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Abstract

On the surface, our current understanding of the Universe appears to be accurate. General
Relativity (GR) appropriately describes gravity, and the standard ΛCDM model provi-
des reasonable explanations for most cosmological observations. However, the assumptions
underlying ΛCDM reveal its two greatest mysteries: Λ (the cosmological constant) is a
dark energy candidate to reproduce the observed accelerated expansion of the Universe,
while CDM (cold dark matter) interacts only via gravity. Although adding these compo-
nents yields agreement with data, their physical origin remains unknown.
In this context, testing gravity at cosmological scales is highly motivated - especially
since gravitational interactions have not been robustly tested at scales larger than the
Solar System.
A variety of extended gravity scenarios can drive cosmic acceleration without Λ. By com-
paring simulations in standard GR to those in extended models, we can begin to constrain
the gravity. In this thesis, we consider two popular scenarios generalizing Einstein-Hilber
action: the Hu–Sawicki f(R) model and the normal branch of the Dvali–Gabadadze–Porrati
(nDGP) model. Although nDGP alone does not self-accelerate, studying both families pro-
vides complementary tests of two distinct extended gravity models.
Because gravity is nonlinear, it imprints non-Gaussian features into an evolving density
field. Under the assumption of an initially Gaussian field, deviations from Gaussianity
observed later can be interpreted as gravity signatures. These can be quantified via the
central moments of number density counts. Since different gravity models leave distinct
imprints, higher-order statistics, specifically, averaged correlation functions and cumulants
based on central moments offer powerful discrimination. Working in a controlled suite of
cosmological simulations, we establish a testbed for future observations and identify the
regimes where the gravity scenarios can be distinguished (extended gravity signals, or EG
signals). First, in a light-cone geometry that mimics real surveys, we measure angular sta-
tistics. We identify the optimal redshift range for detecting EG signals as 0.15 < z < 0.3.
We find that extended-gravity deviations from GR reach up to 20%. Analyzing dark-
matter and mock galaxy catalogs separately, we detect these signals at 2−4σ significance,
reaching even ∼ 3σ for sparse galaxy samples (15 deg−2), demonstrating the feasibility of
observational tests with robust catalogs.
Encouraged by these results, we then study fully three-dimensional clustering in both real
and redshift space. Focusing on skewness, we show that the Fingers-of-God (FoG) effect
suppresses small-scale skewness in redshift space and EG signals become reduced compa-
red to real-space measures. The z-space signal still reaches ∼ 4% for galaxies. Notably,
galaxy catalogs exhibit stronger deviations than halo catalogs, underscoring the potential
of skewness as an observational probe.
Next, motivated by the richness of information contained in redshift space, we introduce
ellipsoidal averaged correlation functions: an analogue of the anisotropic two-point func-
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tion built from central moments. Employing dedicated simulations we find that developed
ellipsoidal functions reveal features inaccessible to spherical counts: the optimal shape of
ellipsoid at given volume corresponds with strength of FoG and Kaiser effects. We fur-
ther show that, for skewness, redshift-space measurements outperform real-space ones in
distinguishing models with different structure-growth histories.
Finally, we place our findings in the context of current and upcoming cosmological data,
and discuss prospects for employing higher-order study in new observations.
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Streszczenie

Nasze obecne zrozumienie Wszechświata z pozoru wydaje się być trafne. Teoria Względ-
ności (GR) opisuje grawitację wyjątkowo adekwatnie, podczas gdy standardowy model ko-
smologiczny ΛCDM rozsądnie wyjaśnia większość kosmologicznych obserwacji. Jednakże
założenia modelu ΛCDM ujawniają dwie największe zagadki: Λ (stała kosmologiczna)
jest kandydatką ciemnej energii mającą odtwarzać obserwowaną przyspieszoną ekspansję
Wszechświata, podczas gdy CDM (zimna ciemna materia) oddziałuje wyłącznie grawita-
cyjnie. Uwzględnienie obydwu składników w opisie Wszechświata powoduje dużą zgodność
z obserwacjami, jednak ich fizyczne pochodzenie pozostaje nieznane.
W tym kontekście szczególnie umotywowane jest przetestowanie i nałożenie ograniczeń
na modele grawitacji oddziaływującej na skalach kosmologicznych, szczególnie biorąc pod
uwagę, że nie ma obecnie solidnych testów siły grawitacji na skalach większych niż Układ
Słoneczny.
Istnieją różne rozszerzone scenariusze grawitacji, które mogą powodować przyspieszoną
ekspansję Wszechświata bez potrzeby wprowadzania Λ. Pierwsze kroki w kierunku ograni-
czania możliwych teorii grawitacji można podjąć, porównując wyniki symulacji uzyskane
w standardowej teorii Einsteina (GR) z wynikami uzyskanymi z rozszerzonych modeli
grawitacji. W tej pracy skupiamy się na dwóch popularnych scenariuszach uogólniających
całkę działania Einsteina-Hilberta: na modelu f(R) w formie Hu-Sawickiego oraz na nor-
malnym wariancie modelu Dvali–Gabadadze–Porrati (nDGP). Choć sam model nDGP
nie gwarantuje przyspieszonej ekspansji bez Λ, analiza obu rodzin rozszerzonych teorii
grawitacji pozwala na cenne porównanie dwóch różnych podejść.
Ponieważ grawitacja jest nieliniowa, narzuca ona nie-Gaussowskie cechy w ewoluującym
polu gęstości. Zakładając Gaussowskie warunki początkowe, obserwowane później odstęp-
stwa od Gaussowskości mogą być interpretowane jako sygnatura grawitacji. Sygnatury
te można ilościowo opisać za pomocą momentów centralnych rozkładu liczby obiektów
pola gęstości. Ponieważ różne modele grawitacji pozostawiają odmienne ślady, statystyki
wyższego rzędu – w szczególności uśrednione funkcje korelacji oraz kumulanty oparte na
momentach centralnych – stają się pomocnym narzędziem do ich rozróżniania. Przepro-
wadzając badania w kontrolowanym środowisku symulowanej kosmicznej sieci dla różnych
scenariuszy, tworzymy pole testowe pod przyszłe obserwacyjne ograniczenia modeli gra-
witacji i wskazujemy zakresy, w których użyte modele grawitacji są rozróżnialne (sygnały
rozszerzonej grawitacji). W pierwszej części identyfikujemy sygnały w statystykach ką-
towych, korzystając z geometrii stożka świetlnego (lightcone), naśladującej rzeczywiste
obserwacje. Określiliśmy optymalny przedział przesunięć ku czerwieni 0.15 < z < 0.30

do wykrywania sygnałów i znaleźliśmy do 20% odchylenia rozszerzonych modeli grawita-
cji względem GR. Analizę przeprowadziliśmy oddzielnie dla katalogów ciemnej materii i
symulowanych galaktyk. Wykryte sygnały wykazywały istotność na poziomie 2− 4σ, na-
wet w przypadku rzadkich katalogów galaktyk (gęstość rzutowana 15 deg−2) dochodziła
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do ≈ 3σ. To stwarza realną szansę na przyszłe testy grawitacji z wykorzystaniem bardziej
kompletnych katalogów. Zachęceni obiecującymi wynikami następnie zbadaliśmy w pełni
trójwymiarowe uśrednione statystyki w przestrzeni rzeczywistej i w przestrzeni przesunięć
ku czerwieni. Skupiając się na skośności, zauważyliśmy, że efekt „Fingers-of-God” tłumi
skośność na małych skalach w przestrzeni przesunięć ku czerwieni i jednocześnie osła-
bia sygnał grawitacyjny. W przypadku galaktyk odchylenia od GR dochodziły do ∼ 4%.
Sygnały w katalogach galaktyk były silniejsze niż w halach, co jest istotne w kontekście
potencjalnych obserwacyjnych testów grawitacji przy użyciu skośności.
Następnie, zmotywowani bogactwem informacji zawartych w przestrzeni przesunięć ku
czerwieni, opisaliśmy i zinterpretowaliśmy elipsoidalne uśrednione funkcje korelacyjne:
oparty o momenty centralne analog anizotropowej dwu-punktowej funkcji korelacyjnej.
Korzystając z dedykowanych symulacji zidentyfikowaliśmy dodatkowe cechy pola gęstości,
które są niedostępne przy użyciu standardowych kulistych zliczeń: analiza optymalnego
kształtu elipsoid przy stałej objętości ukazała jego zależność od siły efektów „Fingers-of-
God” i Kaisera. Pokazaliśmy następnie, że w przypadku skośności pomiary w przestrzeni
przesunięć ku czerwieni są lepsze od pomiarów z przestrzeni rzeczywistej w kontekście
odróżniania modeli z różnymi scenariuszami wzrostu kosmicznej struktury.
Na koniec omawiamy wszystkie wyniki, odniesienia do aktualnych i przyszłych danych
kosmologicznych oraz dyskutujemy o perspektywach mierzenia na nich statystyk przed-
stawionych w tej pracy.
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Chapter 1

Introduction

Since ancient times, humanity has been trying to explain origin and nature of the Universe.
Over the last hundred years cosmology has changed from the debate whether galaxies are
parts of Milky Way or separate equivalent objects, to big-data driven science providing
extensive studies on many of them. Human ingenuity led to formulation of theories de-
scribing objects which are yet physically inaccessible to us. Modern simulations and sky
surveys allow to model and put tight constraints on the observables, leading to deepening
our knowledge about the Universe.
At largest, cosmologic scales the dominating force is gravity. Its standard and yet most
successful description is Einstein’s General Relativity (GR) [1]. The GR assuming Uni-
verse to be filled just with matter and radiation predicts that its expansion slows down.
However, the measurements reveal positive acceleration, suggesting the existence of so-
called dark energy (DE). This led to the addition of term Λ to vanilla Einstein’s Equations
and in consequence modeling the Universe as filled with additional energy component
causing the acceleration. The physical nature of dark energy is however unknown and
recent observations may prefer even its equation of state to deviate from constant value
[2]. On the top of background evolution, there is another enigmatic component: dark
matter (DM), clumping into halos known to interact only gravitationally. While the DM
has not been detected directly yet, it dominates the evolution of galaxies and in general,
large-scale structure (LSS, or cosmic web - CW) - the complex web-shaped network into
which the ingredients of Universe are distributed.
The unknown components of the Universe consist of ≈ 95% of its energy budget [3]. Such
situation gives hence rise for questioning our knowledge about force shaping the evolution
of observable structures at largest scales. Robust General Relativity tests however did
not yet cover cosmologic distance ranges of interactions. To remedy for this puzzle, one
can employ so-called extended gravity models which generalize Einstein’s GR equations.
Careful choice of modification can provide models with different gravitational interactions
while preserving its form at already tested regimes. To test the gravity at cosmological
scales, one then needs to compare Large Structure simulated within GR and extended
gravity, with the observations. The powerful tool for quantitative comparison is cluster-
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ing statistics measuring how the objects group and describing the cosmic web density
field. In practice, due to large complications related with modeling of galaxy catalogs,
interpretability and possible biases, this approach firstly requires identifying differences
in gravity signatures between simulated GR and extended gravity, before comparing with
observations. The clustering and its differences between simulated gravity scenarios is the
main subject which this thesis addresses.
Firstly we discuss the General Relativity and taking into account current unknowns and
problems in cosmology we focus on extended gravity models.

1.1 Gravity and cosmology

Among four fundamental forces of nature, the one dominating at largest scales is gravity.
According to current state of knowledge, it drives the formation and evolution of cosmic
web and influences the expansion of Universe. The most successful description of gravity
[4] is currently the General Relativity (GR). This is so far the most tested theory, from
small distances [5, 6, 7], strong fields [8, 9, 10, 11, 12], to scales of Solar System [13, 14].
Also presently the GR tests are being suggested, e.g. [15]. Due to such strong agreement
with reality, GR is usually adopted as a standard theory of gravity.

1.1.1 General Relativity and background evolution of the Uni-
verse

The major concept of General Relativity is the relation between spacetime and matter
(energy). It is described by Einstein’s equations:

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν , (1.1)

where the left hand side describes the curvature of spacetime and is often collected into
single Einstein tensor Gµν . The Rµν is a Ricci curvature tensor, gµν stands for metric
tensor and R = gµνRµν is the Ricci scalar. The right side of Einstein Equations contains
energy-momentum tensor Tµν characterizing the distribution and dynamics of matter.
The cosmological constant Λ is a repulsive space-filing energy. First attempts were to
tune it in such way to prevent the Universe from collapsing and make it static. It was
however found that the Universe is not static, but rather expands and its rate increases
in time [16]. The cosmological constant Λ allows for accelerated late-time expansion. Re-
pulsive cosmological constant remains a necessary addition to General Relativity adopted
in standard cosmological model (Sec. 1.1.3), however its physical nature is unknown.
The metric tensor gµν allow to define distances in a chosen spacetime. Given the metric,
one can obtain the interval ds2:

ds2 = gµνdx
µdxν , (1.2)
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where we used Einstein notation, i.e. repeating the indices means summing over them [1].
The xη, where η = {0, 1, 2, 3} are the time (η = 0) and spatial coordinates.

