W| · 22(d−2)+1 (2π)m
∞∑

k=1

kd−2 (1+ dk)m exp

(
−dπ2

2σ
(2k− 1)2

)
(D27)

=
C(d,σ)2m

|W| 2d−1 (2π)m
∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
2
(u+ 1)

)m

exp

(
−dπ2

2σ
u2
)

(D28)

=
C(d,σ)2m

|W| 2d−1 (2π)m
(
1+

d
2

)m ∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
d+ 2

u

)m

exp

(
−dπ2

2σ
u2
)

(D29)

⩽ C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−2
∞∑

u=1,uodd

um+d−2 exp

(
−dπ2

2σ
u2
)

(D30)

6 Below we slightly abused the notation by denoting the ||k||∞ as k.
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⩽ C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−2

(
e−

dπ2

2σ +
1
2

ˆ ∞

1
um+d−2 exp

(
−dπ2

2σ
u2
)
du

)

(D31)

=
C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−2


e−

dπ2

2σ +
1

22
(
dπ2

2σ

) m+d−1
2

× Γ

(
m+ d− 1

2
,
dπ2

2σ

)

 (D32)

=
C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−2

(
1+

1
4(A(d,σ)+ 1)

)
e−

dπ2

2σ (D33)

⩽ C(d,σ)2m

|W| 2d−1 · (2π)m
(
1+

d
2

)m

2m+d−1e−
dπ2

2σ , (D34)

where

A(d,σ) :=
dπ2

2σ
− m+ d− 1

2
. (D35)

Let us explain the bounding process in more detail. We applied the bound 1−Vol(Bϵ)⩽ 1
and lemma 9 to bound (D26) by (D27). We substituted u= 2k− 1 to (D27). We bounded
d/(d+ 2)⩽ 1 7 and applied a very crude bound

(1+ u)m+d−2 ⩽ 2m+d−2 · um+d−2 (D36)

to bound (D29) by (D30). The function

f(u) := um+d−1e−
dπ2

2σ u2 (D37)

is increasing from 0 at u= 0 to its local maximum and then is decreasing. The condition (D24)
guarantees that the local maximum of f (u) for u> 0 is smaller or equal to 1, since this requires
a weaker condition

σ ⩽ dπ2

m+ d− 2
. (D38)

This requirement allows us to bound the sum over odd u (D30) in terms of its first term plus
an appropriate integral (D31). We applied a well-known formula

ˆ ∞

a
xde−αx2dx=

Γ
(
d+1
2 ,a2α

)

2α
d+1
2

(D39)

to (D31). Finally, due to (D24), we have that A(d,σ)⩾ 0 which allows us to apply
lemma 10 8 to bound (D32) by (D33) and bound (D33) by (D34).

7 Otherwise, u= 1 needs to be considered separately when bounding binomial by the power of two, since du/(d+
2)< 1. for u= 1.
8 The application of lemma 10 requires A(d,σ)>−1.
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Wewant to compare the upper bound onR from lemma 12 with an upper bound on I0 from
lemma 8.

Lemma 13. Let σ ⩽ 1
dlog(d) . Then,

R⩽ ·ηI0 (D40)

for η ⩾ 1∏d
k=1 k!

and d⩾ 2. In particular, we can take η ⩾ 1/2 to obtain a uniform bound for

all d⩾ 2.

Proof. Clearly, from lemma 8

I0 ⩾
1
2
exp

(
− dπ2

16σ
+
d2 − 1
24

σ

)
, (D41)

so that using lemmas 7 and 12

R
I0

⩽ R(d)
∏d

k=1 k!
e−

7
16

dπ2

σ , (D42)

where

R(d) := 2
7d
2 −d2+4m− 3

2 ·πd− d2

2 +2m− 1
2 d

d
2+m (d+ 2)m . (D43)

Demanding the ratio bound (D42) to be smaller than η yields

σ ⩽ 7dπ2

16
1

log(R)− log
(∏d

k=1 k!
)
− log(η)

. (D44)

Bounding log(R)⩽ 3d2log(d) (for d⩾ 2) we obtain

7π2

48dlog(d)
⩽ 7dπ2

16
1

log(R)
⩽ 7dπ2

16
1

log(R)− log
(∏d

k=1 k!
)
− log(η)

, (D45)

so (D44) is satisfied for

σ ⩽ 1
dlog(d)

(D46)

and η ⩾ 1∏d
k=1 k!

, with the right-hand side decaying very fast with d and upper bounded using

lemma 11.
Note that (D46) is stronger than (D24).

Appendix E. Bounding the L2-norm

In this appendix, we prove lemma 16 and corollary 1, which bound the L2-norm of the trimmed
heat kernel H(t)

P . The L2-norm is divided into two contributions (see (111)) which are bounded
separately in lemmas 14 and 15.

Lemma 14.

I2
0,0 =

C(d,σ)

2m+
l
2

e∥δ∥
2σ (E1)
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Proof. We have

I2
0,0 =

C(d,σ)2

|W|

ˆ

(∏

α>0

α(Xϕ)
2

)
exp

(
− 1

2σ
‖Xϕ‖2

)
dµ(ϕ) , (E2)

which is very similar to the integral analysed previously in lemma 8.We introduce the variables

yj = ϕj

√
d
σ and yd =−∑d−1

j=1 yj and obtain

I2
0,0 =

C(d,σ)2

|W|
(σ
d

)m+ l
2
(2π)−(d−1) 1√

d

ˆ

Z
dµZ (y)


 ∏

1⩽i<j⩽d

(yi − yj)
2


exp


−

∑

j

y2j




(E3)

=
C(d,σ)

2m+
l
2

C(d,σ)
|W|

(
2σ
d

)m+ l
2

(2π)−(d−1) 1√
d

ˆ

Z


 ∏

1⩽i<j⩽d

(yi − yj)
2




× exp


−

∑

j

y2j


dµZ (y) (E4)

=
C(d,σ)

2m+
l
2

e∥δ∥
2σ

(
d∏

k=1

1
k!

)
2

1
2 (d−1)dπ

1
2− d

2

ˆ

Z


 ∏

1⩽i<j⩽d

(yi − yj)
2




× exp


−

∑

j

y2j


dµZ (y) , (E5)

=
C(d,σ)

2m+
l
2

e∥δ∥
2σ Pr

A∼GUE0
k

(‖A‖∞ ⩽∞) (E6)

=
C(d,σ)

2m+
l
2

e∥δ∥
2σ. (E7)

Lemma 15.

R2
∗,0 +R2

0,∗ +R2
∗,∗ ⩽

9
8
d!
22m

R2
(E8)

for σ ⩽ 2π2d
d2+d−2 and d⩾ 2.

Proof. The proof goes along the same lines as in lemma 12, so we direct the reader there for
an explanation.

Denoting

Ψ(ϕ,k, l) :=
ˆ

Hd−1
π

∣∣∣∣∣
∏

α>0

α(Xϕ +Xk)
∏

α>0

α∗ (Xϕ +Xl)

∣∣∣∣∣

× exp

(
− 1

4σ

(
‖Xϕ +Xk‖2 + ‖Xϕ +Xl‖2

))
dµ(ϕ) (E9)

38

125



J. Phys. A: Math. Theor. 58 (2025) 445301 O Słowik et al

we have

R2
∗,∗ =

C(d,σ)2

|W|
∑

k̸=0

∑

l̸=0

Ψ(ϕ,k, l) (E10)

⩽ C(d,σ)2

|W|
∞∑

k=1

∞∑

l=1

|Sk,d−1||Sl,d−1|(2π)2m (1+ dk)m (1+ dl)m

× exp

(
−dπ2

2σ

(
(2k− 1)2 +(2l− 1)2

))
(E11)

⩽ C(d,σ)2

|W| · 24(d−2)+2 (2π)2m
( ∞∑

k=1

kd−2 (1+ dk)m exp

(
−dπ2

2σ
(2k− 1)2

))2

(E12)

=
C(d,σ)2

|W| 22(d−1) (2π)2m




∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
2
(u+ 1)

)m

exp

(
−dπ2

2σ
u2
)


2

(E13)

=
C(d,σ)2

|W| 22(d−1) (2π)2m
(
1+

d
2

)2m



∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
d+ 2

u

)m

× exp

(
−dπ2

2σ
u2
)


2

(E14)

⩽ C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−2)




∞∑

u=1,uodd

um+d−2 exp

(
−dπ2

2σ
u2
)


2

(E15)

⩽ C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−2)


e−

dπ2

2σ +
1
2

ˆ ∞

1
um+d−2

× exp

(
−dπ2

2σ
u2
)
du




2

(E16)

=
C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−2)


e−

dπ2

2σ +
1

22
(
dπ2

2σ

) m+d−1
2

× Γ

(
m+ d− 1

2
,
dπ2

2σ

)



2

(E17)

=
C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−2)

(
1+

1
4(A(d,σ)+ 1)

)2

e−
dπ2

σ

(E18)
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⩽ C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−1)e−
dπ2

σ , (E19)

where A(d,σ) is defined by (D35). Similarly,

R2
∗,0 =

C(d,σ)2

|W|
∑

k ̸=0

Ψ(ϕ,k,0) (E20)