In cosmology, widely assumed is the Cosmological Principle. It states that at suffi-
ciently large scales the Universe is homogeneous and isotropic. The isotropy is motivated
with observations of Cosmic Microwave Background [17]. According to Copernican Prin-
ciple, we are neither in a privileged nor a special position in a Universe. That inevitably
implicates the homogeneity.
Given that, the global metric of the Universe is usually assumed to be Friedman-Lemâitre-
Robertson-Walker (FLRW) metric, which in spherical coordinates gives:

ds2 = (c dt)2 − a2(t)
( dr2

1− kr2
+ r2(dθ + sin2(θ)dϕ2)

)
, (1.3)

where k is the curvature parameter and a(t) is the so-called scale factor. The value of k
defines whether the Universe is open (k = −1), flat (k = 0) or closed (k = 1). Scale factor
is a quantity characterizing the size of Universe, normalized to unity at current time t0,
i.e. a(t0) = 1. Multiplication of spatial terms by a(t) in 1.3 enforces the distances to grow
as the Universe expands and vice versa. It is then convenient to use so-called comoving
coordinates which follow the scale factor evolution. The relation between position r⃗ and
comoving coordinates x⃗ is:

r⃗ = a(t) · x⃗. (1.4)

Differentiating this relation with respect to time allows to define Hubble parameter
H(t) ≡ ȧ/a which describes the expansion rate of the Universe. While considering
only velocity coming from cosmological expansion, one end with Hubble law: v⃗ = Hr⃗.
By inserting the FLRW metric 1.3 into Einstein equations 1.1, from (00) and (ii), i =

{1, 2, 3} components one obtains Friedman equations [18] which describe the background
evolution of the Universe:

( ȧ
a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
(1.5)

ä

a
= −4πG

3

(
ρ+ 3

P

c2

)
+

Λc2

3
, (1.6)

where ρ and P are energy density and pressure, respectively. Differentiating the first
equation multiplied by a2 and then inserting second equation gives:

3
ȧ

a

(
ρ+

P

c2

)
+ ρ̇ = 0. (1.7)

Using first and second Friedman equations, one can compute so-called deceleration pa-
rameter q ≡ −äa/ȧ2. When it was formulated, the Universe was believed to decelerate
due to the gravity. The measured value estimated at current time t = t0 due to acceler-
ated expansion is negative q0 ∼ −0.5 [19].
Using first Friedman Equation one can define density ρall = ρ+Λc2/(8πG) which includes
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also the energy contribution coming from cosmological constant. The critical density ρc
which is a reference density required to make Universe flat is:

ρc ≡
3H2

8πG
. (1.8)

The density ρall includes all forms of energy in the Universe, of which the assumed are
pressureless matter, radiation and cosmological constant. The general form of equation
of state for these ingredients is P = wρ, where w depends on the type of component. For
pressureless matter w = 0, while radiation and cosmological constant have w = 1/3 and
w = −1, respectively.
Using first law of thermodynamics dE = −pdV and inserting E = ρa2 along with V ∝ a3

one gets the relation between density and scale factor:

ρ(t) ∝ a(t)−3(1+w). (1.9)

It is convenient to express the density as a fraction of critical density. For the component
i, the density parameter Ωi is:

Ωi ≡
ρi
ρc
. (1.10)

Inserting Hubble parameter at the current time H0 = H(t0), one obtains density pa-
rameter Ωi,0 today. Also the common approach is to define the density associated with
curvature k, what leads to Ωk = −kc2/(a2H2) while using 1.8 in First Friedman equation
[20].
By inserting 1.8 with 1.9 into 1.10 for current moment t0 and any given time t, one obtains
time evolution of density parameter Ωi:

Ωi(t) = Ωi,0a(t)
−3(1+w)

( H0

H(t)

)2

. (1.11)

Writing first Friedman Equation in terms of dimensionless density parameters gives then:

H2 = H2
0

(
ΩR,0 a

−4 + ΩM,0 a
−3 + ΩΛ,0 + Ωk a

−2
)
, (1.12)

where subscripts i = {R,M,Λ, k} correspond with radiation, matter, cosmological con-
stant and curvature, respectively. This leads to a remarkable consequence: measuring
current densities of the Universe along with Hubble parameter allows for estimating its
past and future expansion rate. The observations favor flat (k = 0) Universe, with
ΩM,0 ≈ 0.315, and ΩΛ,0 ≈ 0.685 [3]. The estimate of Hubble parameter for Cosmic Mi-
crowave Background (CMB) is H0 = 67.4± 0.5 km s−1Mpc−1. This is however a subject
of wide discussion, since depending on the method of estimation, one gets different value,
we mention this so-called Hubble tension more in section 1.1.3.
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1.1.2 Redshift and distances

The expression 1.12 is crucial in relating estimates of current cosmological density parame-
ters with Hubble expansion. The scale factor a is however not obtained directly. Instead,
from the observations one measures redshift z. The cosmological redshift is caused by
change of wavelength of light traveling through expanding space. Observing the light
red-shifted by z, one measures the change of its wavelength λ between observation time
to and emission te:

1 + z ≡ λo
λe

=
a(to) = 1

a(te)
, (1.13)

where λe and λo is the wavelength at the moment of emission and observation, respec-
tively. This relation can be obtained by comparing the intervals in FLRW metric 1.3
between emission and observation times of adjacent light wave crests for dθ = dψ = 0.
The cosmological redshift of an object provides then information about the scale factor of
Universe at the moment of emission. Since in expanding Universe the scale factor grows
monotonically with time, the larger the redshift, the larger is the difference between a(te)
and scale factor now, hence the more time the light was traveling to the observer. There-
fore objects with greater cosmological redshifts are more distant and simultaneously these
are observed in larger time delay, i.e. the larger z, the younger the Universe was during
the emission of light which now is reaching us. This is so-called lightcone geometry. It is
then convenient to express that object is located at redshift z what informs both about
the distance and elapsed time.
The relation between redshift and time can be obtained from dz/dt = ȧ dz/da by com-
bining the Equation 1.12 and 1.13:

dz

dt
= −1

a
H(z) = −(1+z) H0

√
ΩR,0(1 + z)4 + ΩM,0(1 + z)3 + ΩΛ,0 + Ωk(1 + z)−2 (1.14)

By inverting and integrating, one can obtain so-called lookback time describing how much
we look in the past while observing given redshift:

t0 − t(z) =

∫ 0

z

dt′

dz′
dz′, (1.15)

where t0 is present age of Universe and t(z) is age of Universe at redshift z. By integrating
from ∞ to 0 one gets age of Universe at redshift z, since z → ∞ corresponds with Big
Bang, where a→ 0.
Finding the distance depends on its definition. In following discussion we focus on flat
(k = 0) Universe. Using comoving coordinates one can obtain comoving distance DC

which is a current (t = t0) distance between objects and naturally remains constant
regardless of the Universe expansion. At small distances (z << 1), the velocities caused
by Universe expansion follow the Hubble law. Then, for small velocities z ≈ v/c and the
relation between distance r and redshift can be approximated by z = H0r/c. However,
H(z) is not constant, thus at higher redshift one start observing the epochs where Hubble
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parameter start differing significantly from H0 and this simple linear relation is no more
applicable.
For the flat spacetime (k = 0) assuming radial light travel in FLRW metric, one have
cdt = a(t)dr. Writing dt in terms of redshift and Hubble parameter (1.14), one gets:

DC(z) =

∫ r(z)

0

dr = c

∫ z

0

dz′

H(z′)
. (1.16)

This relation describes comoving distance to the object at cosmological redshift z. The
expression cosmological stands for the fact that in reality galaxies have also peculiar
velocities resulting from their gravitational interactions. The radial component of peculiar
velocity is a matter of Doppler effect which contributes to the observed redshift of an
object. This effect is discussed in Sec. 1.2.6.

Another form is luminosity distance DL defined as the distance at which the object
with absolute luminosity L would be placed to provide flux F in standard Euclidean
geometry, i.e.:

F =
L

4πD2
L

. (1.17)

The energy of photon approaching from redshift z is 1+ z times smaller. Simultaneously,
photon arrival rate is decreased by the same factor, lowering the flux as it would be
expected from placing the object at DC , by (1 + z)2. This fact combined with 1.17 gives
the relation:

DL = (1 + z)DC . (1.18)

The luminosity distance is a crucial measure connected with the observations. The third
one is angular diameter distance DA, obtained from the relation between physical and
angular size of object placed at DA. It is linked with comoving distance as DA = DC/(1+

z). The angular diameter distance is used for estimating distances to objects with known
physical size such as peak scale of Baryonic Accoustic Oscillations (BAO). It can be used
for comparing DA computed by observed angular size, with the distance based on known
redshift to estimate Universe curvature k.

The measurements of distances have a fundamental meaning in cosmology. By using
redshift-independent distance indicators such as standard candles and standard rulers,
the relations between distances and redshift allow for estimating Hubble factor and cos-
mological density parameters. These parameters at t = t0 can be also extrapolated from
Cosmic Microwave Background with acoustic peaks at temperature power spectrum. It
gives opportunity to understand better the composition and the physics governing the
evolution of the Universe and to predict its future shape. That can be achieved with
robust and well verifiable cosmological model.
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1.1.3 ΛCDM - standard cosmological model

Similarly to particle physics [21], currently cosmology has a standard commonly adopted
model. The model is called Lambda-Cold Dark Matter (ΛCDM) [3]. It assumes that
General Relativity is a proper theory of gravity at cosmological scales and adopts cos-
mological constant Λ which allows for accelerated expansion of the Universe. Along with
the background evolution, the ΛCDM model considers the existence of cold dark matter
which conjointly with the ordinary baryonic component consists of an ingredient of the
Universe ΩM . While the real nature of dark matter is not known yet, based on how
the gravity of DM influence e.g. the shape of cosmic web one can put constraints on
its properties. The name cold stands for the type of dark matter with relatively high
particle mass. The CDM is then characterized by low velocities of particles what allows
for creating halos at various scales where particles do not escape from gravitational wells
of local overdensities. Besides CDM , the recognized is warm dark matter with particle
masses of order keV [22] and hot dark matter with ∼ 1eV particles. While hot and thus
relativistic dark matter has been falsified [23], the differences between CDM and WDM

lie at small scales sub-galactic [24]. However, the CDM is usually used as a reference
case for dark matter [25, 26].

The ΛCDM is a highly successful model in describing the observed Universe [27].
Starting from the Cosmic Microwave Background, it predicts the temperature fluctuation
power spectra with high significance [3]. The resultant observed large-scale structure is
in good agreement with cosmological simulations assuming ΛCDM model in terms of
clustering measurements [28] or lensing [29]. The formation of galaxies as seen now was
possible due to dark matter halos in which the baryonic matter can aggregate. The model
assumes that dark matter is cold, what agrees well with Cosmic Microwave Background
measurements [3], Lyman-alpha forest [30] or concentration-mass relation in galaxy clus-
ters [31]. The ΛCDM model predicts many of observables and still new tests of its
principles are being performed [32, 33].

Besides the great agreement between ΛCDM and many observations, there are also
significant problems. One of main issues was so-called missing satellites problem ac-
counting for the fact that ΛCDM simulations produce much more subhalos compared to
number of observed satellite galaxies within the Local Group. The discrepancy was large:
Local Group contain more than 40 galaxies of all types [34] of which dwarfs are the major-
ity, while simulations can predict even ten times more [35]. One of common explanation
was low efficiency of small halos in forming stars and thus galaxies [36]. However, when
accounting properly with detectability of dwarf galaxies, the missing satellites problem
can be resolved [37, 38].
A major issue is so-called the core-cusp problem [39] linked with the profile of dark mat-
ter in dwarf galaxies. The density profile obtained from galaxy rotation curves suggest
constant density core at the center. Simulations with ΛCDM provide however cuspy
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profiles, as well as fitted NFW profile (Section 1.2.4). There are many solutions of this
problem, from different dark matter characteristics [40], to baryonic feedback[41], hence
the core-cusp problem is an open issue. The other common disagreement is to-big-to-fail
problem. It is similar to missing satellites issue, but points out that ΛCDM predicts sub-
halos massive enough to form galaxies to be more abundant than real number of satellite
galaxies [42]. Among the solutions, also baryonic feedback processes or alternative dark
matter models [43] have been proposed.
An important category of disagreements is represented by tensions between local and early
Universe. One of the most discussed one is Hubble tension which is a mismatch between
Hubble parameter measured in local Universe (H0 = 73.04±1.04 km s−1Mpc−1 [44]) and
H0 extrapolated from Cosmological Microwave Background (H0 = 67.4±0.5 km s−1Mpc−1

[3]). There are many attempts to understand this ∼ 5σ tension, e.g. introducing time-
variation of dark energy equation of state, models with additional interactions or just
systematics in the data [45]. The Hubble tension becomes however an unresolved issue.
Despite of great potential in predicting the evolution of Universe, ΛCDM is not fully
describing all phenomena. The number of more or less significant disagreements [46]
motivate for further investigations.

1.1.4 Why to test gravity?

Along with the addressed ΛCDM issues there are also fundamental problems of cosmol-
ogy. First, a major dilemma is the existence of dark energy. While the cosmological
constant Λ has been added to Einstein Equations and the Friedman equations can de-
scribe the accelerated expansion of Universe, the proper nature of dark energy is yet
unknown. There are many other possible explanations, such as quintessence [47] where
dark energy is related with a scalar field, but so far there are no strong claims which
interpretation could be correct. Second unknown component is naturally dark matter,
which together with dark energy constitute of ΩΛ +ΩDM ≈ 0.95 of total Universe energy
budget. As well as dark energy, there are no findings stating that dark matter exhibit
any non-gravitational interaction with baryonic matter.
The existence of such abundant components that interact only gravitationally strongly
motivates to question the validity of standard theory of gravity at largest scales. While
the scales from micrometers up to Solar System have been investigated, there is still a
room for testing the gravity at cosmological distances [48]. The ΛCDM paradigm stating
that General Relativity is a valid theory of gravity at all scales does not necessarily have
to be true. The extrapolation from scales of largest gravity tests to distances exceeding
hundreds of megaparsecs in cosmological regime spans even by ∼ 15 orders of magnitude.
This is much more than the scale difference between classical physics (< 1mm) and quan-
tum regime at nanometers scale. While General Relativity does not have a quantum limit,
it may also be not fully applicable at largest scales. Yet another argument for testing the
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gravity arises from the inflation. This involves e.g. primordial gravitational waves [49] or
non-gaussianity [50]. Instead of validating the gravity at large scales, studying inflation
gives opportunity for test gravity in extremely strong field regime.