⩽ C(d,σ)2

|W|

∞∑

k=1

|Sk,d−1|(2π)2m (1+ dk)m exp

(
−dπ

2

2σ

(
(2k− 1)2 + 1

))
(E21)

⩽ C(d,σ)2

|W| · 22(d−2)+1 (2π)2m e−
dπ2

2σ

( ∞∑

k=1

kd−2 (1+ dk)m exp

(
−dπ

2

2σ
(2k− 1)2

))
(E22)

=
C(d,σ)2

|W| 2d−1 (2π)2m e−
dπ2

2σ




∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
2
(u+ 1)

)m
exp

(
−dπ

2

2σ
u2
)


(E23)

=
C(d,σ)2

|W| 2d−1 (2π)2m e−
dπ2

2σ

(
1+

d
2

)m



∞∑

u=1,uodd

(1+ u)d−2
(
1+

d
d+ 2

u

)m

× exp

(
−dπ

2

2σ
u2
)
 (E24)

⩽ C(d,σ)2

|W| 2d−1 · (2π)2m e−
dπ2

2σ

(
1+

d
2

)m
2m+d−2




∞∑

u=1,uodd

um+d−2 exp

(
−dπ

2

2σ
u2
)


(E25)

⩽ C(d,σ)2

|W| 2d−1 · (2π)2m e−
dπ2

2σ

(
1+

d
2

)m
2m+d−2

(
e−

dπ2

2σ +
1
2

ˆ ∞

1
um+d−2

× exp

(
−dπ

2

2σ
u2
)
du


 (E26)

=
C(d,σ)2

|W| 2d−1 · (2π)2m e−
dπ2

2σ

(
1+

d
2

)m
2m+d−2


e−

dπ2

2σ +
1

22
(
dπ2

2σ

) m+d−1
2

× Γ

(
m+ d− 1

2
,
dπ2

2σ

)

 (E27)

=
C(d,σ)2

|W| 2d−1 · (2π)2m
(
1+

d
2

)m
2m+d−2

(
1+

1
4(A(d,σ)+ 1)

)
e−

dπ2

σ (E28)

⩽ C(d,σ)2

|W| 2d−1 · (2π)2m
(
1+

d
2

)m
2m+d−1e−

dπ2

σ (E29)
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and R2
0,∗ =R2

0,∗. Thus, for d⩾ 2 we have

R2
∗,0 +R2

0,∗ +R2
∗,∗ ⩽

C(d,σ)2

|W| 22(d−1) · (2π)2m
(
1+

d
2

)2m

22(m+d−1)

× e−
dπ2

σ

(
1+

2

2d−1
(
1+ d

2

)m
2m+d−1

)
(E30)

=
d!
22m

R2

(
1+

2

2d−1
(
1+ d

2

)m
2m+d−1

)
(E31)

⩽ 9
8
d!
22m

R2
. (E32)

Lemma 16 (bound on the L2-norm of the (trimmed) heat kernel).

||H(t)
P (·,σ) ||2 ⩽ dI0,0 + d

√
d!

2m−1
ηI0 (E33)

for σ ⩽ 1
dlog(d) , d⩾ 2 and any η ⩾ 1∏d

k=1 k!
.

Proof. It is easy to see that ‖HP(·,σ)‖2 ⩽ |Γ| · ||HS(·,σ)||2. Thus, from lemmas 14 and 15

‖HP (·,σ)‖2 ⩽ d

√
I2
0,0 +

9
8
d!
22m

R2 ⩽ dI0,0 +
3
√
2

4
d

√
d!

2m
R. (E34)

Since the terms in (111) are non-negative, it is clear that (E34) can be applied to trimmed heat
kernels. The result follows from bounding 3

√
2

4 ⩽ 2 and the application of lemma 13.

Corollary 1.

||H(t)
P (·,σ) ||2 ⩽ c

(
d
σ

) d2−1
4

(E35)

for σ ⩽ 1
dlog(d) and d⩾ 2, where c is some positive group constant. For example, one can take

c= 8 for d⩾ 2 and c= 1 for d⩾ 12.

Proof. Using the proof of lemma 16

‖HP (·,σ)‖2 ⩽ d
3
16 d

2+1
√
d!2−

d2

8 + d
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d−1
4 e
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24 σσ− d2−1
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3
√
2

4
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√
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∏d
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e
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24 σ (E36)
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√
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4
d

√
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e
d2−1
24 σ (E37)

= d

√
d!

2m

(
d
4

)−d2/8

e
d2−1
24 σ

(
3
√
2

4
+ d

5
16 d

2

2d
2/8−d/4π

d−1
4 σ− d2−1
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(E38)

⩽ d
3
16 d

2+1
√
d!2−

d2

8 + d
4+1π

d−1
4 e

d2−1
24

1
dlog(d)σ− d2−1

4 (E39)

for σ ⩽ 1
dlog(d) . The logarithm of the sigma-independent terms can be upper bounded by 1

4 (d
2 −

1)log(d) for d⩾ 8. For d⩾ 2, it can be upper bounded by 1
4 (d

2 − 1)log(d)+ log(19).
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Appendix F. Well-definedness of the Poisson form of the heat kernel at
non-regular points

A complete proof of this is beyond the scope of this manuscript, and perhaps the easiest such
proof is that of Urakawa [32], showing that the two forms of the heat kernel are equivalent.
In this example, we will sketch the idea by demonstrating the phenomenon in the limit as two
elements of the vector ϕ become equal to each other.

Fix all elements of ϕ in equation (66) other than ϕ1 and ϕ2, set these to be a+ b and a− b,
respectively. Assume all of the ϕj are not equal to each other, and none are in the interval
(a− b,a+ b). We will consider the limit as b→ 0. The relevant part of (66) becomes

j(exp(Xϕ))
−1

∑

k∈Zd−1

π (Xϕ +Xk)exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
=
∑

k∈Zd−1

∏

1⩽i<j<d

αij (Xϕ +Xk)

sin
(

αij(Xϕ)
2

)

× exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
(F1)

=
∑

k∈Zd−1

2b+ 2π (k1 − k2)
sin(b)

∏

i,j remaining

αij (Xϕ +Xk)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
, (F2)

where
∏

i,j remaining denotes all of the terms in the product
∏

1⩽i<j⩽d except for the i= 1, j= 2
term which has now been written explicitly. We now split the sum over k into parts for the
cases k1 6= k2 and k1 = k2 To streamline the notation the vector k is now parametrised by the
two elements k1 and k2 and the remaining d− 3 dimensional vector k′

∑

k ′∈Zd−3

∑

k1=k2

2b
sin(b)

∏

i,j remaining

αij (Xϕ +Xk)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ
‖Xϕ +Xk‖2

)

+
∑

k ′∈Zd−3

∑

k1 ̸=k2

2b+ 2π (k1 − k2)
sin(b)

∏

i,j remaining

αij (Xϕ +Xk)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ
‖Xϕ +Xk‖2

)
. (F3)

As can be seen, the singularity in the first term now has the expected form b/sin(b) which
converges to 1 in the limit b→ 0 and can easily be extended to a continuous function. For
k1 6= k2 we need to match the term with k1 = c, k2 = d with the term with k1 = d, k2 = c in
order to obtain the cancellation that we need. Let k̂ be the vector with elements c,d,k ′, and
k̃ be the vector with elements d,c,k ′. With this notation, the second term in equation (F3)
becomes

∑

k ′∈Zd−3

∑

c<d


2b+ 2π (c− d)

sin(b)

∏

i,j remaining

αij
(
Xϕ +Xk̂

)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ

∥∥Xϕ +Xk̂
∥∥2
)

+
2b+ 2π (d− c)

sin(b)

∏

i,j remaining

αij
(
Xϕ +Xk̃

)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ

∥∥Xϕ +Xk̃
∥∥2
)
 , (F4)
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and we can now take the limit b→ 0 to observe that

lim
b→0

∏

i,j remaining

αij
(
Xϕ +Xk̂

)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ

∥∥Xϕ +Xk̂
∥∥2
)

= lim
b→0

∏

i,j remaining

αij
(
Xϕ +Xk̃

)

sin
(

αij(Xϕ)
2

) exp

(
− 1

4σ

∥∥Xϕ +Xk̃
∥∥2
)
. (F5)

Denoting this limit L(k), we obtain

∑

k ′∈Zd−3

∑

c<d

L(k) lim
b→0

(
2b+ 2π (c− d)

sin(b)
+

2b+ 2π (d− c)
sin(b)

)
= 4

∑

k ′∈Zd−3

∑

c<d

L(k) , (F6)

where we have cancelled the (c− d) term with the (d− c) term and used the well-known fact
that limb→0

b
sin(b) converges. An identical phenomenon appears when more than 2 eigenvalues

become equal to each other, but proving this directly is considerably more cumbersome.
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Chapter 5

Paper III: Quantum Circuit

Overhead

5.1 Overview

In the third paper, we aimed to introduce an informative and computable quantity to

evaluate the efficiency of universal gate sets S and use it to gain insight into the efficiency

of some commonly-used single-qubit gate sets.