1.1.5 Modified and extended gravity

The vast unknown about correct nature of gravity led to the formulations of its alter-
native theories and modified gravity models. While GR has so far passed all tests and
become successful in predicting many phenomena, it is motivated to use it as a base for
extensions and attempt for explaining large scale anomalies. The possibility of modifying
GR is constrained by Lovelock theorem [51]. For the aim of this thesis we focus on f(R)
[52] and normal branch of Dvali-Gabadadze-Porrati (nDGP )[53] modified gravity. These
models achieve accelerated expansion by modification of the Einstein-Hilbert action. The
Einstein-Hilbert action in General Relativity with cosmological constant in natural units
(c = 1) reads:

SGR =

∫
d4x

[ 1

2κ
(R− 2Λ) + LM

]√
−det(gµν), (1.19)

where κ = 8πG and LM is the matter Lagrangian density from which energy-momentum
tensor Tµν is derived. In the considered modified gravity scenarios this form is reshaped,
simultaneously incorporating a constraint to recover GR in regimes where it has passed
observational tests.

f(R) and chameleon screening

The f(R) model assumes the generalization of Einstein-Hilbert action by dependence on
Ricci scalar R and adding its functional f(R) tuned to mimic the effect of cosmological
constant Λ. It provides action of the form:

Sf(R) =

∫
d4x

[ 1

2κ
(R + f(R)) + LM

]√
−det(gµν). (1.20)

For the aim of this work we focus on Hu-Sawicki f(R) [54]:

f(R) = −m2 c1(−R/m2)n

c2(−R/m2)n + 1
, (1.21)

where n, c1 and c2 are dimensionless parameters and m is a mass scale parameter. While
varying the SGR with respect to the metric provides Einstein Equation 1.1, performing
the same with Sf(R) gives modified Einstein equations for f(R) scenario:

Gµν +
(
Rµν −∇µ∇ν + gµν2

)
fR − 1

2
f(R)gµν = κTµν , (1.22)
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where Gµν is the Einstein tensor introduced after Eq. 1.1, 2 = ∇µ∇µ is d’Alembertian
and fR = df(R)/dR is scalaron being a scalar field specific for f(R) gravity:

fR = −nc1
c22

(−R/m2)n−1

(
1 + (−R/m2)n

)2 . (1.23)

To match the observed Universe expansion history including acceleration as it would
involve Λ, the parameters have to fulfill conditions c1/c2 = 6ΩΛ/ΩM and m2 = H2

0Ω
2
M . In

other words, even if Λ does not appear explicitly in f(R), the model is tuned to match
ΛCDM expansion which is well described using ΩΛ,0 density parameter. Given also that
|R|/m2 ≫ 1 and for n = 1, in current time t = t0 the Hu-Sawicki f(R) model can be
characterized by one parameter:

fR0 = − 1

c2

6ΩΛ,0

ΩM,0

(H2
0ΩM,0

R0

)2

, (1.24)

where R0 is Ricci scalar at t = t0. Setting the value of c2, or alternatively of fR0 defines
then the Hu-Sawicki f(R) model. In this work we focus on models with fR0 = 10−6 and
fR0 = 10−5 denoted as F6 and F5, respectively.
The scalaron is an additional degree of freedom compared to standard GR and it is
responsible for the enhancement of gravity in EG models, called fifth force. The value of
fifth force can be computed with known scalaron field fR, obtained by taking the trace of
Eq. 1.22:

2fR =
1

3
(R−RfR + 2f(R) + 8πGρ). (1.25)

One can neglect the time dependence, then 2 → ∇2. To have a reliable gravity model,
it has to recover General Relativity in regimes where it has been successfully validated.
For modified gravity scenario it can be obtained with so-called screening mechanism.
The common approach is screening mechanism suppressing the fifth force in high density
or small scales and thus restoring GR there. The f(R) gravity incorporates chameleon
screening mechanism [55], where the extent of screening depends on local density. The
scalaron field fR is massive, with mass computed using relation 1.25 given by:

mfR =
d2

df 2
R

(
Veff

)
≈ 1

3
f −1
RR , (1.26)

where Veff is the effective potential such that dVeff/dfR = 2fR and fRR ≡ d2f(R)/dR2

[56]. By computing the fifth force:

F5 = −1

2
∇⃗δfR, (1.27)

where δfR = fR − f̄R is the difference between local fR and global scalaron f̄R value,
for a point mass source one obtains approximate solution of fifth force dependent on the
distance r to be:

F5(r) ∝ (1 +mfRr)
1

r2
e−mfR

r. (1.28)
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From 1.23, one can approximate fRR ∝ R−(n+2) and hence in high density regions the
mass mfR scales as Rn+2 (1.26) and the solution of Eq. 1.28 decays quickly resulting in
suppression of the fifth force. In low density environments mfR becomes small, hence one
obtains F5 ∝ r−2 and the screening becomes weaker.

nDGP and Vainshtein screening

The nDGP modified gravity scenario is a normal branch of DGP gravity. The idea is
that the matter in Universe exists on a 3+1-dimensional brane which is embedded within
4 + 1 Minkowski spacetime. In this case the action is modified and contains both 4- and
5-dimensional term:

SnDGP =

∫

brane

d4x
√

−det(gµν)
[ R

16πG
+ LM

]
+

∫
d5x

√
−det(g(5)µν )

R(5)

16πG(5)
, (1.29)

where g(5)µν is five-dimensional metric, while R(5) and G(5) are Ricci scalar for g(5)µν and
five-dimensional gravitational constant, respectively. In nDGP the gravity is assumed to
propagate through entire five-dimensional spacetime, while other fundamental forces are
limited to standard 3+1 dimensional spacetime. This causes the gravity to leak into fifth
dimension when the second term in 1.29 dominates. It happens at the so-called crossover
scale rC :

rC =
1

2

G

G(5)
, (1.30)

which defines the transition scale between standard 4-dimensional gravity playing a role at
scales r < rC and 5-dimensional gravity, governing at r > rC . In this work we consider two
cases of nDGP : N5 and N1, parameterized with H0rC = 5 and H0rC = 1, respectively.
In nDGP models the large-scale gravity is however not weaker than in the case of GR,
but rather enhanced due to extra scalar degree of freedom. The enhancement is limited at
small scales due to Vainshtein screening mechanism [57] incorporated by nDGP gravity
model. Modified Poisson equation in nDGP reads:

∇2Ψ = 4πGa2ρ+
1

2
∇2ϕ, (1.31)

where Ψ is the full potential, first term on right hand-side refers to the standard gravity
and ϕ is additional scalar field due to model degree of freedom. The equation of scalar
field in FLRW metric is given by:

∇2ϕ+
r2C

3βn(a)a2

[
(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)

]
=

8πGa2

3βn(a)
ρ, (1.32)

where the function βn(a) is:

βn(a) = 1 + 2HrC

(
1 +

Ḣ

3H2

)
. (1.33)
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At large scales one have |∇2ϕ| ≪ r−2
C . In the relation 1.32 first term on left hand side

dominates and:
∇2ϕ ≈ 8πGa2

3βn(a)
ρ. (1.34)

Inserting this to equation 1.31 one gets spatially independent enhancement of the field at
large scales, leading to effective gravitational constant:

Geff = G
(
1 +

1

3βn(a)

)
. (1.35)

At small scales one have |∇2ϕ| ≫ r−2
C , hence in 1.32 the second term on the left hand

side dominate, and then one gets ∇2ϕ≪ 8πGa2ρ/(3βn). It recovers the standard Poisson
equation when inserted to 1.31, making Geff → G. This is so-called Vainshtein screening
mechanism which suppresses the fifth force at small scales. The nDGP models are char-
acterized by crossover scale rC which separates the regimes of standard gravity and the
one dominated by five-dimensional space time. The physical scale below which the fifth
force originating from ϕ is screened, is given by Vainshtein radius rV . Given the mass M
of gravitational field source, it is: [56]:

rV =
(16r2CGM

9β2
n

)1/3

. (1.36)

The nDGP scenario is then an interplay of two effects. First one is leaking of gravity
at scales r > rC into five-dimensional spacetime. The second is scalar field ϕ being an
additional model degree of freedom. It enhances the gravity with fifth force leading to
Geff > G, but the Vainshtein screening mechanism suppresses it at distances r < rV from
massive objects.

1.1.6 Constraints and testing

The screening mechanisms integrated with the f(R) and nDGP gravity scenarios allow
them to pass stringent small-scale and high-density tests by recovering General Relativity
in these regimes. To put constraints on these models, one need to investigate large-scale
behavior of gravity in observations and identify potential differences in growth of structure
compared to simulations. Therefore the growth rate and growth factor are the parameters
to quantitatively discriminate between the gravity scenarios, given the observations and
simulations outputs. The structure formation in GR and a mention in context of MG

cases is discussed in Sec. 1.2. Constraining gravity models is widely performed with the
clustering measurements and other statistics of large-scale structure, what is the subject
of Sec. 2.
For nDGP model, the promising test concerns also Integrated Sachs-Wolfe (ISW ) ef-
fect [58]. This however plays a role at large scales where cosmic variance limits the
measurement. Instead, the studies of redshift-space distortions and clustering allowed
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to constrain the nDGP gravity to be (H0rC)
−1 < 0.97 with 2σ confidence [59]. More

recent research on weak lensing limited this parameter to log10(H0rC) > 0.5 with 25%

precision [60]. The same study provided upper constraint for the Hu−Sawicki model of
f(R) as log10(fR0) < −6 with 2% precision. The upper limit of f(R) can be also found
using peculiar velocities [61]. However, it is also worth investigating the f(R) and nDGP
models with parameters in a range excluded by recent works. It helps to understand
how the interplay between enhanced gravity and screening mechanisms shape the cosmic
web. Knowing how the deviations from GR behave in more extreme MG models and
comparing them with moderate scenarios allows for better constraints in the future.
Such research focuses on the formation and evolution of large-scale structure, which pro-
vides large laboratory for testing the models. Hence, understanding the physics behind
that provides an opportunity to unveil a part of nature of the Universe.

1.2 Large-Scale Structure

Large-scale structure (LSS) is a greatest formation known to humanity so far. The so-
called cosmic web is composed of matter arranged in nodes, connected with filaments and
walls stretched around much emptier voids [62, 63]. It consists a complex system evolving
on various scales, where smaller structures build up larger systems, creating hierarchical
pattern.

According to current state of knowledge, LSS originates from tiny primordial density
inhomogeneities being the product of pre-inflationary quantum fluctuations [64]. While
Universe expanded and cooled, the physical size of the inhomogeneities increased up.
Then, due to gravitational instability, the density field evolved towards the present shape.

Since young Universe was very smooth and density fluctuations at the era of recom-
bination were of order 10−5 [65], the evolution of density field at these times can be well
characterized by linear Perturbation Theory.

1.2.1 Gravitational instability and linear structure growth

To analytically describe the self-gravitating matter, it is convenient to work with density
contrast δ(x⃗, t), defined by:

δ(x⃗, t) ≡ ρ(x⃗, t)− ρ̄(t)

ρ̄(t)
, (1.37)

where ρ(x⃗, t) and ρ̄(t) are the density at point x⃗ and time t and average density at
moment t, respectively. Gravitational potentials at the scales relevant for structure growth
are weak. Additionally, the scales themselves are significantly smaller than Hubble Radius.
These facts allow for working in Newtonian limit [66], without applying full GR solutions.
One of relations describing the evolution of density field is continuity equation which
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characterizes the conservation of mass:

∂δ

∂t
+

1

a
∇ ·

(
(1 + δ)v⃗

)
= 0, (1.38)

where v⃗ is a peculiar velocity of matter element, motion relative to the expanding back-
ground. In addition to this, the evolution occurs with conservation of momentum, de-
scribed by Euler equation:

∂

∂t
(av⃗) + (v⃗ · ∇)v⃗ = −∇ϕ− 1

ρ̄
∇(δp), (1.39)

where ϕ is gravitational potential and p stands for pressure. On top of the expressions
imposing conservation of mass and momentum, there is Poisson equation [67] specifying
how density field and its own gravitational potential interact:

∇2ϕ = 4πGρ̄a2δ. (1.40)

Assuming small perturbations with |δ| << 1, the combination of equations 1.38, 1.39
and 1.40 in Fourier space brings:

δ̈k + 2
ȧ

a
δ̇k +

(c2sk2
a2

− 4πGρ̄
)
δk = 0, (1.41)

where cs and k are sound speed and wavenumber, respectively. For the case of presureless
Einstein de-Sitter (EdS) Universe where a ∝ t2/3, the growing solution of Eq. 1.41 is
δ ∝ t2/3 ∝ a.