Although the SKL theorems (e.g. based on the finite-scale spectral gap) can be used to

derive upper bounds on the efficiency of discrete S, such bounds depend on the number of

gates in S. This dependence is also reflected in the optimal value of δ(νS), which scales as

Θ(1/
√
S) (see Section 2.4.1). On the other hand, the volumetric bound on the efficiency

also depends on |S|. As it is intuitive that allowing more gates in S should result in better

efficiency, in practice, each gate requires specific experimental procedures to be reliably

executed. Thus, one can argue that the sets S shouldn’t contain too many elements, and it

is informative to compare the sets S within the gates of the same number of elements |S|.
This is the primary rationale behind the measure of efficiency introduced in this paper,

called the Quantum Circuit Overhead (QCO).

In this paper, we introduce the notion of the QCO, which is the ratio of the lengths of

the shortest circuits built out of gates from S producing an ε-net, i.e. the computational

efficiency ℓ(S, ε), compared to the efficiency of the optimal gate set with |S| elements.

Although the QCO cannot be computed directly, we explain how it can be bounded from

above by the quantity Q given by a simple formula

134
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Q(S, ε) := log(|S|)
log (1/δ(νS , t(ε))

, (5.1)

where t(ε) is the t stemming from the t-design and ε-net correspondence, so that Q(S, ε)
can be calculated by the numerical spectral gap computations at scale t(ε) ≃ d5/2/ε. This

formula arises from upper-bounding the efficiency of S using the SKL theorem, based on

the finite-scale spectral gap and lower-bounding the corresponding efficiency for the best

gate set using a simple volumetric argument. The formula (5.1) can also be understood as

an upper bound on the so-called covering exponent in the case of uniform weights [114].

Moreover, we introduce the related notion of the T -Quantum Circuit Overhead (T -QCO),

where we focus on the occurrence of specific gates, denoted Ti, which are assumed to be

considerably more costly than the remaining gates. This is the case for many fault-tolerant

implementations based on the Clifford+T gate set, where the fault-tolerant implementa-

tion of the T gate (also known as P (π/4) gate) typically dominates the overall cost. We

conveniently choose the remaining “free” gates to form a non-universal group C, which does

not intersect with the set {Ti}. Similarly to QCO, the T -QCO can be upper bounded by

the quantity QT , obtained by applying formula (5.1) to the gate set ST derived from S by

conjugating the gates Ti with the elements from C. This simple conjugation trick directly

relates the computational complexity of the circuits over ST with the T -complexity, i.e.,

the complexity in which we count only the occurrences of operations in {Ti}.

We note that the notion of QCO and T -QCO can be applied in the NISQ setting too. In

particular, the gate set S does not need to be discrete; however, in this case, the notion of

overhead reduces to the numerator ℓ(S, ϵ). For example, one can use the T -QCO to analyse

the T -complexity of some fixed entangling operations while allowing the “free” group C to

contain all the single-qubit unitary channels. Finally, the T -QCO is a good proxy for the

overall cost-effectiveness of gate sets for the architectures, with a clear separation into the

set of costly gates {Ti} and the gates whose cost can be neglected, C. We provide examples

of architectures for which such an assumption is reasonable, including the fault-tolerant

architectures based on 2D surface and color codes.

We perform extensive numerical simulations of the upper bounds Q/QT for the random

ensembles 1 of single-qubit gates, focusing on ensembles obtained by complementing the

Clifford and Hurwitz groups with a Haar-random gate and purely Haar-random gates with

the corresponding number of gates |S|. We distinguish the case of generic Haar-random

gates (of infinite order) and Haar-random gates with fixed finite order (8 for the Clifford
1We use approx. 104 gates sets per ensemble.
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and 2 for the Hurwitz group). We compare the resulting histograms of Q/QT with each

other as well as with certain specific values, corresponding to “special” completions of both

finite groups. Namely, the Super-Golden gates and the P (π/4) gate (in the case of the

Clifford group). We argue that in each case, the value of Q/QT (which depends on ε) can

be lower-bounded in the ε → 0 limit by the optimal value stemming from considerations

involving the Kesten-McKay measure.

Our numerical results show that the histograms of Q/QT enjoy fast stabilization with

growing t (i.e. diminishing ε), allowing the computations to be terminated at the scales t

below the theoretical value t(ε). Moreover, the Super-Golden gate for the Hurwitz group

saturates the optimal value within the inspected range of t. Interestingly, this is not the

case for the Clifford group. Our numerical Monte-Carlo search for the optimal completions

of those groups confirms that the optimal completion for the Hurwitz group is close to the

Super-Golden gate. Similar analysis for the Clifford group found the optimal completion

with QT ≈ 3.7 by the gates of the form UP (3π/4)U †, where U is a Bloch sphere rotation

around any axis (x, y, 0) with |x| ≠ |y| by an angle in [π/8, π/2]. This is close to the

optimal value QT ≈ 3.4. Somewhat intuitively, the worst completions were obtained for

U belonging to the Clifford group. In particular, the completion by the famous P (π/4)

resulted in a very poor value of QT ≈ 52, lying far away from the center of mass of the

QT histogram. In this sense, the famous P (π/4) is a very non-optimal completion of the

single-qubit Clifford group.

Finally, one should acknowledge that we are comparing what we can calculate, namely the

upper bounds Q/QT on the (T )-QCO. This does not guarantee that the actual value of

the T -QCO for the P (π/4) completion is poor. However, we believe that the actual value

of the overhead is sufficiently correlated with the upper bound to make some conclusions.

The second delicate matter is whether a representative of the family of optimal completions

for the Clifford group we found can be implemented fault-tolerantly with a sufficiently low

cost compared to the P (π/4) gate.

5.2 Contribution statement

My contribution to this article was:

1. Writing the paper, except figure generation, Appendix E, and the description of the

optimal completions for the Clifford and Hurwitz group in Section V.
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2. Refinement of the notion of QCO, including the idea of T -QCO.

3. Co-planning of the numerical experiments to be performed.
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We introduce a measure for evaluating the efficiency of finite universal quantum gate sets S, called
the Quantum Circuit Overhead (QCO), and the related notion of T -Quantum Circuit Overhead (T -
QCO). The overhead is based on the comparison between the efficiency of S versus the optimal
efficiency among all gate sets with the same number of gates. We demonstrate the usefulness of
the (T -)QCO by extensive numerical calculations of its upper bounds, providing insight into the
efficiency of various choices of single-qubit S, including Haar-random gate sets and the gate sets
derived from finite subgroups, such as Clifford and Hurwitz groups. In particular, our results suggest
that, in terms of the upper bounds on the T -QCO, the famous T gate is a highly non-optimal choice
for the completion of the Clifford gate set, even among the gates of order 8. We identify the optimal
choices of such completions for both finite subgroups.

I. INTRODUCTION

Quantum circuit [1, 2] is a universal model for quantum
computation in which quantum information is processed
via the application of a series of unitary operations called
quantum logic gates. Similarly to a classical computer,
whose computation can be described using the classical
circuit model, every global quantum operation on a qubit
register can be realized using a universal finite set of el-
ementary operations. A set of such quantum logic gates
is referred to as the universal gate set or, in the context
of quantum hardware, the native gate set.

Contrary to the classical case, the finite length quan-
tum circuits built out of a finite discrete set S of quan-
tum gates can be used to implement arbitrary multi-
qubit (global) unitary operations only approximately, up
to some error ϵ (in a suitable metric). The number of
elementary gates needed to implement a target unitary
operation U with precision ϵ using gates from S is a mea-
sure of the complexity of U with respect to S [1–3]. For
a universal gate set S and any finite ϵ, the complexity
of any U is finite and thus can be upper bounded by
the shortest circuit length, ℓ(S, ϵ), so that any U can be
ϵ-approximated by a quantum circuit built out of S of
length at most ℓ(S, ϵ). This number can be understood

∗ oslowik@cft.edu.pl
† a.sawicki@cft.edu.pl

as an absolute measure of the efficiency of S at the scale
of ϵ-approximations. Since the implementation of quan-
tum gates is always flawed, for reasonably small nonzero
ϵ, this number fully characterizes the efficiency of S.

Quantum compilation [1, 4, 5] is a process whose
main objective is to approximate the target quantum
circuit from the high-level hardware-agnostic represen-
tation used by quantum programmers to the form ex-
pressible by the native gate set executable on a specific
quantum computer. Another task handled by the com-
piler is circuit optimization, which, loosely speaking, in-
volves reducing the resources of quantum circuits, such
as the depth of the circuit or the number of specific gates
used. In the case of the current noisy intermediate-scale
quantum (NISQ) machines, which do not enjoy quan-
tum error correction, the reduction of the circuit depth
and the number of costly gates (such as the noisy en-
tangling gates) is of utmost practical importance [6–8].
On the other hand, in the fault-tolerant regime, due to
the Eastin-Knill theorem [9–11], the number of resource-
costly non-traversal gates often determines the bottle-
neck [12–14]. For example, in the case of Clifford+T
gate sets realized using many topological codes, such as
2D surface or color codes, the focus is usually on the re-
duction of the T-count i.e. the number of non-transversal
T gates (also known as the P (π/4) or π/8 gates 1), which

1 To avoid confusion with the T symbol occurring in T -QCO, we
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leads to an improvement in error rates, runtime and the
number of qubits needed to perform the computations
[15–22]. However, the compilation process is fundamen-
tally limited by the efficiency of the used gate set S.

Aside from the applications in the description of in-
formation processing occurring in quantum computers,
quantum circuits can be used to describe the discrete
unitary dynamics of general discrete quantum systems
[23–25]. Such an approach has been recently proposed
to gain insight into the physics of black hole interiors,
and interesting results regarding the saturation and re-
currence of the complexity of such systems have been
obtained [26, 27]. Such behaviour also depends on the
efficiency of gate sets S used to model the system.

Although it is conjectured that the generic universal
gate sets S have, so called spectral gap, which implies
the optimal asymptotic efficiency ℓ(S, ϵ) = Θ (log(1/ϵ)),
the quantitative methods to bound and compare the ef-
ficiency of various gate sets S are not well-developed.

In this work, we introduce and study the relative mea-
sure of the efficiency of universal gate sets S that we
call the quantum circuit overhead (QCO) and the re-
lated notion of T -Quantum Circuit Overhead (T -QCO).
The notion of overhead is based on the comparison of
the efficiency ℓ(S, ϵ) among the gate sets S having the
same number of elements, where the optimal efficiency
is denoted ℓopt(|S|, ϵ). Crucially, both overheads can
be upper-bounded by essentially calculable quantities,
namely Q and QT , respectively, which can be obtained
from numerical simulations.

To demonstrate the feasibility of our method and its
applications, we provide extensive numerical examples in
which we calculate Q/QT , focusing on the comparison
between the two scenarios for single-qubit gate sets:

1. A Haar-random set S with a fixed number of ele-
ments (of infinite or fixed finite order r),

2. A set S composed of a finite group (such as Clifford
or Hurwitz group) completed with a single Haar-
random gate (of infinite or fixed finite order r),
making the set universal.

In the second scenario, we compare such random ensem-
bles with some “special” choices, e.g. the P (π/4) gate
in the case of the Clifford group, gaining insight into
their efficiency. The inclusion of the finite order cases is
motivated by the fault-tolerance considerations and the
analysis of the so-called Super-Golden Gates [28]. Sur-
prisingly, our results suggest that the P (π/4) gate is a
highly non-optimal choice among all gates of order r = 8
in terms of QT . We also identified the best possible gates
of orders r = 8 and r = 2 in the Clifford and Hurwitz
group cases, respectively.

refer to the T gate as P (π/4) gate.

Although our numerical experiments focus on a single-
qubit case, our framework can be applied in any dimen-
sion, in particular to the multiqubit gates. Moreover,
it can be (in principle) applied to the setting in which
the universal gate set is not discrete, e.g. consists of
parametrized gates. We refrained from performing such
experiments due to their computational costs.

In order to upper bound the overhead, we need to be
able to upper bound ℓ(S, ϵ) and lower bound ℓopt(|S|, ϵ).

II. SOLOVAY-KITAEV LIKE THEOREMS

Lossless unitary quantum operations on n-qubit regis-
ter are described via the unitary channels U(ρ) = UρU†,
which form a group U(d), where d = 2n. This group can
be naturally identified with the projective unitary group
PU(d). We use the following metric on U(d)

d(U,V) := min
φ

||U − eiφV ||∞, (1)

where by || · ||∞ we denote the operator norm and U, V
are the unitary representatives of the channels U and V
respectively (see Appendix A for more details).

The famous Solovay-Kitaev (SK) theorem states that
if S ⊂ U(d) is a finite universal symmetric (i.e. inverse-
closed) set of quantum gates, then ℓ(S, ϵ) = O(logc(1/ϵ)),
where the constant c depends on the proof and typically
c ≈ 3.97 or c = 3 + α, for any α > 0 [1, 2, 29]. The
proofs are constructive, so that an (efficient) algorithm
exists that can find the desired decompositions. As a re-
sult, the SK algorithm serves as the foundation of modern
quantum compilation. Since its introduction, many simi-
lar (constructive and non-constructive) poly-logarithmic
upper bounds ℓ(S, ϵ) = O(Poly(log(1/ϵ)) have been pro-
vided [30–37]. Such theorems often work for groups other
than U(d), e.g., semi-simple compact Lie groups, and use
different assumptions on the gates in S; we refer to them
as Solovay-Kitaev-like (SKL) theorems.

For example, in terms of constructive/algorithmic SKL
theorems, the cubic ℓ(S, ϵ) scaling in the SK algorithm
was recently improved in [30] to logϕ(2) ≈ 1.44, where
ϕ is the golden ratio. The construction assumes that S
is finite and inverse-closed. On the other hand, in [31],
the authors provided the generalization of the SK algo-
rithm working for any finite universal (i.e., not necessar-
ily inverse-closed) sets S, with ℓ(S, ϵ) = O(logγd(1/ϵ))
and γd = Θ(log(d)).

However, it is known that for finite S, all poly-
logarithmic bounds with exponent 1 are asymptotically
tight. The Haar volume2 of an ϵ-ball Bϵ ⊂ U(d) can be
bounded as

(avϵ)
d2−1 ≤ Vol(Bϵ) ≤ (Avϵ)

d2−1, (2)

2 Due to translational invariance of Haar measure and the metric,
the volume of a ball does not depend on its origin.
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with known constants av = 1
9π and Av = 87. These

constants were provided in [36] using methods from [38].
Then, using the simple volume counting argument [1, 32],
one may express the lower bound on ℓ(S, ϵ) as

ℓvol(|S|, ϵ) ≈
d2 − 1

log(|S|) log
(

1

Avϵ

)
, (3)

where Av = 87, so ℓ(S, ϵ) = Ω(log (1/ϵ)).
This lower bound depends only on the number of el-

ements in S. Hence, it can be used to lower bound
ℓopt(|S|, ϵ), which yields

ℓ(S, ϵ) ≥ ℓopt(|S|, ϵ) ≥ lvol(|S|, ϵ) (4)

It is known that such an optimal scaling Θ(log(1/ϵ))
can be obtained for S, having a so-called spectral gap. It
is useful to reformulate this property to the language of
unitary δ-approximate t-designs.

A unitary δ-approximate t-design is a probability mea-
sure ν on U(d) which mimics the averaging properties
of Haar measure µ when applied to balanced polynomi-
als with degree bounded by t, up to some discreptancy
δ(ν, t) := ∥Tν,t − Tµ,t∥∞, where

Tµ,t :=

∫

U(d)

dµ(U)U t,t, Tν,t :=

∫

U(d)

dν(U)U t,t, (5)

are so called t-moment (averaging) operators, U t,t :=
U⊗t ⊗ Ū⊗t, and we require δ(ν, t) < 1 (see Appendix
B for more information). For any gate set S, by νS we
denote the uniform probability measure supported on its
elements.

Note that for symmetric S,

||T ℓ
νS ,t − Tµ,t||∞ = δℓ(νS , t) (6)

quantifies the difference between the averaging over the
circuits of length ℓ and over the Haar measure 3. There-
fore, the smaller δ(νS , t) is, the shorter the circuits needed
to mimic the Haar averaging.

The spectral gap of S is then 1 − δ(νS), where δ(νS)
is the supremum of δ(νS , t) over all scales t, so that the
spectral gap property reads δ(νS) < 1. The quantitative
version of the statement about the efficiency of gate sets
S with a spectral gap is a non-constructive SKL theorem
[32, 33] and it states that if δ(νS) > 0, then for any preci-
sion ϵ every operation U from U(d) can be approximated
by a sequence of gates from S of the length

d2 − 1

log (1/δ(νS))
log

(
2

Avϵ

)
. (7)

Notice that although the scaling is optimal, the pre-factor
may be arbitrarily large. Moreover, in our examples, the

3 For non-symmetric S we have an inequality.

pre-factor is bounded from below via δ(νS) ≥ δopt(S),
where

δopt(S) :=
2
√
|S| − 1

|S| . (8)

[39] (see Appendix C for more detailed explaination). We
say a finite gate set S is efficient if δ(νS) = δopt(S) and
refer to δopt(S) as the optimal value. Note that the op-
timal value depends only on the number of gates |S|.

The study of δ(νS) for generic S is a hard problem
as δ(νS) can not be directly calculated. However, some
properties of δ(νS) are known. For example, it is known
that δ(νS) < 1 for the finite universal sets S consisting of
algebraic elements [40, 41]. This result was later gener-
alized to any compact, simple Lie group [42]. Moreover,
it has been conjectured (and is now commonly believed)
that δ(νS) < 1 for any finite universal S and there are
known examples of efficient finite single-qubit gate sets
S with |S| = p − 1 for p ≡ 1mod 4 [43, 44]. Finally,
some commonly used one-qubit gate sets are known to
be efficient [28, 45–47]. To the best of our knowledge,
the construction of efficient many-qubit gates remains an
open problem.

Fortunately, one can still obtain useful non-
constructive SKL theorems using the knowledge of
δ(νS , t). Such a finite-scale approach was studied in [34–
37] and is sufficient in practice, as it corresponds to study-
ing efficiency at a certain finite precision ϵ. The approach
from [36, 37] utilizes the relation between ϵ-nets and δ-
approximate t-designs.