By considering the equilibrium and computing corresponding length scale λ ≡ 2π/k,
one can obtain Jeans Mass, the border condition of density fluctuation to collapse:

MJ ∝
(c2s
G

)3/2 1√
ρ̄
. (1.42)

For gravity-dominating case, i.e. when:

4πGρ̄ >
c2sk

2

a2
, (1.43)

one obtains a solution of Eq. 1.41 being composed of growing and decaying terms. The
decaying term vanishes in time and becomes irrelevant. While the Equation 1.41 contains
only derivatives with respect to time and δ = δ(x⃗, t), one can disentangle spatial and
time-dependent part. The growth of structure can be then described with:

δ(x⃗, t) = D(t)δ0(x⃗), (1.44)

where D(t) is the growth rate, δ0(x⃗) ≡ δ(x⃗, t = t0) such that t0 is a considered starting
time. By construction, growth rate fulfills D(t0) = 1. For any cosmological parameters
and pressure-less case, the growth rate obtains a form:

D(t) =
ȧ

a

∫ a

0

da′

ȧ′3
. (1.45)
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The solution 1.44 has a remarkable consequence: it shows that in linear regime the den-
sity fluctuations do not evolve spatially, but their amplitude increases. The growth of
amplitude means that slightly overdense regions become denser in time, while underdense
ones get emptier. This is a consequence of matter moving into gravitational potential
wells.

By defining the growth factor f as:

f ≡ dlogD

dloga
, (1.46)

linearized continuity equation 1.38 with assumed δ << 1 [66] becomes:

∇v⃗ = −aHfδ. (1.47)

The growth factor relates with the density parameter at given redshift by f ≈ ΩM(z)γ,
where γ ≈ 0.55 [68]. The growth factor and its dependence on cosmological matter density
parameter exhibits later on, while studying the statistics of LSS in redshift space what is
discussed in Section 2.

1.2.2 Modified gravity case

While the considered modified gravity models: f(R) and nDGP are tuned to match
ΛCDM cosmic expansion history, the structure formation differs of that from the standard
model. The relation from Eq. 1.41 describing the evolution of density contrast instead
of standard gravitational constant G, has to include effective gravitational constant Geff

(for nDGP 1.35) resulting from gravity enhanced by fifth force (for f(R) 1.28). For
nDGP the linear growth is scale-independent, while f(R) model reveals scale-dependent
growth of structure. This later has remarkable implications on comparing clustering
estimates as a function of scale, between these models and GR. For the case of f(R),
the enhancement of gravity called fifth force is screened in dense regions, hence making
these areas to evolve as ruled by General Relativity. The sparse unscreened areas such
as voids are then subjects of stronger gravitational interactions. These regions became a
motivated source of searching for beyond-GR signals [69]. Also the abundance of voids
can become a test for structure evolution [70]. Such selective screening mechanism may
even partially restore the gaussianity of density field compared to standard GR scenario,
where underdense regions become catastrophically empty due to mass transfer into large
filaments and nodes. In f(R), voids may not run out of such amount of mass due to
locally enhanced gravity.
The fifth force accompanied with screening mechanism naturally affects also the creation
of dark matter halos. The halo mass function i.e. distribution of dark matter halo
masses is enhanced with respect to GR and depends strongly on gravity scenario [71]. It
thus directly affects the population of galaxies, however the verification with observations
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is nontrivial. In terms of representative cosmic volume mock galaxies within extended
gravity, one is hence still limited to non-hydrodynamical schemes (see Sec. 1.2.7).
For velocity field, the deviations from GR are generally present at nonlinear scales r ≲
10 Mpc [72]. This might add potential extended gravity signal in redshift space at such
separations. We discuss the beyond-standard models of gravity in Section 1.1.5.

1.2.3 Spherical collapse model

The analysis on linear structure growth concerns the young Universe where the only
density fluctuations corresponding with structure formation were of δ << 1. Nonetheless,
at later epochs the density field evolved into more complex structure with density contrast
significantly exceeding the unity at wide range of scales. The evolution of density field
beyond the linear theory can be studied with Zeldovich approximation [73] which provides
robust evolution of density field until the so-called shell-crossing occurs. The cosmic
web evolution as a whole can not be efficiently described analytically after the relevant
fluctuations entered highly non-linear regime.

The evolution of overdensities after the linear growth can described by nonlinear spher-
ical collapse model. Since ΩM ∝ (1 + z)3, the EdS model is a good approximation of our
Universe at higher redshifts z > 2 when it was dominated by matter.

By assuming isolated symmetric spherical overdense region of mass Ms and radius rs,
its evolution can be described by Newtonian physics:

d2rs
dt2

= −GMs

r2s
. (1.48)

The parametric solution reads [74]:

rs(η) = α(1− cosη) (1.49)

t(η) = t0 +

√
α3

GMs

(η − sinη), (1.50)

where η is a parameter, α = const and t(η = 0) = t0. The size of overdensity firstly
increases following the Hubble flow, then it slows down due to its gravitation and stops
at η = π obtaining radius rmax = 2α, called turnaround radius. With the density of
fluctuation ρ =Ms/(4/3πr

3
s), one can compute its density contrast. Inserting scale factor

evolution a ∝ t2/3 in EdS Universe into first Friedman Equation, 1.6, one gets the relation:

ρ̄ =
1

6πGt2
(1.51)

describing average density evolution in EdS Universe.
Combining ρ with ρ̄ in Eq. 1.37 and using the parametric solutions 1.50 with t0 = 0,

one obtains the density contrast of the overdensity:

δs =
9(η − sinη)2

2(1− cosη)3
− 1. (1.52)
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At the turnaround phase (ηturn = π), the contrast is δturn ≈ 4.55. This is well beyond the
linear regime assuming |δ| << 1. The spherical collapse model is a significant simplifica-
tion of reality where e.g. the overdensities are not isolated and expansion of Universe also
plays a role in this process. In more physically motivated scenario, the gravitational inter-
actions with neighboring anisotropies make the collapse to be ellipsoidal [75]. However,
the spherical case remains a useful ground description of nonlinear structure formation.

The solution 1.50 shows that after the turnaround phase the overdensity starts to
collapse. The solution gives rs(η = 2π) = 0 what would indicate collapsing into a sin-
gularity. However, it assumes isolated overdensity composed of pressureless matter with
only radial velocities. In more physically accurate scenario, the overdensity collapses until
it virializes, i.e. reaches equilibrium where potential and kinetic energy are balanced [76].
In such conditions the virialized dark matter halo is being created [77] in which eventually
galaxies may form [78]. Gravitationally virialized system fulfills the condition:

2T + V = 0, (1.53)

where T and V are averaged kinetic and potential energy, respectively. Taking into
consideration two critical moments: turnaround phase where the entire energy of the
system is in form of potential energy and virialization point, by assuming total energy
conservation and using the relation 1.53, one obtains:

Vvir = 2Vturn, (1.54)

where Vvir,turn is average potential energy in virialization and turnaround respectively.
Since V ∝ r, the same relation connects overdensity radius at turnaround and virialization
phase. Given that, the density relation at these moments is: ρvir = 8ρturn. Assuming
that virialization occurs at the collapse time from solution 1.50 i.e. tvir = 2tturn, using
the relation 1.51 one gets:

ρ̄vir = 4ρ̄turn, (1.55)

where ρ̄vir,turn is background density at virialization and turnaround, respectively. The
relation of density and background density 1.55 at two phases allows for estimating the
relative density of virialized dark matter halo:

ρvir
ρ̄vir

=
8ρturn
ρ̄turn/4

= 32(δturn + 1), (1.56)

what gives halo density contrast of δhalo ≈ 177.

1.2.4 Dark matter halos

According to the our state of knowledge, dark matter halos consist gravitational wells
where baryonic matter may accumulate. While galaxies are not required to form a’priori
within halos, the dark matter constituting ≈ 85% [3] of matter in the Universe, dominates
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the gravitational potential where these can evolve. According to hierarchical structure
formation scenario where smaller structures form and build up larger structures, dark
matter halos at certain scale contain smaller halos, called subhalos. While the main halo
can host a galaxy, usually denoted as central galaxy, the embedded-in subhalo may contain
a smaller companion galaxy, usually called satellite galaxy. The halo-subhalo hierarchy
has been found in simulations [79, 80, 81, 82] thus supporting the hierarchical model.

Understanding the abundances and properties of dark matter halos is crucial in study-
ing the large-scale structure due to existing galaxy-halo connections, described in more
details in Sec. 1.2.5. The clumps of dark matter are not directly observable and the
nature of this matter component is yet unknown. Therefore, the method of verifying the
models of halos is based on constraining their effect on observed visible part - galaxies.

The most fundamental property of dark matter halo is its mass. Due to correlation
between halo masses and abundance of galaxies, studying galaxy-halo connection provides
strong cosmological constraints. The halo mass function (HMF), i.e. expected number of
halos of a given mass in unit volume is described by the Press-Schechter theory [77].

Alongside with the distribution of halo masses, their internal structure also plays an
important role in cosmology. The most commonly adopted density profile of dark matter
halo is Navarro-Frenk-White (NFW) profile [83] which is a fit from N-body simulations:

ρ(R) =
ρs

R
Rs

(
1 + R

Rs

)2 , (1.57)

where ρs and Rs are the parameters - characteristic density and scaling radius, respec-
tively.

The density profile is a relevant quantity in terms of halo-galaxy connection. Estimat-
ing the profile provides better understanding of motion of galaxies hosted by the halo,
what could influence redshift-space distortion signal within one-halo regime, i.e. scales
comparable or smaller than size of halo. Additionally, halo density profile is often em-
ployed for statistically populating halos with galaxies in gravity-only simulations (see Sec.
1.2.7). Both issues have then further implications on galaxy clustering measurements.

1.2.5 Galaxies

Galaxies glowing in a vast space represent a visible tracers of large-scale structure in wide
range of distances. These objects being composed of baryonic matter immersed within
halos of dark matter, provide essential information about cosmology, interplay between
gravitational potential of whole density field and visible matter, and physical processes
ruling their evolution.

Galaxies started to form while the gas infall to dark matter-dominated gravitational
wells. The gas shocks to the virial temperature being an equilibrium temperature of
uniform and isothermal gas cloud [84]. The mass of cloud, i.e. the amount of baryonic
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matter accumulated by halo depends on the gravitational potential of halo. The heavier
the halo, generally the more baryons agglomerate within it what is the main aspect of
halo-galaxy connection.

Properties

The observations show that the cosmic web is composed with galaxies of various types,
such as disk galaxies, as well as e.g. elliptical or irregular. While the shapes of disk
galaxies are due to angular momentum conservations, other types are assumed to evolve
differently. Elliptical galaxies are believed to form by mergers of galaxies with compara-
ble masses [85] or by the so-called monolith collapse scenario [86] where the formation of
stars occurs rapidly compared to the time-scale of collapse after radiative cooling. While
massive elliptical galaxies can form through both evolutionary channels, dwarf elliptical
galaxies are thought to evolve through merging and other scenarios [87].
Due to direct observational data, the known picture of galaxies is far more complex than
for dark matter halos. Besides the morphology, most significant properties of the galaxy
are its mass, luminosity and colors. The mass can be estimated with different meth-
ods, such as measuring the rotation curve which provides the cumulative mass profile of
baryonic and dark matter enclosed within corresponding radius. Similar approach is as-
sociated with measuring the motion of satellite galaxies. While there are various methods
of measuring masses [88], the luminosity can be obtained e.g. with brightness-distance or
Tully-Fisher relation [89, 84].The Tuly-Fischer relation can be used for obtaining so-called
redshift-independent distances (discussed in more details in Sec. 1.2.6) for disk galaxies.
With these one can study observationally radial peculiar velocities [90].

Galaxy-halo connection

The galaxies are not distributed randomly in space. Their positions are related with
underlying density field. Since heavier halos can accumulate more baryonic mass, these
objects are the hosts to statistically more massive galaxies.

However, not every dark matter halo contains a galaxy. Baryonic matter constitutes
∼ 15% of matter. If the halo is not massive enough, its potential well will not accumulate
sufficient amount of gas to form a galaxy. Such halo may be also stripped-out of gas due
to interactions with nearby heavier objects. The minimal halo mass for hosting a galaxy
is however not a constant value, but rather it depends on cosmic web environment and
redshift [91, 92].

The galaxies are biased tracers of the density field, since their formation is more
efficient in denser environment. The relation between galaxy and full matter density field
can be described using high-peak bias model [93]. The relation between density contrast
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of galaxies δg and matter density contrast δm can be expanded into Taylor series [94]:

δg =
∞∑

i=0

bi
i!
δim, (1.58)

where bi are bias coefficients. The factor b1 is a linear bias which gives robust description
at linear scales where |δm| ≪ 1. Higher bias coefficients apply at nonlinear scales and
play a role in more accurate modeling of cosmic web [95].

1.2.6 Velocity field and redshift space

The density field of cosmic web is directly linked with its velocity field. While studying
the velocities of galaxies in clusters which provide insight into the clusters masses via
virial theorem [96], velocity field allows for more precise study of LSS. One has then not
only information about spatial distribution of objects, but also complementary insight
into growth rate and direct link with so-called redshift-space distortions which we discuss
below. The peculiar velocities can not be easily disentangled from motions related with
the expansion of Universe. Differentiating 1.4 with respect to time yields:

˙⃗r =
ȧ

a
r⃗ + a ˙⃗x. (1.59)

By ignoring the second term, one obtains Hubble law where the relative velocity be-
tween objects is caused only by expansion of space. However in reality on top of the
background expansion each galaxy has peculiar velocity which is caused mostly by gravi-
tational interactions. In observations disentangling between peculiar and cosmic motions
is not straightforward, since both velocities add-up into measured redshift z. While map-
ping the objects in redshift space it leads to so-called redshift-space distortions (RSD)
[97] which modify the distant-redshift relation due to nonzero peculiar velocities. The
distorted position is:

r⃗ = r⃗0 +
1 + zcos
H(zcos)

v||,pecêr, (1.60)

where r0 is undistorted position, zcos stands for cosmological redshift of the object and
v||,pec is its peculiar velocity projected onto observer’s line-of-sight.

Disentangling between cosmic and peculiar velocity can be made with redshift-independent
distance indicators, such as Tully-Fisher relation [89], standard candles such as Cepheids
[98], Ia supernovae [99] or fundamental plane [100]. Redshift-independent distances allow
not only for analysis of peculiar velocity field. After extracting the redshift counter-
part responsible for cosmological expansion, these provide the estimate of local Hubble
parameter. The typical bulk velocity i.e. average of local peculiar velocity flows, is
vpec ∼ 200 − 500 km s−1 [90]. However the measurements of peculiar motions of single
galaxies usually suffer from large errors of ∼ 20%. Furthermore, the errors of observed
peculiar velocities increase with distance. Therefore these measurements are applicable
mostly for galaxies at low redshift z <∼ 0.1.
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The velocity field and consequently redshift-space distortions depend on the scale of
consideration. On small separations r ≲ 10Mpc [101, 102] the velocities are statistically
random, dominated by virial motions. Due to the velocity dispersion, the spatially spher-
ical overdensity in redshift space becomes stretched along observer’s line of sight, while
preserving the shape in tangential direction. The imprints on large-scale structure caused
by this effect are known as Fingers of God. At larger scales r >∼ 10Mpc, the overdensities
are smaller and Hubble flow becomes non-negligible. The areas of non-virialized over-
densities expand, but slower than the background due to its gravity. The virial motions
are not dominating the velocity field at such scales, hence in the surrounding of over-
density velocities generate coherent inflows towards the region of higher density. From
observer’s point of view, the objects between them and overdensity are moving away
faster than it would result from the Hubble flow. Simultaneously, the galaxies behind the
overdensity will be also moving towards it, decreasing the total radial velocity by vpec.
In redshift space, the overdense region become then squashed, creating the effect called
Kaiser squashing [97]. Fig. 1.1 shows a simulation catalog slice with real space and red-
shift space mapping with distant observer approximation assuming line of sight parallel
to axis x. The used simulation is described in Section 1.2.7. In real space no direction is
distinguished, but z-space reveals clear distortions. At these scales the Kaiser squashing
is dominating what is mainly visible in higher internal densities of filaments and nodes.
However, in redshift space one can also see structures stretched along LOS (Fingers of
God), e.g. at r⃗ ≈ [50, 15] Mpc/h.

The description of density contrast considering redshift-space distortions involves con-
verting the coordinates into z-space. In linear regime the velocity field is curl-free, hence
by considering the conservation of number of objects:

(1 + δ(s))d3s = (1 + δ(r))d3r, (1.61)

where δ(r) and δ(s) is density contrast in real and redshift space respectively. In Fourier-
space the relation between δ(r) and δ(s) in context of linear theory is [97]:

δ
(s)
k = (1 + βµ2

k)δk, (1.62)

where µk ≡ cos(θ), β = f/b1 and θ is angle between wave vector k⃗ and line of sight. This
shows that redshift-space distortions which originate from peculiar velocity field, create a
growth factor-dependent imprint onto the density field. The relation 1.62 is also relevant
in measuring the statistics of the density field.

1.2.7 Simulations and catalogs

Studying the cosmic web at late times where highly nonlinear gravitational evolution and
baryonic physics shape its formation requires numerical approach. The continuity 1.38,
Euler 1.39 and Poisson 1.40 equations can not be solved fully analytically. Adopting
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Figure 1.1: A 20Mpc/h slice along z−axis of COLAV ERSE simulation box at redshift
z = 0.5, zoomed at 0 − 200 Mpc/h range. The simulation is described in Section 1.2.7.
The data points are dark matter pseudo-particles show in real space (left upper part) and
redshift space (lower right). In z-space the distant observer approximation was assumed,
i.e. the observer’s lines of sight are parallel to each other. The assumed LOS direction is
x− axis.

the Perturbation Theory which consider perturbative expansion up to i-th order gives
reasonable approximations [103] as long as the terms of order bigger than i are negligible.
However, the effort for computing these terms grows rapidly.

Cosmological simulations allow for tracking the large-scale structure formation in a
controlled environment. This opens a wide range of possibilities for testing models by
comparing the mock results with observations. From the verifications of various grav-
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ity scenarios affecting the clustering [104], halo-galaxy connection [105], to cosmic web
environment studies [63] or constraints on dark matter [106, 107], simulations provide
multitude of applications in modern cosmology.

The standard method is to simulate the cosmic web in a box which expands according
to the corresponding cosmology. To account for boundary effects, the simulation box is
periodic. Since at larger scales Universe is homogeneous and isotropic, the influence of
local density fluctuations on the Hubble expansion is expected to be negligible [108, 109].

In the simulations one assumes large number of pseudo-particles Np interacting with
each other, while the background cosmological expansion is not affected by the inhomo-
geneities. These are so-called N-body simulations. The aim is to evolve the positions
and velocities of pseudo-particles under assumption of given cosmology, gravity and other
interactions depending on type of the simulation. Due to non-relativistic velocities at
cosmic distances, the N-body cosmological simulations generally use Newtonian approxi-
mations for inter-particle interactions rather than full General Relativity.
Since simulating the cosmic web with resolution of atoms is currently not possible, each
pseudo-particle represents collective mass, corresponding with assumed resolution. In
cosmology these masses can be of order 105 M⊙ [82], up to ∼ 1012 M⊙ [110]. The usual
number of particles is in range of Np ∼ 5003 up to thousands per simulation box side.
The box length LBOX depends on the purpose of the simulation. While estimating the
statistics over cosmic web segmentation on filaments, wall, voids and nodes or studying
clustering up to scales of tens of megaparsecs, one needs box of LBOX = 500Mpc/h,
where h = H/(100 km s−1Mpc−1)1 or more. However, the computational cost grows
both with number of particles and the box size. Therefore large box simulations generally
have lower resolution than these with small LBOX . The simulations with box size of order
100Mpc/h [80] do not allow for studying statistics over large scales, instead these have
spatial an mass resolution suitable for e.g. investigating one-halo scales or satellite and
central galaxy properties and their interaction with environment.

Besides of geometric properties such as box size and resolution, there are two major
categories of cosmological simulations. The former ones, hydrodynamical simulations
employ hydrodynamical schemes and account for gas thermodynamics or such processes
as stellar formation and evolution physics, radiation heating or ionization. Such approach
allows for more physically reliable recreation of galaxy populations. By comparing with
existing cosmological survey such as e.g. GAMA [111], SDSS [112] or DESI [113], one
can put constraints on galaxy evolution mechanisms. The hydrodynamical simulations
are however computationally expensive and these usually are suited for relatively small
volumes [82, 114].

The alternative category is N-body gravity-only cosmological simulations. These con-
1In cosmological simulations it is convenient to use units independent on Hubble parameter, e.g.

Mpc/h for length or M⊙/h for mass, due to high uncertainty of H(z) in real Universe
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sider only gravitational forces what makes them much less expensive computationally
when compared to hydrodynamical cases. This allows for constructing simulations with
large LBOX . Gravity-only approach is highly motivated while this is the dominating
force at large scales and for ∼ 85% of mass in the Universe there are no detections of
non-gravitational interactions. However, neglecting the baryonic component prevent from
studying the physics of galaxies directly. Instead, one can investigate populations of galax-
ies by linking them with dark matter halos, using methods as halo occupation distribution
(HOD) [115], subhalo abundance matching (SHAM) [116] or conditional luminosity func-
tion [117] which are discussed in Sec. 1.2.7.
For the purpose of this thesis we focus on gravity-only simulations. In the study we have
employed two non-hydrodynamical simulations. The former is ELEPHANT (Extended
LEnsing PHysics using ANalytic ray Tracing)[118], N-body simulation of Np = 10243

dark matter pseudo-particles in a box of LBOX = 1024 Mpc/h assuming cosmology from
WMAP − 9 [119]. Being computed with ECOSMOG [120] and ECOMOG [121] codes
which are based on publicly available RAMSES code [122], the used ELEPHANT sim-
ulation results consider the evolution in standard General Relativity, two f(R) models:
F5 and F6, and two nDGP scenarios: N1 and N5 which have been discussed in 1.1.5
and 1.1.5.
The latter is COLAV ERSE, dedicated simulation computed by Prof. Wojciech Hellwing
considering np = 10243 particles inside LBOX = 500Mpc/h box assuming Planck-18 [123]
cosmology. The COLAV ERSE simulation was computed with COLA method which
is an approximate method, described in section 1.2.7. This simulation provides models
with varying two cosmological parameters: ΩM and σ8, while setting other parameters
constant.

As for other various types of simulations, the resultant effect highly depends on state
at the beginning. Simulating the cosmic web using identical physics and parameters may
give quantitatively different outputs if their beginning setups were different. Therefore
well-defined initial conditions are crucial for understanding the developed structure.

Initial conditions

The density perturbations at young Universe were small. The furthest so far [124] de-
tection, Cosmic Microwave Background providing information about temperature fluctu-
ations at redshift z ∼ 1100 show that the relative density at that time was ρ/ρ̄ ≈ 10−5.
The commonly used starting point in simulations is tIC ∼ 10 Myr after the Big Bang,
where the density contrast was still δ ≪ 1. Therefore one can use Lagrangian Perturba-
tion Theory to generate physically and observationally motivated initial conditions (IC)
for simulations. The comoving positions x of particles at IC are related with so-called
pre-initial positions q as:

x = q +Ψ, (1.63)
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where Ψ is the displacement field. The commonly used pre-initial positions are the regular
grid in simulation box [125] or glass being a random field evolved with repulsive gravity
with damping [126]. The displacement field Ψ has a perturbative solution. While the
ICs are in highly linear regime, it is motivated to consider only first term, the Zeldovich
approximation [73]:

|Ψ1| = D(t) ∇qϕ, (1.64)

where D(t) is the growth rate and ∇q is composed of partial derivatives with respect to
positions q of the gravitational potential ϕ. By inserting Ψ1 and differentiating 1.63 with
respect to time, one can relate the IC velocities with scale factor f 1.46:

x = q −DHf ∇qϕ, (1.65)

where H = ȧ/a is Hubble factor. The gravitational potential is connected to density
field with Poisson equation 1.40. Due to the definition 2.1, the displacement field is
then also related with power spectrum. This allows for creating scale-dependent initial
conditions which correspond with the appropriate cosmological parameters obtained from
the observations of CMB and extrapolated to the redshift of IC, z = zIC .
The common and convenient approach is to prepare for one model multiple realizations of
initial conditions which are statistically identical, but differ with phases of displacement.
The physics and cosmological parameters of simulations prepared on such ICs is equal.
Such approach allows for estimating reliable uncertainties in further study, given that
every realization is an independent representation of equivalent Universes with the same
physics.

Computational methods in N-body simulations

Evolving the discretized field of particles is a nontrivial task even for collisionless dark
matter-only simulations. Computing simply the force acting on each particle from the
collective gravitational field by summing them and repeating that for all particles requires
computational effort which scales asN2

p . Therefore alternative methods and improvements
have been developed.
Solving the Poisson equation 1.40 can be obtained by pixelizing the particles into a grid
to get estimate of density field and convolving it with Green function [127]. The forces
f from the definition f = −∇ϕ are then calculated with finite-differences. This so-called
particle-mesh (PM) method is computationally efficient, however it can not resolve the
structures at scales below the mesh resolution. The another method which addresses this
problem is adaptive mesh refinement (AMR) in which the grid becomes finer in areas of
higher density. This allows for resolving the structures which are inaccessible with PM
method, but the performance becomes slower.

Simulating the evolution of particles field in extended gravity scenarios requires ad-
justed approach. For Hu-Sawicki variant of f(R) and normal branch of Dvali-Gabadadze-
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Porrati (nDGP ) models and simulation which have been employed in this study, the
extended-gravity version of AMR is used. Due to the specific density-dependent screen-
ing mechanisms in that models, the method resolving well the regions with higher density
is crucial. Since the equations of motions in extended gravity have additional degrees
of freedom compared to those for GR, these require a different approach. The codes
ECOMOG and ECOSMOG which the ELEPHANT simulation was computed with,
solve the modified Poisson and motion equations using iterative Gauss-Seidel relaxation.