A subset of channels E from U(d) is an ϵ-net if for ev-
ery channel U from U(d), there exists a channel V from
E , such that d(U,V) ≤ ϵ. In other words, E contains
all the possible channels up to the error ϵ. It is intu-
itively clear that ϵ-nets formed by quantum circuits built
from S and δ-approximate t-designs supported on them
are related. However, the quantitative relations between
them were not known until recently. Such bounds for the
group U(d) were first rigorously studied in [36], where
the authors show 4 that a set is an ϵ-net if it is a support
of a δ-approximate t-design with the parameters obeying
the following scalings

t(ϵ) ≳ d5/2

ϵ
, δ(ϵ) ≲

(
ϵ3/2

d

)d2

(9)

(see [36] for precise formulas). A more recent study im-
proves the second scaling to δ(ϵ) ≲ (ϵ/d1/2)d

2

[37].
From the point of view of nonabelian Fourier analysis

on groups, such reciprocal relation between t and ϵ can be
intuitively understood as the relation between distances
on the group and its corresponding “frequency” space,

4 The result is more general as it does not assume that the measure
is uniform.
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so that smaller ϵ corresponds to faster varying functions.
The quantitative version of such SKL theorem was proved
in [36] and states 5 that for a fixed precision ϵ, every op-
eration U from U(d) can be ϵ-approximated by sequences
of gates from S of the length ℓδ(S, ϵ)

ℓ(S, ϵ) ≤ ℓδ(S, ϵ) ∼
d2 − 1

log (1/δ(νS , t(ϵ)))
log

(
1

ϵ

)
, (10)

where t(ϵ) is the bound of type (9) stemming from the
ϵ-net t-design correspondence. Thus, we can say that
δ(νS , t(ϵ)) upper bounds the efficiency of S on the level
of ϵ-approximations. Moreover, for not too large values
of t and d, the value of δ(νS , t) can be calculated us-
ing supercomputing clusters. Conveniently, contrary to
the Solovay-Kitaev theorem, such SKL theorem can be
applied to arbitrary S, in particular to continuous S.

The distribution of δ(νS , t) for (fully) Haar-random en-
sembles of finite S was studied in [48], with the extensive
numerical analysis suggesting fast stabilization of the dis-
tribution with growing t. Our numerical experiments fur-
ther validate this observation and extend it to all types
of ensembles of gate sets studied in this paper. Hence,
although the bounds (9) provide some theoretical guaran-
tees on the scales t needed to gain insight into the ϵ-scale
efficiency (via (10)), our results suggest that in practice,
it suffices to compute δ(νS , t) for t much smaller than the
bounds t(ϵ).

Although from (10) it seems like δ(νS , t) is a good mea-
sure of the efficiency of finite S, the value of δ(νS , t) is
sensitive to the number of gates |S|. In particular, as the
number of gates |S| goes to infinity, the optimal value
(8), which lower bounds the supremum of δ(νS , t) over
t, goes to 0. Since the implementation of gate sets S
with large |S| is costly in practice, e.g. due to the nec-
essary calibrations of quantum hardware, it makes sense
to compare the gate sets S of fixed |S|. This motivates
us to introduce the notion of the overhead of quantum
circuits.

III. QUANTUM CIRCUIT OVERHEAD

We define the Quantum Circuit Overhead (QCO) of
a finite universal gate set S for ϵ-approximations as the
ratio between the smallest length of circuits over S which
form an ϵ-net, ℓ(S, ϵ), and the optimal length ℓopt(|S|, ϵ)
achievable using gate sets with the same number of gates
|S|. Such a quantity is very hard to calculate in general,
however we can bound it from above by bounding ℓ(S, ϵ)
from above and ℓopt(|S|, ϵ) from below using (3), (4) and
(10) as follows

ℓ(S, ϵ)
ℓopt(|S|, ϵ)

≤ ℓδ(S, ϵ)
ℓvol(|S|, ϵ)

≲ Q(S, ϵ), (11)

5 Original Proposition 2 in [36] has 1 − δ(νS , t) instead of
log (1/δ(νS , t)) due to unnecessary bounding.

where we define the computable upper bound on QCO
as

Q(S, ϵ) := log(|S|)
log (1/δ(νS , t(ϵ))

, (12)

and t(ϵ) is the bound stemming from the ϵ-net t-design
correspondence of type (9). Note that Q(S, ϵ) is a non-
increasing function of ϵ. It is interesting to study the
asymptotic behavior of (12) in the limit of ϵ → 0 (i.e.
t→ ∞), namely we define

Q(S) := lim sup
ϵ→0

Q(S, ϵ). (13)

For efficient gates, we can use (8) to obtain

Qopt(S) :=
log(|S|)

log

(
|S|

2
√

|S|−1

) ≥ 2, (14)

where Qopt(S) ⪆ 2 for large |S|. We refer to Qopt(S)
as the optimal value, since it is a lower bound on Q(S)
attainable on the efficient gate sets S.

Notably, our definition of QCO still makes sense for
the infinite S, however then it simplifies to the efficiency
ℓ(S, ϵ) due to ℓopt(|S|, ϵ)) = 1 being realized trivially.

The notion of QCO is suitable for scenarios in which
one is interested in the pure computational efficiency of
the gate sets or, in the context of quantum computers, the
total gate count of the circuits (see Example 1). Practical
architectures in which such a scenario may be relevant
include the homogeneous-cost models based on anyons
(see Table I).

Example 1 (single-qubit gate count) Consider a
single-qubit NISQ architecture with a gate set S, consist-
ing of gates with similar fidelities. Then the QCO of S,
which boils down to the analysis of the gate count/circuit
depth, is a sensible measure of the efficiency of S.

IV. T -QUANTUM CIRCUIT OVERHEAD

In many architectures, it is reasonable to count the
occurrence of the specific gates, which are considered to
be particularly costly, while discarding the occurrences
of remaining operations, regarded as relatively “free” (see
Examples 2 and 3). This motivates us to introduce the
following definition of the T -Quantum Circuit Overhead
(T -QCO).

Let C be a group of quantum operations in U(d) and
suppose our chosen set of gates is of the form

S = C ∪ {T1, . . . Tn} , (15)

where Ti ̸∈ C are additional operations which make S
universal. We consider the operations in C as free re-
sources and want to focus on the occurrences of the costly
operations, denoted as Ti. Thus, we are interested in the
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T -complexities of operations U in U(d), i.e. the small-
est number of Ti gates needed to ϵ-approximate U using
operations from S. Hence, in analogy to the definition
of QCO, we define the T -Quantum Circuit Overhead (T -
QCO) of a finite gate set S for ϵ-approximations as the
ratio between the smallest T -count of the circuits over
S which form an ϵ-net and the optimal T -count over all
gate sets of the form (15), with the same number of gates.

To bound the T -QCO of the set S, we consider the
following derived set of operations

ST :=
⋃

i∈[n]

{
cTic

†, c ∈ C
}
, (16)

which allows us to upper bound the T -QCO by

QT (S, ϵ) := Q(ST , ϵ) (17)

(see Appendix D for a detailed explanation).
Of course, in practice, the physical gate set does not

need to include the entire group of free operations C, but
rather some chosen generators. In such a case, the group
C should be understood as the group generated by the
“free” gates. Such a procedure is justified as long as the
elements of C can be considered sufficiently cheap.

Similarly to QCO, the definition of T -QCO is also ap-
plicable to infinite gate sets.

Finally, the T -QCO is well-defined for reasonably small
ϵ, so that the denominator is non-zero.

Example 2 (CNOT-count flavour) Consider a
NISQ n-qubit architecture with the parametrized 2-qubit
entangling gates Enti,i+1(ϕ) with similar fidelities,
acting on qubits i and i+1 for 1 ≤ i ≤ n− 1. We pick S
as in (15) where C = U(2)⊗n 6 and Ti = Enti,i+1(ϕ) ,
for 1 ≤ i ≤ n− 1. Then the T -QCO of S is the sensible
measure of efficiency wrt to the choice of ϕ.

Example 3 (T-count flavour) Consider a fault-
tolerant architecture with n (logical) qubits, such that the
Clifford gates are low-cost compared to the parametrized
family of non-Clifford phase gates P (ϕ), which can be
implemented with similar cost. We pick S as in (15),
where C = Cn is the n-qubit Clifford group and Ti, for
1 ≤ i ≤ n, is the non-Clifford P (ϕ) gate acting on the
i-th qubit. Then the T -QCO of S is the sensible measure
of efficiency wrt to the choice of ϕ.

Contrary to the QCO, the notion of T -QCO is most
suitable for scenarios in which the gate set can be strongly
separated into a group of gates with negligible cost and
a group with (similar) high cost. For example, in NISQ
architectures, the T -QCO can be applied with Ti being
the chosen entangling gates (see Example 2). For fault-
tolerant architectures, see Table I and Example 3.

6 In this example we used U(2) as the set of single qubit operations
to integrate them out and focus on the impact of the entangling
gates. However, any single qubit gate set can be used.

V. NUMERICAL EXAMPLES

We provide the numerical examples focusing on the
calculation of the upper bounds on QCO and T -QCO,
given by Q (12) and QT (17), respectively (see Appendix
E for more details about the methods used in numeri-
cal experiments). The calculations were performed on a
supercomputing cluster.