Among the methods for evolving the particle field, there is COLA (COmoving La-
grangian Acceleration) method [128] which allows for time-effective simulation of cosmic
web. The assumptions of this approach are to obtain positions and velocities of particles
by computing corrections for Lagrangian Perturbation Theory instead of solving fully the
equations of motions to find numerically the position in phase-space. In COLA method,
the comoving position of particle is:

x⃗ = x⃗LPT + δ⃗x, (1.66)

where x⃗LPT is position obtained from Linear Perturbation Theory and δ⃗x is the correction.
By computing second derivative with respect to time and inserting relation 1.63, for
¨⃗x = −∇ϕ one gets:

¨⃗
δx = −∇ϕ− Ψ̈. (1.67)

The displacement field Ψ is then expanded into perturbative series:

Ψ =
∑

i

Ψi. (1.68)

With Zeldovich approximation as the first-order result, the generalized solution for as-
suming standard ΛCDM model is:

Ψi = Di(t)Ψini, (1.69)

where Di(t) is the growth rate corresponding with i-th order of perturbation. By com-
puting the factor one can obtain corrected positions of particles. Similarly, the velocities
are obtained by differentiating the relation 1.66. Due to the combination of analytical
prescription, the COLA method provides fast convergence in small number of steps. Sim-
ulating up to a chosen redshift requires even thousand times less steps when compared to
standard N-body algorithm. However the time-saving approach is occupied with low ro-
bustness at smaller scales, since COLA method can not properly evolve highly non-linear
regimes. Nonetheless, this is an useful prescription for studying larger scale ranges with
multiple simulations.

Identifying halos

The gravity-only simulations provide the distribution and velocities of dark matter pseudo-
particles. In the real Universe dark matter clumps into halos of different sizes and masses.
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To study dark matter halos from such simulations one needs to extract that information
from DM pseudo-particle field being a discretized representation of density field.
The one of most commonly used methods of finding halos in simulations is Friends-of-
Friends (FoF) algorithm [129]. It is based on a concept that two pseudo-particles belong
to one halo if the distance between them is not greater than so-called linking length
lf . The frequently used linking length is 0.2 of mean inter-particle separation [84], i.e.
lf = 0.2 3

√
LBOX/Nside, where Nside = N

1/3
p is the number of particles per simulation box

side.
The method starts with a particle and searches for all neighbors (friends) which are
situated not further than lf . Then, for each of them one searches for another neighbors
situated within D ∈ [0, lf ] distance range. The procedure is repeated until there are no
more particles fulfilling the distance criterion. By assumption of the method, the linked
particles belong to one halo and other halos can be found by repeating this algorithm fo
other yet-unconnected particles in the simulation.
The FoF is a reliable method for finding halos in the simulations. The pure algorithm
however suffers from bridging problem which is artificially linking the separate halos
which are connected with low density bridge of particles. To account for this, one can use
spherical overdensity method and chose only symmetric overdense regions without bridge
structures. For more accurate results one can search for halos using 6-dimensional phase-
space, including both positions and velocities. Such extension is adopted in ROCKSTAR
code [130] which is adopted in ELEPHANT simulation. There are also other extensions
and methods of halo finding, taking into account e.g. tidal fields [131] or mergers [132].
Algorithms for finding halos are extensively compared in [133].
The properties of identified halos such as mass can be defined in various forms. Due to
virialized halos having overdensity of around 200 (1.56), the convenient mass estimators
are M200b and M200c, the mass enclosed within a radius where the density is 200 times
the background or critical density, respectively. What is estimated from cosmological sky
surveys are the densities as a fraction of critical density ρcrit = 3H2/8πG. While M200b

would be preferred for simulations-only study due to its direct relation with mean density
of pseudo-particle field, the usage of M200c is hence more motivated for cosmological
applications. The estimate of M200c can be obtained by computing spherical overdensity
around the halo center, as implemented in ROCKSTAR code. Based on this quantity,
one can define virial radius R200c, distance from halo center at which the enclosed spherical
overdensity mass reaches M200c. Since halos do not have a boundary, the virial radius can
be treated as a proxy for their size.

Non-hydrodynamic approaches for obtaining galaxies

Gravity-only N-body cosmological simulations due to their simplicity compared to fully
hydrodynamical prescriptions allow for investigating much larger volumes of mock Uni-
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verse. Although, with this approach one can not produce galaxies. Instead, there are
statistical and observationally motivated methods for assigning galaxies to dark matter
halos.

On of such schemes is SubHalo Abundance Matching (SHAM) [116]. The general
concept is that galaxies residing in halos and subhalos have properties which are related
with properties of their hosts. For halos the most substantial feature is their mass. The
method then assumes that heavier halos contain more massive galaxies, what is well
motivated by large-scale structure formation scenarios. By using the luminosity or stellar
mass function of galaxies obtained from the observations, one match them to appropriate
halos and subhalos to provide monotonic relation between galaxy stellar mass and halo
mass. This ensures that the cumulative function for galaxies and halo mass function
from simulation agree. The alternative property of halos which may be used for matching
with galaxy is Vmax, the maximum orbital velocity of dark matter particles within halo.
Additionally, the employed property of halo can be also related with its history, e.g.
maximal mass it had which correlates with stellar mass of residing galaxy [105].
The statistics of mock galaxies assigned with this method are found to agree well with
observed data. Measurements of two- and three-point correlation functions for SHAM
galaxies are highly consistent with these measured on observed data [134, 135] what makes
it a reliable method of obtaining galaxies in non-hydrodynamical simulations.

The SHAM method is a deterministic prescription which assigns galaxies one-by-one
to the halos, based on their correlating properties. An alternative approach for populating
halos with galaxies is Halo Occupation Distribution (HOD). While the general assumption
of positive halo mass - galaxy stellar mass correlation stays unchanged, HOD is a purely
statistical prescription. For a halo with mass Mh it assumes the probability P (Ng|Mh)

that it hosts Ng galaxies. The probability usually discriminates between central and
satellite galaxies. The common form of expression defining average number of central
Ncen galaxies in a halo is [136]:

〈
Ncen(Mh)

〉
=

1

2

[
1 + erf

( log(Mh)− log(Mmin)

σlogM

)]
, (1.70)

where erf is error function and Mmin and σlogM are free parameters of HOD. Since halo
can host at most one central galaxy, one draws them from Bernoulli distribution with
mean from 1.70 [137], i.e. the value ⟨Ncen(Mh)⟩ becomes the probability that halo of
mass Mh has central galaxy. By construction the parameter Mmin is the halo mass for
which the probability of hosting central galaxy is equal to 0.5, whereas the value of σlogM
controls the slope of probability function.
The average number of satellite galaxies in a halo is given by:

〈
Nsat(Mh)

〉
=

〈
Ncen

〉(Mh −M0

M1

)α

, (1.71)

where M0, M1 and α are the parameters. The value of M0 sets average minimal halo mass
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required to host satellite galaxy, M1 is normalization mass and α defines the slope. Mul-
tiplying by ⟨Ncen⟩ not only makes the number of satellites depend on host halo mass, but
also it prevents from ambiguous situation in which halo hosts satellite galaxies while not
having central galaxy. The number of satellites is often drawn from Poisson distribution
with mean defined by 1.71.
Central galaxies are usually assumed to be placed in the center of host halo potential
[136], while satellites are distributed within [0, R200c] distance range from the center, trac-
ing NFW profile 1.57. The alternative approach is to attach satellite galaxies to positions
of pseudo-particles sampled from the halo.
Assigning velocities depends on the status of the galaxy, similarly as the position. For
centrals, it is usually given by velocity of the center of mass of the halo, what ensures
that central galaxy remains at halo center. There exist also modifications which assume
deviation from this, so-called velocity bias [138]. Velocities of satellites are often given by
velocity of central galaxy with Gaussian scatter in each direction with dispersion match-
ing root mean square dispersion of host halo [136].
Assigning the positions and velocities to galaxies is relevant also in the context of different
scenarios of gravity. For nDGP and f(R) cases, the concentration of halos defined as [79]:

c200c =
R200c

RS

, (1.72)

where RS is scaling radius from NFW profile (1.57), can be different than that for General
Relativity [139, 140].

The Halo Occupation Distribution method is a powerful tool for populating halos from
gravity-only simulations with galaxies. By tuning the parameters one can obtain mock
galaxy catalogs which mimic the observations in context of chosen statistics, e.g. 2-point
correlation function. This allows for studying different models with other statistics, testing
systematics and understanding the halo-galaxy connection. Along with alternatives and
extensions as SHAM or Conditional Luminosity Function CLF [141] relating galaxy
luminosity with Mh, one can create realistic galaxy sample within controlled environment.

Catalogs and lightcone projection

One can study mock cosmic web and its tracers in a geometry as they are simulated - in
the box. This is the distant observer approximation mentioned in Sec. 1.2.6: the observer
is assumed to be located far away from the simulation box and lines of sight are parallel
to each other. It is a convenient approach for many applications which require statistical
measurements over large volume at single redshift. The observed Universe is however not
a simulation box with all the objects having the same redshift. One instead observes the
large-scale structure in a geometry of lightcone: the farther the object is, the more time
its light travels to the observer what combined with expansion of the Universe results in
redshift-distance relation. Creating mock catalogs which reliably recover full geometry and
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selection criteria of the observations provide opportunity to study the simulated Universe
as it would be observed with sky survey. After careful accounting for systematics, it allows
for confronting such mock data with existing survey result and verifying the validity of
our predictions.

To create a lightcone, dependent on the required depth one needs to combine simula-
tion outputs from different redshifts. For the case of flat ΛCDM cosmology, the relation
1.16 between redshift z and comoving distance DC defines then the radial distance com-
ponent of the object in lightcone representation while its exact redshift is given. In the
observer frame of reference the DC(z) relation is continuous, while the state of simulated
Universe is saved for discrete points in time called snapshots. Therefore placing the ob-
jects directly at comoving distances corresponding with simulation output redshifts would
create the snapshots compressed into flat shells. For the simulations with dense snapshot
grid, i.e. small time step between adjacent outputs, obtaining the positions and peculiar
velocities at any redshift can be performed with interpolation [142, 143, 144]. It is con-
venient to start by physically centering the box of i-th simulation snapshot at distance
DC(zi) from the observer, where zi is the redshift of the snapshot. Then the positions of
objects placed closer or further from the observer than DC(zi) need to be interpolated in
time to match the relation:

DC(zinterp) = |r⃗interp|, (1.73)

where r⃗interp is the interpolated position and zinterp is redshift of interpolated moment.
This method requires additional caution to avoid e.g. double counting of the same object
from different snapshots.
The size of simulation box is often smaller than desired lightcone depth, i.e. LBOX <

DC(zmax), where zzmax is maximum redshift considered. In such cases the common ap-
proach is to replicate the box and treat the combination as new box with larger size.
This is highly motivated in simulations with periodic boundary conditions. Among the
distance preserving mappings the rotation and reflection is also included, however these
impose discontinuities in density and velocity fields.
However, not every simulation provides outputs with small time steps. For the cases of
sparse snapshot sampling, the interpolation may be a subject of nonphysical artifacts in
a lightcone. The convenient approach is to place replicated boxes from i-th snapshot by
covering the comoving distance of [0, DC(zmax)] around the observer and then cut out
comoving distance ranges which correspond with other redshifts. The limits of distances
DC,i for i-th snapshot can be defined as:

DC,i ∈
[DC(zi+1) +DC(zi)

2
,
DC(zi) +DC(zi−1)

2

]
, (1.74)

where i − 1 and i + 1 stand for earlier and later snapshot than i-th respectively, the
boundaries for i-th snapshot are set to be in the middle of comoving distances to adjacent
redshifts and naturally DC(zi+1) < DC(zi) < DC(zi−1). The resultant positions obtained
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with this method are hence the same as one would get from the interpolation approach
while assuming all velocities to be zero. With such constructed 3D distribution one then
compute sky positions [RA,DEC]. From DC the redshifts can be obtained by reversing
the numerical quantities from the relation 1.16 using e.g. bisection or Newton method.

The lightcone generated with such method allows then for accessing the simulation
output from observer-like point of view. Figure 1.2 shows a sample slice through redshifts
up to z ∼ 0.5 of a lightcone created from ELEPHANT simulation with standard GR

gravity. For demonstration purposes and due to sparse galaxy sample in Elephant, the
visualized data is dark matter pseudo particles.

Figure 1.2: Radial cross section through light cone made from ELEPHANT dark
matter pseudo-particles at RA ∈ [0, 30] deg of 300 Mpc/h vertical thickness, i.e.
|DC sin(DEC)| < 200 Mpc/h.

The scatter plot shows the distribution with respect to comoving distance and cosmo-
logical redshift.

For the purpose of accurate mimicking the observations, besides creating galaxy light-
cones one would need to incorporate additional effects, e.g. object selection. Recon-
structing the survey geometry requires applying angular and radial masks. While the
angular footprint is mostly a consequence of selective sky area observations, radial selec-
tion is mainly a result of limited sensitiveness of detector and exposure time. If mock
catalog considers galaxy luminosities and colors, comparing lightcone with observations
additionally requires either computing observed brightness of mock galaxies, or estimating
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the absolute luminosities of observed galaxies with k-correction [145]. In such case the
common approach is to then create so-called volume-limited or flux-limited galaxy sam-
ples, while the surveys have a magnitude limitation for galaxy brightness. For instance,
volume-limited sample assumes choosing a defined redshift bin [zmin, zmax] and select-
ing only the galaxies from this range whose absolute brightness is greater than absolute
brightness of faintest observable galaxies at zmax. This allows for considering all galaxies
within given distance ranges observable by a specific survey. The two latter samples are
defined analogously by taking luminosity of flux as a first cut.
With lightcones, either these mimicking various properties of survey, or constructed
to investigate projection and selection effects, one can consequently convert controlled-
environment output with imposed physics into point of view of a hypothetical observer.
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Chapter 2

Statistical properties of density field

Statistical descriptions of the cosmic web remain one of the key tools in cosmology. These
have a wide spectrum of applications, from studying galaxy evolution to testing struc-
ture formation models and gravity constraints. In observational cosmology the clustering
measurements of different galaxy populations tell us about abundance of galaxies or cos-
mological parameters [146, 147]. To achieve this, one needs to employ robust measure
which can inform how the objects are statistically distributed within the large-scale struc-
ture.

2.1 Power spectrum and correlation function

The power spectrum P(k) and 2-point correlation function (2PCF) are the most commonly
used statistical descriptions of the cosmic web. The former characterizes the amplitude
of density field fluctuations as a function of wavenumber k related straightforwardly with
scale r as k = 2π/r. Power spectrum is defined as squared modulus of Fourier space
density contrast at given k:

P (k) ≡ ⟨|δk|2⟩, (2.1)

where ⟨...⟩ indicate averaging by all orientations of vector k⃗ in Fourier space.
Since the inflation generated scale-invariant fluctuations, in post-inflationary Universe

the P (k) was in a shape of power-law [66]:

P (k) ∝ kns . (2.2)

The ns, factor describing slope of primordial power spectrum is an important cosmological
parameter being derived e.g. from CMB observations [3]. Yet at the era of recombination,
power spectrum of temperature anisotropies was different from power-law form. At later
times due to growth of inhomogeneities and baryonic effects, the density field resulting
from early-time anisotropies evolved, and so the matter power spectrum. This statistics
is sensitive on structure formation physics. Therefore, except of estimating cosmological
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parameters, P (k) is being used e.g. in constraining dark matter properties [148], probing
nonlinear-scale physics or studying direct gravity models [149]. By its construction based
on δk, the power spectrum allows for investigation of redshift-space distortions. From the
definition of power spectrum 2.1 and linear density contrast in redshift space 1.62, one
gets [97]:

P (s)(k) = (1 + βµk)
2P (k), (2.3)

where P (s)(k) and P (k) is redshift space and real space power spectrum, respectively.
Such relation has remarkable consequences for analytical estimations of other statistics
which can be linked with P (k).

The second most frequently adopted statistics is 2-point correlation function. It defines
the excess probability of finding a pair of objects separated by vector r⃗ relative to the one
expected by random distribution. The excess probability dP can be written as [67]:

dP = ρ̄2(1 + ξ(r⃗))dV1dV2, (2.4)

where n̄ is the mean density and ξ(r⃗) stands for 2PCF . The dV1 and dV2 are volume
elements occupied by two particles. Given that the density at point x⃗ implies finding dn
objects in volume dV , i.e. ρ(x⃗) = dn(x⃗)/dV , the expected number of particles at position
x⃗+ r⃗ occupying volume dV reads then:

dn(x⃗+ r⃗)|dV =
(
δ(x⃗+ r⃗) + 1

)
ρ̄dV, (2.5)

where ρ̄ is average density. The number of pairs dnp between position x⃗ and x⃗ + r⃗

occupying volumes dV1 and dV2 becomes

np = dn(x⃗)|dV1 dn(x⃗+ r⃗)|dV2 . (2.6)

While the average number of pairs is simply np,av = ρ̄dV1ρ̄dV2, one can compute the excess
number of pairs between position x⃗ and x⃗+ r⃗, over random distribution:

np

np,av

− 1 =
(
δ(x⃗) + 1

)(
δ(x⃗+ r⃗) + 1

)
. (2.7)

By computing the ensemble average of 2.7 over all positions x⃗, for given separation r⃗ one
gets: 〈 np

np,av

− 1
〉
=

〈
δ(x⃗)δ(x⃗+ r⃗) + δ(x⃗) + δ(x⃗+ r⃗)

〉
. (2.8)

By construction of the density contrast ⟨δ(x⃗)⟩ = 0, therefore the definition of 2PCF is:

ξ(r⃗) ≡ ⟨δ(x⃗+ r⃗)δ(x⃗)⟩. (2.9)

If one assumes isotropy, the ensemble averaging occurs for all orientations of r⃗ while pre-
serving the separation length r =

√
r⃗ · r⃗, resulting in ξ(r) being dependent on separation

length instead of generalized ξ(r⃗) being a function of separation vector r⃗.
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The 2-point correlation function is related with power spectrum such that P (k) is a Fourier
counterpart of 2PCF . With the assumption of isotropy in all directions, the connection
becomes:

ξ(r) =
1

2π2

∫ ∞

0

k2
sin(kr)

kr
P (k)dk. (2.10)

The isotropic 2-point correlation function being only a function of scale r is a conve-
nient tool for clustering measurements in real space. However, in redshift space the used
equivalent is anisotropic correlation function ξ(rp, π), which decomposes the separation r
into a component rp perpendicular to observer’s line of sight, and π - parallel to it. Such
two-dimensional representation gives direct insight into Fingers of God and Kaiser effects
in the clustering measurements from simulations [150] and observations [151]. Without
redshift-space distortions ξ(rp, π) would reveal purely radial dependence producing iso-
value lines being concentric circles. In redshift space however, the FoG effect is amplifying
2PCF at small rp what appears like smearing the signal along rπ. Simultaneously, Kaiser
effect at larger scales causes increasing the signal along transverse direction rp due to
squashing the cosmic web elements along rπ.

However, not for every study the full 3D analysis involving radial measurements is
applicable. For instance, investigating the clustering from observations may involve pho-
tometric data which are rich in terms of sky coverage and depth, however suffer from large
redshift uncertainties. In such case it is convenient to work with projected statistics. For
this aim the commonly used is projected correlation function wp(rp), related with ξ(r)

and anisotropic 2PCF by [152]:

wp(rp) = 2

∫ ∞

0

dπξ(rp, π) = 2

∫ ∞

0

dy ξ
(√

r2p + y2
)
. (2.11)

The projected version of correlation function is used to examine real-space clustering of
the cosmic web projected along LOS.
Another clustering measurement avoiding radial distances alongside with wp(rp), is the
angular correlation function w(θ). In that case, the counts of pairs are performed only
for their angular separation θ. This is a simplified approach in which just the angular
positions are used instead of ξ(rp, π) integrated along line of sight. Nevertheless, while
applied to catalog, this method mixes physical scales due to nonzero redshift thickness.

The direct measurement of two-point correlation function from discrete data, being
either a simulation or observation is achieved by pair counts between the data and so-called
random catalog. The randoms are used to quantify the catalog counts with respect to
random distribution and are usually denser than the data to account for Poisson shot noise
effects. While for pure simulations the construction of random catalog is straightforward,
in the case of observations these have to assume specific features resulting from the survey,
e.g. angular footprint, completeness or fiber collisions [153].
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The most commonly used estimator of 2PCF is Landy-Szalay estimator [154], which
is robust in terms of variance:

ξLS(r) =
DD − 2DR +RR

RR
, (2.12)

where DD is number of pairs of objects in data catalog separated by a chosen distance
range r±∆r, RR is equivalent value for random catalog and DR is number of cross-pairs
between data and random catalog. If randoms were constructed with different number of
objects than data, the pair counts are scaled to account for random sample size.

The literature applying 2PCF in simulations and observed data is rich [151, 102,
56, 136, 150, 155]. Along with different variants of 2-point correlation function there
exist also modifications such as marked correlation function [156] where galaxy pairs are
weighted corresponding to their physical features. Unlike comparing the clustering among
separate populations defined by binning over specific characteristics, this approach allows
for investigating continuous relation between scale and properties of clustering galaxies.

2.2 Higher orders

Nonetheless, the 2-point analysis can not fully describe statistically the cosmic web. The
large-scale structure is assumed to have Gaussian initial conditions [157], for which the
entire clustering information is encoded in its power spectrum or 2PCF . After the linear
growth where different Fourier modes δk were evolving independently, the nonlinear grav-
itational evolution imposed mode coupling and thus higher-order dependencies emerged
[158]. Since the gravity imprints higher-order statistics within the density field, these
can be employed for gravity tests at cosmological scales. To characterize the hierarchy
of cosmic web statistics more accurately, one has to investigate beyond 2-point statistics.
The generalization of 2PCF are N-point correlation functions. Unlike 2PCF , its higher
order equivalents count sets of N objects with specific inter-distances. For instance, 3-
point correlation function ξ3(r1, r2, r3) counts sets of three objects separated by r1 ±∆r,
r2 ± ∆r and r3 ± ∆r and confronting it with analogical counts in random distribution.
However, the computational cost grows rapidly with the order N , the interpretability
becomes challenging as well. There are developments of 3-point and 4-point correlation
function [159, 160], however due to the above problems, the 2PCF still remains a more
commonly used probe for studying the large-scale structure.

2.3 Smoothed density field and central moments

While studying the statistics of density field on certain scale R, it is also practical to
employ smoothed density contrast δR(x⃗), defined as:

δR(x⃗) =

∫
d3x′δ(x⃗′)WR(x⃗− x⃗′), (2.13)
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where WR(x⃗− x⃗′) is a spherical top-hat normalized window function:

WR(x⃗− x⃗′) =





3
4πR3 if |x⃗− x⃗′| ≤ R

0 otherwise.
(2.14)

Analyzing the probability distribution function (PDF) of the smoothed density contrast
δR allows to measure the differences with respect to Gaussian field. Acquiring the infor-
mation about the departure from the initial Gaussian field can be performed with n-point
correlation functions, PDFs or using moments of PDFs. Matching the shapes of PDFs
one-by-one is however ambiguous e.g. due to sampling issues. Due to aforementioned
problems with two former cases, we focus on the moments. These allow for pointing
out relevant aspects of the distribution such as spread, asymmetry, tailedness or more
convoluted characteristics. Simultaneously, according to the Wick’s probability theorem,
odd moments computed for variable X within a Gaussian distribution with mean equal
to zero, vanish and even moments depend on variance σ [161], i.e.:

E[X2J ] = (2J − 1)!! σ2J , (2.15)

where E stands for expected value, 2J is the moment and !! is the double factorial. This
fact thus makes the above method a powerful tool in detecting deviation from Gaussian
distribution and in consequence gravity signatures 2.2.

By computing ensemble average of moment J of the smoothed field, one obtains so-
called volume averaged correlation function ξ̄J(R):

ξ̄J(R) ≡ ⟨δR(x⃗)J⟩. (2.16)

The name "averaged" comes from the construction of ξ̄ and spatial smoothing. The δR(x⃗)
at each point is a density contrast δ averaged over the spherical volume surrounding that
point and consequently the relation between averaged correlation function and N-point
correlation function e.g. for case of N = 3 is [162, 163]:

ξ̄3(R) =
1

V

∫

V

d3r1d
3r2d

3r3 ξ3(r1, r2, r3), (2.17)

where V is the probed volume such that ri ∈ [0, R], i = 1, 2, 3. While the volume-
averaged correlation functions are only the functions of one scale parameter in contrast
to multidimensional NPCFs, their interpretation is much more straightforward. Due
to averaging, ξ̄J provide less information than their N-point counterparts, however their
computational cost is also lower what allows for tracing high orders J . That makes the
volume averaged correlation functions a complementary method for statistically describing
the cosmic web.

The density contrast can be expanded perturbatively around δ = 0 as:

δ =
∞∑

i=1

δi, (2.18)

37



where δi is the i-th order Perturbation Theory solution [164]. By considering first two
terms of 2.18, one can compute the variance:

σ2 ≡ ⟨δ2⟩ = ⟨δ21⟩+ 2⟨δ1δ2⟩+ ⟨δ22⟩. (2.19)

The last two components are negligible, thus ⟨δ2⟩ ≈ ⟨δ21⟩. For the third order, by
performing the same computations one obtains:

⟨δ3⟩ = ⟨δ31⟩+ 3⟨δ21δ2⟩. (2.20)

The term ⟨δ31⟩ vanishes, additionally 3⟨δ21δ2⟩ ∝ ⟨δ41⟩ [165], what leads to the proportionality
between ⟨δ3⟩ and ⟨δ2⟩2. From the definition of averaged correlation functions 2.16, one gets
ξ̄3 ∝ ξ̄22 . Performing the analysis for higher orders allows for defining the proportionality
factors SJ called cumulants or hierarchical amplitudes. By writing them in terms of
averaged correlation functions [166, 94, 167], one gets:

SJ ≡ ξ̄J

ξ̄J−1
2

. (2.21)

By construction SJ(R) measuring gravity-shaped cosmic web are thus weakly scale-
dependent functions. The shape of cumulants inform about the hierarchy between de-
veloped orders of density field statistics.

To analytically describe the shape of averaged correlation functions and cumulants, it
is convenient to work in Fourier space. According to convolution theorem, the convolution
in Fourier space is a multiplication. Therefore the smoothed density contrast from 2.13
becomes:

δR(x⃗) =
1

(2π)3

∫
d3k δ(k⃗)WR(k⃗)e

ik⃗·x⃗. (2.22)

The expression for second-order averaged correlation function is then:

⟨δ2R⟩ =
1

(2π)6

∫
d3k eik⃗·x⃗

∫
d3k′ e−ik⃗′·x⃗WR(k⃗)WR(k⃗′)⟨δ(k⃗)δ(k⃗′)⟩. (2.23)

Employing the alternative definition of power spectrum P (k) which is obtained from its
connection with 2PCF :

⟨δ(k⃗)δ∗(k⃗′)⟩ = (2π)3δD(k⃗ − k⃗′)P (k), (2.24)

where δD is Dirac delta, from 2.23 one gets [165] the relation between second-order aver-
aged correlation function and the power spectrum:

ξ̄2(R) ≡ ⟨δ2R⟩ =
1

(2π)3

∫
d3k

[
WR(k⃗)

]2
P (k). (2.25)

For the case of order J = 3, one can use the relation 2.20 and the solution of second order
[165]:

δ2(x⃗) =
1

(2π)3

∫
d3ke−ik⃗·x⃗

∫
d3ke−ik⃗′·x⃗δ1(k⃗) δ1(k⃗′)

[5
7
+
k⃗ · k⃗′
k′2

+
2

7

( k⃗ · k⃗′
k k′

)2]
. (2.26)
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One can obtain ⟨δ3R⟩ by inserting this to 2.20 and using the relation from 2.22. Performing
this analysis for higher orders requires much more effort. These contain more contributions
of coupled lower terms δi, hence applying next perturbative expansion terms becomes im-
practical due to computational reasons. The complication increases while studying addi-
tional effects, e.g. redshift space distortions where isotropy assumption fails. Quantitative
studies of observed or simulated large-scale structure with volume averaged correlation
functions of various orders require estimating them numerically [168, 169, 170].