We consider two types of one-qubit finite universal gate
sets:

1. Haar-random gate sets with n elements of (finite or
infinite) order r, denoted Sµ,n,r,

2. gate sets derived from a finite subgroup C ⊂ U(2):

(a) completed with a fixed gate T , denoted CT ,
(b) completed with a single Haar-random gate of

(infinite or fixed finite) order r, denoted Cµ,r,

following the setting (15).

We analyze two choices of one-qubit C - the Clifford
group C and the Hurwitz group H. For each C, we con-
struct a random ensemble of ≈ 104 derived universal gate
sets of type Cµ,r, where r is ∞ or equal to either 8 or 2 for
C and H, respectively. This way, we obtain histograms
representing the probability density of QT for a fixed t.
We increase the value of t until the histograms stabilize
and mark the corresponding optimal values of QT (see
Fig. 1 and Fig. 2 for Cµ,r ensembles and Fig. 4 and Fig. 5
for Hµ,r ensembles). The optimal value does not depend
on the scale t and lower bounds the histograms in t→ ∞
limit.

Moreover, we compare such histograms with analogous
histograms ofQ for the same-size ensembles of type Sµ,n,r

containing the corresponding number of gates n = |C|
(see Fig. 3 for Clifford group and Fig. 6 for Hurwitz
group) and with the values of QT for gate sets of type
CT with “special” choices of T .

The comparison with the purely random ensembles
Sµ,n,r is relevant from the theoretical point of view, as
such gate sets are generic and the distribution of δ(νS , t)
can be studied using Random Matrix models [58].

Finally, we identify the choices of T giving the best
values of QT , among all gates of order r = 8 (for the
Clifford group) and r = 2 (for the Hurwitz group). We
achieve this by the Monte Carlo search over the relevant
random completions Cµ,r.

Additionally, we check the tightness of the bound (8)
in the case of ensembles of type Cµ,r with finite r by cal-
culating the distributions of singular values of the corre-
sponding t-moment operator (see Appendix C and Fig. 7
and Fig. 8 for more details).

A. Clifford group

The one-qubit Clifford subgroup C ⊂ U(2) has 24 ele-
ments and is generated by
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TABLE I. Examples of fault-tolerant architectures to which (T -)QCO can be applied as a reasonable proxy for an overall
efficiency.

Category Architecture Cheap operations (C) Costly operations ({Ti}) Cost split Metric
NISQ NISQ devices (gen-

eral) [7]
Local single-qubit group
on each qubit (Eu-
ler/ZXZ primitives
treated as free)

Entangling gates (e.g.
CNOT/CZ/MS/Rydberg)

High; 2-qubit gates
dominate time/error

T-QCO

Fault-tolerant
(Code-based)

2D surface code [49,
50]

Clifford subgroup via
lattice surgery / Pauli-
based computation

T via magic state distilla-
tion (factory limited)

Very high; T-state
throughput bottleneck

T-QCO
2D color code [51,
52]

Transversal Clifford sub-
group (baseline codes)

T via magic state distilla-
tion or gauge-fixing / code-
switching

Very high; T prepara-
tion dominates

3D surface code [53] Subgroup generated by
Cliffords and transver-
sal CCZ (treat CCZ as
cheap)

T via magic state
distillation

High; cheap CCZ
leaves T as the main
costly gate

3D color code
(baseline) [52, 54]

Transversal Clifford +
CCZ subgroup (cheap);
some boundary/gauge
variants enable transver-
sal T

T via injection/gauge-
fixing (when not made
transversal)

High; clear
cheap/costly split
in baseline setting

Triorthogonal codes
/ CSS-T (factories)
[55]

Clifford subgroup inside
distillation circuits

Production/consumption
of high-fidelity T/CCZ
resource states

Very high within fac-
tory; resource states
dominate

Fault-tolerant
(Anyonic)

Ising / Majorana
anyons [56, 57]

Clifford subgroup by
braiding

T via magic state injection
(or equivalent)

High; injections
dominate

T-QCO

Fibonacci anyons
(braiding-
universal) [56]

No robust cheap sub-
group; all gates from
braids

All gates via braiding (cost
by compiled braid length)

Homogeneous cost;
no cheap/costly split

QCO

C =

〈(
1 0
0 i

)
,

(
1 1
−1 1

)〉
, (18)

up to normalization. The special choices of T gates in-
clude the P (π/4) gate (of order r = 8) and the so-called
Super-Golden gate [59] (of order r = 2), denoted T24

P (π/4) =

(
1 0
0 1 + i

)
, T24 =

(
−1−

√
2 2−

√
2 + i

2−
√
2− i 1 +

√
2

)
,

(19)
up to normalization.

The value for the gate set CP (π/4) is way outside the
range of Fig. 1 and Fig. 2, with QT ≈ 52 for t = 500.

For the Cµ,8 ensemble, the additional Haar-random
gate of order r = 8 has two possible forms

U†P (π/4)U and U†P (3π/4)U, (20)

where U is a Haar-random gate. These two cases cor-
respond to the rotation on the Bloch sphere by π/4
and 3π/4 around a random axis. The best T -QCO
upper bound found in our numerical computations is
QT ≈ 3.7 for t = 500, which is close to the optimal value
Qopt ≈ 3.4. It can be attained for the second form from
(20) with U being a Bloch sphere rotation around any
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0.4 super-golden
optimal
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y 
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t=
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0

FIG. 1. The histograms of QT probability density for an
ensemble of type Cµ,∞ with increasing t. The dashed line
denotes the corresponding optimal value. The solid line cor-
responds to a Super-Golden gate set CT24 .

axis (x, y, 0) with |x| ̸= |y| by an angle in [π/8, π/2]. In-
terestingly, the worst T -QCO upper bound with QT ≈ 52
for t = 500 was achieved when U was an element of the
Clifford group.
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FIG. 2. The histograms of QT probability density for an en-
semble of type Cµ,8. The solid line denotes the corresponding
optimal value.
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FIG. 3. The histograms of QT probability density for en-
sembles of type Cµ,r (bottom) vs the histogram of Q for the
corresponding ensembles of type Sµ,24,r (top) for t = 500.
The solid line denotes the corresponding optimal value. Note
that the scales on the Y-axis differ.

B. Hurwitz group

The one-qubit Hurwitz subgroup H ⊂ U(2) has 12
elements and is generated by

H =

〈(
i 0
0 −i

)
,

(
1 1
i −i

)〉
, (21)

up to normalization. The special choice of T gate is the
Super-Golden gate (of order r = 2), denoted T12

T12 =

(
3 1− i

1 + i −3

)
, (22)

up to normalization.
For the Hµ,2 ensemble, the additional Haar-random gate
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FIG. 4. The histograms of QT probability density for an
ensemble of type Hµ,∞ with increasing t. The dashed line
denotes the corresponding optimal value. The solid line cor-
responds to a Super-Golden gate set HT12 .
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FIG. 5. The histograms of QT probability density for an en-
semble of type Hµ,2 with increasing t. The dashed line denotes
the corresponding optimal value. The solid line corresponds
to a Super-Golden gate set HT12 .

of order r = 2 is a Bloch sphere rotation by π around
a random axis. According to our numerical results, the
optimal T -QCO bound Qopt ≈ 4 is attained for a Super-
Golden gate set HT12

, where T12 is a rotation around
(1, 1,

√
9)/

√
11. Computations for random gates also

showed that the best QT ≈ 4.1 for t = 500 is obtained
for gates close to T12.
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VI. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we introduce the new measure of ef-
ficiency of universal sets of quantum gates, called the
Quantum Circuit Overhead (QCO) and the related no-
tion of T -Quantum Circuit Overhead (T -QCO). Our
measure quantifies the overhead of a fixed gate set’s ef-
ficiency compared to the optimal gate set with the same
number of gates, at a given approximation scale. The
concept of overhead can be applied to various NISQ and
fault-tolerant architectures as a reasonable first approx-
imation of the real cost-effectiveness of gate sets. We
provide formulas for Q and QT , which are the upper
bounds on QCO and T -QCO, respectively, as well as
their asymptotically optimal values (lower bounds) for all
settings considered in the numerical examples. We per-
formed extensive numerical calculations on a supercom-
puting cluster to study various random ensembles of uni-
versal single-qubit gate sets, particularly those derived
as completions of a Clifford and Hurwitz group with a
Haar-random gate of infinite or finite order r. In our ex-
periments, we compare various gate sets using the Q/QT

quantity.
Our numerical examples demonstrate that computing

upper bounds on (T -)QCO is tractable on existing super-
computing infrastructure, at least for single-qubit gate
sets, with the Q/QT distributions stabilizing rapidly.
Generic gate sets Sµ,n,r consistently scored better in
Q/QT than the structured ones. Interestingly, in the
case of the Clifford group, the gate sets completed with
the P (π/4) gate turned out to perform significantly worse

than the generic completions in terms of QT . Moreover,
our analysis shows that the P (π/4) gate is a highly non-
optimal choice among the gates of order r = 8 in this
metric. In this case, we identified the best-performing
gates of the same order as the family of the conjugates
of P (3π/4) by the Bloch sphere rotation around any
axis (x, y, 0) with |x| ≠ |y| by an angle in [π/8, π/2].
Finally, our results suggest that so-called single-qubit
Super-Golden-Gates based on the Hurwitz group enjoy
the optimal asymptotic value of QT . Interestingly, it
does not seem to be the case for the Clifford group con-
struction.

Clearly, one should be cautious about drawing con-
clusions about the overhead from the comparison of the
upper bounds Q/QT . Our preliminary numerical analy-
sis of ℓ(S, ϵ) for Haar-random gate sets with three gates
indicates that a small Q is related to small overhead. Al-
though we have not observed the opposite, i.e. it seems
like large Q does not imply significant overhead, we sus-
pect that such behaviour should be apparent as ϵ → 0.
Indeed, we have observed the separation of the values of
δ(νS , ϵ) from 1 for the gate sets with lowest ℓ(S, ϵ) and
the smallest value of ϵ we were able to use, ϵ = 0.1.

Moreover, the optimisation of gates based on T -QCO is
relevant in the quantum computing context only if com-
pared gate sets can be implemented with similar cost.

In terms of future directions, it would be interesting to
perform numerical experiments for gate sets with larger
locality, particularly those containing entangling gates.
Such an approach may help identify good entangling
gates within some parametrized families. Additionally,
one would like to find and study fault-tolerant architec-
tures that admit efficient implementations of the conju-
gate of P (3π/4), as found in the paper, to enhance the
practical importance of this result. Finally, although the
explicit calculation of (T -)QCO is, in general, intractable,
it may be worthwhile to extend our preliminary analysis
further to study smaller values of ϵ.
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Appendix A: Unitary channels and the projective
group

The unitary channel U acting on a Hilbert space
H ∼= Cd is the CPTP map defined via U(ρ) = UρU†,
for any quantum state ρ : H → H and some fixed
unitary representative U from U(d). Since two uni-
taries U, V which differ by a phase U = V eiϕ define
the same unitary channel, the group of all unitary chan-
nels U(d) can be identified with the projective unitary
group PU(d) = U(d)/U(1), where the canonical projec-
tion π : U(d) → U(d) is mapping the unitaries to the
corresponding unitary channels U 7→ U.

In practice, one is often interested in the closeness
of different unitary channels. Various norms (and in-
duced metrics) can be used to quantify it. A promi-
nent example is the diamond norm || · ||⋄ and the in-
duced metric d⋄ (U,V) = ||U − V||⋄. The diamond
metric has a clear operational meaning in terms of the
statistical distinguishability of two channels. The rela-
tionship between d⋄ and our metric d (1) is given by
d(U,V) ≤ d⋄(U,V) ≤ 2 d(U,V) [36].

Appendix B: Approximate t-designs and ϵ-nets

The balanced polynomials of degree t are homogeneous
polynomials with degree t in using matrix elements ui,j
and degree t in ui,j . Notice that such polynomials are
well-defined on U(d) as they are not sensitive to the
global phase factors. We denote the space of all such
polynomials of degree t by Ht. The space Ht is spanned
by the entries of U t,t := U⊗t ⊗ Ū⊗t thus in general, each
polynomial ft(U) ∈ Ht can be expressed as

ft(U) = Tr
(
A
(
U⊗t ⊗ Ū⊗t

))

for some matrix A. Let µ be the normalized Haar mea-
sure on U(d), µ(U(d)) = 1. The Haar measure provides
us with a notion of a uniform density on U(d).

A t-design is a probability measure ν on U(d) which
yields the same averaging outcome as the Haar measure
average for all polynomials ft(U) ∈ Ht∫

U(d)

dν(U)ft(U) =

∫

U(d)

dµ(U)ft(U). (B1)
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The case in which the measure ν is supported on a
finite number of points {νi, Ui} is of utmost practical
importance. In such a case, the left-hand side integral of
(B1) can be written as a sum

∑

Ui∈S
νift(Ui) =

∫

U(d)

dµ(U)ft(U), (B2)

where S denotes a finite set supporting the measure ν.
We are mostly interested in a case of uniform t-designs,

i.e., the ones for which all νi = 1/|S|, and denote such
a measure as νS . Hence, by S ⊂ U(d) being a t-design,
we understand that the corresponding uniform discrete
probability measure νS is a t-design. Using the t-moment
operators, the deviation from ν being a t-design (B1)
can be measured as the difference in the operator norm
δ(ν, t) (see (5) and the formula above). This way, we can
consider the cases where the condition (B1) is satisfied
only approximately, which leads to the definition of a δ-
approximate t-design. We say that ν is a δ-approximate
t-design if δ(ν, t) < 1. In particular, the value δ(ν, t) = 0
corresponds to (an ideal) t-design.

Appendix C: Optimal spectral gap and
Kesten-McKay measure

Below, we discuss the applicability of the optimal value
(8) and the related measure in various settings considered
in this paper.

For a symmetric (i.e., inverse-closed) gate set S, the
t-moment operator (5) is a bounded self-adjoint operator
with a well-defined spectrum. Its spectral measure σS,t

is compactly supported and hence, determined by its mo-
ments σ(m)

S,t . The asymptotic behavior of such moments,

i.e., the limit limt→∞ σ
(m)
S,t is determined by the number

of length m spellings of identity and was provided in [39]
in the case of S generating a free group. Moreover, it
was shown in [39], that in this case there exists a mea-
sure σS , such that σ(m)

S = limt→∞ σ
(m)
S,t , known as the

Kesten-McKay or Plancherel measure

dσS(x) =
|S|
√
δ2opt(S)− x2

2π(1− x2)
1[−δopt(S), δopt(S)]dx, (C1)

where δopt(S) is the optimal value (8). This implies that
σS,t converge weakly to σS in the limit t→ ∞ (see [58] for
details). Furthermore, analogous results can be obtained
for any (i.e., not necessarily inverse-closed) finite S, for
which S∪S−1 generates a free group [58]. However, since
in this setting the t-moment operator does not need to
be self-adjoint, by the Kesten-McKay measure we under-
stand the spectral measure of

√
TνS ,tT ∗

νS ,t as t → ∞, or
equivalently the measure describing the singular values
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FIG. 7. The probability density of the singular values of the
t-moment operator for a derived ensemble of type Cµ,8 with ≈
20 gate sets for t = 500. The dotted line denotes the Kesten-
McKay measure and the solid line denotes the corresponding
optimal value.

of TνS ,t as t→ ∞, given by

|S|
√
δ2opt(S)− x2

π(1− x2)
1[0, δopt(S)]dx. (C2)

Thus, such a Kesten-McKay measure can be applied
in the setting of Haar random gate sets S, since then
S ∪ S−1 generates a free group with probability 1.

Crucially, the Kesten-McKay measure can also be ap-
plied in the setting of T -QCO (15), when the additional
gate T is of infinite order (e.g. Haar random). This
follows from the fact that in this case the derived gate
set construction (16), which is used to upper bound the
T -QCO (17), does not change the number of spellings
of identity, compared to the free group case. For a
Haar-random gate T of fixed finite order, the number of
spellings of identity is increased, which implies that the
(even) spectral measure moments are larger than the mo-
ments of the Kesten-McKay measure. As a consequence,
the support of the Kesten-McKay measure is contained in
the support of such a spectral measure and the bound (8)
can be applied. However, it was not clear how tight such
a bound is with respect to the actual cut-off of the bulk
spectrum. To verify it, we checked the distribution of the
singular values of t-moments for (derived) ensembles of
type Cµ,r with finite r. The resulting distributions are
close to the Kesten-McKay distribution, with the sup-
port of the latter contained in that of the former quite
tightly (see Fig. 7 and Fig. 8). Thus, the optimal value
(8) is relevant in all cases considered in this paper.

Appendix D: T -Quantum Circuit Overhead

The useful property of a derived set ST (16) is that
the T -complexity of a fixed unitary with respect to
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FIG. 8. The probability density of the singular values of the
t-moment operator for a derived ensemble of type Hµ,2 with ≈
20 gate sets for t = 500. The dotted line denotes the Kesten-
McKay measure and the solid line denotes the corresponding
optimal value.

ST is equal to its complexity (for the same precision).
This allows us to lower bound the optimal T -complexity
by ℓopt(|ST |, ϵ). Moreover, for every unitary U con-
structible using S with a non-zero T -complexity for pre-
cision ϵ, there exists a unitary UT constructible using
ST with the same T -complexity for the same precision
(and vice-versa). Indeed, each such unitary U can be
ϵ-approximated by the reduced word over S of the form

U ≈ϵ ci1w1ci2w2 . . . cipwpcip+1 , (D1)

where each wj is a word in T1, . . . , Tn, the elements cij
belong to C and ci1 and cip+1

may be missing. For sim-
plicity, let us assume we have only one costly gate T ,
the element ci1 is present and cip+1

is missing, so that
wj = T kj for some integer kj and the total T -count∑p

i=1 ki is equal to said T -complexity 7. Choosing the
elements of ST as gj := djTd

†
j , where dj := ci1ci2 . . . cij ,

we have

U ≈ϵ g
k1
1 gk2

2 . . . gkp
p dp+1 (D2)

and UT = Ud†p+1 is ϵ-approximated by the word over ST

of the form gk1
1 gk2

2 . . . g
kp
p . It is easy to see that such a

form needs to have the lowest possible T -count, so that U
and UT have the same T -complexity. Indeed, otherwise
U could be ϵ-approximated by a word with the T -count
smaller than that of (D1). Similarly, for other cases and
vice versa. Hence, the supremum of T -complexities over
all operations U in U(d) is the same for S and ST and
equals ℓ(ST , ϵ). Thus, the T -QCO of a finite S can be

bounded as

ℓ(ST , ϵ)

ℓopt(|ST |, ϵ)
≲ Q(ST , ϵ), (D3)

where

Q(ST , ϵ) =
log(|C|)

log (1/δ(νST
, t(ϵ)))

, (D4)

and t(ϵ) is the bound stemming from the ϵ-net t-design
correspondence of type (9).

Appendix E: Numerical experiments - methods

In order to obtain the value of Q(S, ϵ), one needs to
computate the norm δ(νS , t) = ∥TνS ,t − Tµ,t∥∞ (see (5)
and equation above). In a naive approach, one could
compute U t,t = U⊗t⊗ Ū⊗t for each U in S, but perform-
ing such calculation is exponentialy hard in t.
This problem can be avoided by noticing that the map-
ping U 7→ U t,t is a representation of the SU(d) group
onto C2dt. Every representation of SU(d) can be ex-
pressed as a block diagonal matrix, where each block is
some irreducible representation (irrep) of SU(d) [61]. In
our case, it reads

U t,t =




πλ1
(U) 0 · · · 0
0 πλ2

(U) · · · 0
...

...
. . .

...
0 0 · · · πλk

(U)


 , (E1)

where πλ is an irrep with label λ (more on that later). It
follows that the t-moment operators are block diagonal as
well, and their blocks are given by Tν,λ =

∫
G
dν(U)πλ(U).

Furthermore, by the orthogonality of irreps [61], the Haar
measure blocks Tµ,λ are equal to zero for all irreps πλ,
except the trivial one π0(U) = 1. In summary, the value
of δ(νS , t) can be computed as

max
λ

∥TνS ,λ − Tµ,λ∥∞ = max
λ̸=0

∥TνS ,λ∥∞, (E2)

where maximization is performed over all unique irreps
appearing in the decomposition of U t,t. In the simplest
case, d = 2, these are all SU(2) representations with
integer spin quantum number s ≤ t. For d ≥ 2, the irreps
are labeled by the d− 1-dimensional generalizations of a
spin number (e.g. the Young tableaus), and thus, more
complicated conditions are required [48, 58, 61, 62]. In
either case, the dimensions of πλ are O(td(d−1)/2) and
thus the norms ∥TνS ,λ∥∞ can be computed efficiently.

7 The general case can be proved analogously.
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Chapter 6

Summary and future directions

6.1 Summary

In this thesis, we focused on one of the most fundamental aspects in the quantum computing

theory - the efficiency of various discrete universal quantum gate sets. Our strategy focused

on the Solovay-Kitaev-like (SKL) theorems based on the spectral gap of averaging operators

on compact groups, especially the finite-scale spectral gaps related to unitary t-designs and

their relation with ϵ-nets in the projective unitary group. Crucially, we were interested in

obtaining such SKL theorems using formulas with explicit or effective constants (i.e. with

all the constants known or at least computable in principle). We identified three related

aspects of such considerations, each addressed in a separate paper.

The first aspect was the derivation of the poly-logarithmic bound on the spectral gap

decay. Such a bound allows one to use the computed value of the gap at a given scale t0 to

bound the gap for t ≥ t0. As a consequence, it can be used in conjunction with the SKL

theorems based on the finite-scale spectral gap to obtain an SKL theorem with explicit

ϵ-dependence at the cost of the worse constant c in logc(1/ϵ). This aspect was addressed

in Paper I, where we provided a simple proof for the explicit and essentially calculable

poly-logarithmic lower bounds on the finite-scale spectral gap decay for gate sets satisfying

a specific condition (satisfied by generic gate sets). This result was supplemented by the

numerical simulations for a single qubit. Additionally, we formulated an alternative proof

for the upper bound on the efficiency of finite gate sets with the spectral gap.

The second aspect was the derivation of the SKL theorems based on the finite-scale spec-

tral gaps. This aspect was addressed in Paper II, where we introduced and characterized
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a new type of polynomial approximate identity on the projective unitary group via trim-

ming the fundamental solution to the natural and well-known object - a heat kernel. We

then proved that such a natural approximate identity can be used to improve the known

correspondence between unitary δ-approximate t-designs and ϵ-nets in the space of unitary

quantum channels. Namely, we achieved better scaling of δ while maintaining the scaling

of t essentially unchanged. We then explained how such a correspondence can be used in

areas such as the inverse-free SKL theorems, quantum complexity, black hole physics, and

Quantum Circuit Overhead. We also suggested the use of the trimmed heat kernels in the

derivation of poly-logarithmic bounds on the spectral gap decay.

The third and final aspect was to find a proper way to compare the efficiency of various

gate sets. Although the SKL theorems based on the finite-scale spectral gap seem to be a

reasonable way to bound the efficiency of various gate sets, their dependence on the num-

ber of elementary gates used makes the comparison more complicated. This aspect was

addressed in Paper III, where we introduced a notion of Quantum Circuit Overhead (QCO)

and a related notion of T -Quantum Circuit Overhead (T -QCO). We demonstrated that the

(T -)QCO can be upper bounded via a quantity Q/QT given by a simple formula involving

the spectral gap at a scale t(ϵ) stemming from the δ-approximate t-designs and ϵ-nets cor-

respondence. We discussed the applicability of both overheads as reasonable proxies for the

overall cost-effectiveness of various gate sets in different quantum computing architectures,

including NISQ and fault-tolerant. To demonstrate that (T -)QCO can be calculated in

practice, we performed extensive numerical simulations for various ensembles of universal

finite gate-sets, including Haar-random ones and the random completions of single-qubit

Clifford and Hurwitz groups. The most interesting conclusion from such experiments is

that, regarding the upper bound QT on the T -QCO, the famous T gate (also known as

P (π/4) gate) is a fairly non-optimal choice for completing the Clifford group gate set. We

also found the optimal completions for the Clifford and Hurwitz groups, in terms of Q/QT

bounds. Interestingly, such bounds are close to optimal for the Super Golden Gates in the

case of the Hurwitz group but not for the Clifford group. Our analysis shows that the

optimal completions for the Clifford group are given by the gates of the form UP (3π/4)U †,

where U is a Bloch sphere rotation around any axis (x, y, 0) with |x| ̸= |y| by an angle in

[π/8, π/2].
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6.2 Future directions

Below, we provide a list of future research problems, either a simple continuation of our

work or a (possibly challenging) open problem.

1. (Paper II) Can our refined unitary δ-approximate t-designs and ϵ-nets correspondence

be used to improve the existing results concerning the saturation and recurrence of

the complexity of black holes? If yes, then to what extent?

2. (Paper II) Are our scaling of t and δ optimal? If not, then what is the optimal

scaling? (see also II b. and II c. from Section 2.4.5)

3. (Paper III) Perform the numerical experiments for (T -)QCO in slightly higher di-

mensions, e.g. for the entangling gates (see also III c. from Section 2.4.5).

4. (Paper III) Assess the tightness of our Q/QT formula by finding the true value of

(T -)QCO numerically for specific gate sets. What is the correlation between the true

value and Q/QT ?

5. (Paper III) Can a representative from the family of optimal (in QT ) completions of

the one-qubit Clifford group be realized fault-tolerantly with a cost comparable to

that of the P (π/4) gate?

6. (Paper I and II) Derive the explicit poly-logarithmic bounds on the finite-scale spec-

tral gap decay with the logarithm exponent at least as good as Varju’s. Can the

trimmed heat kernel construction or the Fejér kernel be useful to obtain such bounds?

(see also I b. and I c. from Section 2.4.5)

7. Prove that any universal discrete gate set is asymptotically optimally efficient, i.e.

ℓ = Θ(log(1/ϵ)). For example, one may prove that each such gate set has a spectral

gap.

8. Assuming that a universal gate set is asymptotically optimally efficient ℓ = Θ(log(1/ϵ)),

can we find the explicit formula?

In terms of the future outlook, the ultimate goal for the unitary ϵ-nets and t-designs

correspondence would be to prove the best possible scaling of t and δ, e.g., in the best-case

scenario, the scaling of t equal to the lower bound ≃ d2/ϵ. In terms of scaling δ, any

reasonable upper bound would represent significant progress.
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In the case of the optimality of quantum gates, the (close to) ultimate goal would be

to prove what is already widely accepted in the community. However, the proof is still

lacking, namely that every universal discrete gate set has a spectral gap. Ideally, one should

provide an explicit bound on the complexity, i.e. the bound of the form ℓ = Θ(log(1/ϵ))

with computable constants, depending on S. A relaxed version of this problem would be to

prove the poly-logarithmic spectral gap decay, say at least as good as Varjú’s (but desirably

better due to recent improvements in the SKL-like theorems breaking the cubic barrier [33])

with explicit constants c and especially r0. Preferably, one would like to prove that r0 can

be taken to be as small as possible, e.g. just small enough to test the universality of the

gate set, i.e. in the language of t-designs, t = 6 for d = 2 and t = 4 for d ≥ 3 [52].
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