2.3.1 Numerical approach

The definition 2.16 of ξ̄J is constructed using continuous density field. However, the
galaxies and dark matter halos, even dark matter pseudo-particles in the simulations
form a discrete field. While considering the scale R, one can treat counts of these tracers
occupying corresponding volume as a proxy for smoothed local density, i.e.:

Nx⃗,R ≈ ρR(x⃗), (2.27)

where Nx⃗,R is number of objects within a sphere of radius R, centered at x⃗. Due to the
linearity of convolution operation, the relation between smoothed density contrast δR(x⃗)
and smoothed density ρR(x⃗) is the same as for non-smoothed field, i.e. 1.37. Therefore
one can expand the definition 2.16 into:

ξ̄J = ρ̄ −J
R

〈
(ρR(x⃗)− ρ̄R)

J
〉
, (2.28)

where ρ̄R is the average of smoothed density. The combination of relations 2.27 and 2.28
shows that the estimate of volume-averaged correlation function on discrete tracers can
be obtained using central moments of counts:

mJ,c = E
[
(Ni − N̄)J

]
. (2.29)

Obtaining the set of counts Ni and average N̄ is performed by counting the objects at
various positions x⃗i allowing to cover statistically representative volume of catalog or
simulation box. It is assumed that averaging the counts is equivalent to taking ensemble
average if the volume is representative. This so-called counts-in-cells (CIC) method is a
common approach for computing ξ̄J [167, 171, 172, 173, 169].

Central moments of the counts contain contributions from lower orders. This is rele-
vant especially in terms of Gaussian distribution where even orders of J > 4 are functions
of variance. To subtract these contributions and, as a consequence, obtain moments that
at J > 2 measure the departure from Gaussianity, one can use the so-called connected
moments µJ [167, 174]. The moment generating function M(t) which enables to define
moments mJ of given distribution is:

M(t) ≡ E[etX ]. (2.30)
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Expanding the exponent into Taylor series around zero and inserting mJ ≡ E[XJ ] 1 gives
the exact relation between M(t) and moments:

M(t) =
∞∑

J=0

mJ

J !
tJ . (2.31)

While the moments mJ can be then obtained from:

mJ =
dJ

dtJ
M(t)

∣∣∣
t=0
, (2.32)

the connected moments µJ are defined by:

µJ =
dJ

dtJ
ln
(
M(t)

) ∣∣∣
t=0
. (2.33)

By construction µJ vanish for J ≥ 3 if Gaussian distribution is assumed what makes it
suitable for detecting non Gaussianity. Up to J = 3, µJ and raw moments mJ match,
however at bigger J the differences appear. Higher order connected moments up to J = 5

are:

µ4 = m4 − 3m2
2 (2.34)

µ5 = m5 − 10m2m3. (2.35)

Since the computation of µJ is performed on discrete objects, these are a subject of
Poisson shot noise, especially at the scales where N̄ ∼ 1 and lower. Subtracting this
contribution requires assuming that the Poisson distribution has the same mean N̄ as the
resultant CIC measurements. The generating function for discrete field MD reads [175]:

MD(t) =M(et − 1). (2.36)

Inserting the relation 2.36 into 2.31 calculated on connected moments provides the expres-
sion of connected moments with Poisson contributions. To obtain shot noise - corrected
moments kJ , one needs to subtract the noise components. The corrections cJ are then:

cJ =
dJ

dtJ

[ ∞∑

J=0

µJ

J !
(et − 1)J

]∣∣∣∣∣
t=0

− µJ . (2.37)

Finally, the corrected terms are provided by kJ = µJ − cJ . By computing the corrected
moments up to order J = 5, one gets:

k2 = µ2 − N̄ (2.38)

k3 = µ3 − 3k2 − N̄ (2.39)

k4 = µ4 − 6k3 − 7k2 − N̄ (2.40)

k5 = µ5 − 10k4 − 25k3 − 15k2 − N̄ . (2.41)

1The objects mJ and mJ,c from Eq. 2.29 are quantitatively the same. However, due to the qualitative
differences: mJ is moment derived from distribution X while mJ,c is centralized moment estimated from
data, the subscript "c" will be kept for central moments.
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The obtained connected and shot noise - corrected moments kJ quantify the departures
from Gaussianity and are model-corrected to the shot noise. However, these are the
central moments of the density while averaged correlation functions ξ̄J are by definition
2.16 moments of the density contrast. Therefore to compute ξ̄J , one can use the expanded
form 2.28. Then one have:

ξ̄J =
kJ
N̄J

. (2.42)

Such computation is being performed for counts in spheres of radii R (Eq. 2.27), thus
while repeating this method for different sizes of spheres, one obtains averaged correlation
function as a function of scale, ξ̄J(R).

2.3.2 Counts and pixelization

Depending on the size of simulation box or catalog of observed galaxies, one needs to
compute ξ̄J for different ranges of scales. The lower range is limited by the scales where
Poisson correction is no longer applicable, what depends on small N̄ < 1 and sampling.
The upper limit is restricted by the amount of information that one can acquire from nC

counts, since the larger is the scale R, the less spheres can cover the full catalog. At some
scale the number of spheres containing full information becomes insufficient to provide
statistically representative sample [176]. In practice the common upper range used is 1/10
or 1/20 of simulation box length.

To obtain relevant information from ξ̄J(R) showing the trends with respect to scale,
one needs to consider more than one scale. Additionally, at each scale the number of
spheres could vary from thousands to even tens of millions. One usually needs to consider
also different catalogs, models or realizations. Performing the counts for catalog with
Nall objects in standard way, i.e. verifying for every object if it belongs to given sphere,
would require no = nc · Nall operations for just one scale. Instead, one can use so-called
pixelization of catalog, i.e. grouping the objects in voxels with defined shapes and sizes.
While verifying which objects are inside the sphere, one then rejects entire pixels which
do not cross the sphere, rejecting simultaneously all objects within that pixels instead
of inspecting them one-by-one. The commonly used pixelization concerns the spherical
analysis on sky and is performed with HEALPIX software [177]. However in some specific
cases and for three-dimensional problems the standard cubic pixelization is required.

While the aim is to minimize the number of operations, one needs to carefully adjust
the pixel size LPIX . For a basic case of spherical counts in simulation box with side LBOX ,
no depends on LPIX/R, Nall and LBOX . Since counting the objects separately refers only
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to pixels crossing partially the sphere, the number of operations2 is:

no =

[(LBOX

LPIX

)3

− η
( R

LPIX

)]
+ η

( R

LPIX

)
·
(LBOX

LPIX

)3

·Nall, (2.43)

where η(R/LPIX) is average number of pixels partially crossing randomly positioned
sphere of radius R. The term in square bracket describes number of pixels being either
fully inside or outside of the sphere. For very small LPIX this contribution dominates
since one has to either reject or add large number of small pixels what makes the pix-
elization ineffective. In the opposite situation where LPIX becomes large, the second
part dominates meaning that the number of objects needed to count one-by one becomes
large, since pixels crossing the sphere occupy large volume. Therefore finding the optimal
pixelization is crucial for computing averaged correlation functions. In practice it can be
done separately for each given geometry of the problem.

2.3.3 Alternative averaged correlation functions

Similarly to N-point correlation functions, their averaged alternatives ξ̄J can also be ex-
plored in different forms. In cases of angular catalogs it is convenient to work with angular
area-averaged correlation functions w̄J(θ) [167]. The entire computational procedure is
identical as for three-dimensional equivalent except of that the counts are performed
within circles positioned on the sky. Additionally, the study is then performed for pro-
jected density field δp related with three-dimensional density ρ by:

ρp(γ⃗)dΩ = dΩ

∫ ∞

0

dr r2F (r)
ρ(rγ⃗)

ρ̄
, (2.44)

where γ is unit vector pointing from observer towards Ω⃗ on the sky and F (r) is the
selection function which defines completeness of the data in catalog.

The angular averaged correlation function is useful if the data has large uncertainties
of distance measurements, such as in photometric surveys. For mock catalogs or obser-
vational data with more precise distances one can perform three-dimensional study of
redshift-space effects with two-point correlation of a form ξ(rp, π) by splitting inter-pairs
separations into components perpendiculars and parallel to line of sight. For volume-
averaged correlation functions such study can be made using non-spherical window func-
tion. The applicable modification has to acknowledge the asymmetry between both di-
rections, i.e. parallel and perpendicular to line of sight. In the case of distant observer
approximation, the simplest shape is either a cylinder with radius r⊥ and length r∥ elon-
gated along LOS, or an ellipsoid with semi-axes of {r⊥, r⊥, r∥} where axis with length
r∥ is elongated along LOS and r⊥ - perpendicular to it. While the former configuration

2Number of operations in this context is number of considerations whether single target (object or
pixel) belongs to the sphere or not
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seems slightly less complex, the ellipsoidal approach is more related to basic ξ̄J which as-
sumes spherical window function and does not impose sharp edges in kernel shape which
are problematic in Fourier space. In contrast to spherical case, the ellipsoidal volume
averaged correlation function depends on two scales which are the axes r∥ and r⊥. By
orienting LOS along z axis, the ellipsoid window function is:

Wr∥,r⊥(r⃗ − r⃗′) =





4
3πr∥r2⊥

if
(

x−x′
r⊥

)2

+
(

y−y′

r⊥

)2

+
(

z−z′
r∥

)2

≤ 1

0 otherwise,
(2.45)

where r⃗ = [x, y, z] and r⃗′ = [x′, y′, z′]. This can be also related with spherical window
function:

Wr∥,r⊥(r⃗ − r⃗′) =
1

r∥r
2
⊥
WR=1

(x− x′

r⊥
,
y − y′

r⊥
,
z − z′

r∥

)
. (2.46)

Due to the scaling properties of Fourier transform, i.e. F (g(x/a)) = a g̃(ka), the ellipsoid
window function in Fourier space is:

Wr∥,r⊥(k⃗) =
3

k3r
(sin(kr)− kr cos(kr)), (2.47)

where kr =
√

(r⊥kx)2 + (r⊥ky)2 + (r∥kz)2. Since the only conceptual difference between
spherical ξ̄J(R) and ellipsoidal averaged correlation function is shape of the window kernel,
one can implement the same analysis which led to the relation 2.25, but with discrimi-
nation between directions parallel and perpendicular to LOS. Taking advantage of the
symmetry in azimuthal coordinate and expanding d3k in cylindrical coordinates gives the
expression for second order of ellipsoidal function:

ξ̄2(r∥, r⊥) =
1

(2π)2

∫
kρdkρdkz P (kρ, kz)

[
Wr∥,r⊥(kρ, kz)

]2
, (2.48)

where k2ρ = k2x + k2y. Inserting the anisotropic power spectrum with redshift-space dis-
tortions from relation 2.3 or more nonlinear approximations [178] allow for studying the
influences of bias and growth factor on ellipsoidal correlation function of the cosmic web.

While the analytical computations for higher orders of ξ̄J(r∥, r⊥) become sophisticated,
similarly to spherical case the numerical cost of estimating such function on simulated or
observed data is relatively low. This allows for studying redshift-space effects in higher
orders with additional degree of freedom. The richness of new [179] and upcoming cos-
mological data [180, 181, 182] combined with high variety of tools for statistical analysis
of the cosmic web thus necessitate the development of cosmological simulations.
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Chapter 3

Paper I: Angular clustering in ΛCDM
and extended gravity

3.1 Introduction

Gravity is a dominant force shaping the structure formation on cosmological scales. The
standard theory - General Relativity has not yet been robustly tested at cosmic distance
ranges. The common approach is to extrapolate GR into largest scales assuming that it
properly describes gravity there. To verify if such assumption is valid and better under-
stand the physics governing the evolution of cosmic web, one need to reliably constrain
the gravity at cosmological distances.
Gravity shapes the initial density field imposing non-Gaussianities. These can be quanti-
fied with moments-based averaged correlation functions ξ̄J and cumulants sJ , which hence
consist a powerful tool for testing gravity at cosmic scales. In this part we compare stan-
dard ΛCDM model assuming General Relativity, with two families of extended gravity:
f(R) and nDGP. The identification of potential extended gravity signals (EG signals),
i.e. discrepancies between standard model and extended gravity can be performed by
confronting clustering measurements from simulation, using ξ̄J and sJ . To mimic the ob-
servations, instead of working with raw simulation boxes it is then motivated to construct
light cones. In context of redshift measurements, the observations are either photometric
or spectroscopic. The former ones are characterized by much larger sky coverage and
depth, what comes with the price of larger redshift uncertainties than for spectroscopy.
While we work with statistics, for the sake of future observational comparisons we fo-
cus on angular measurements. Despite of not containing valuable redshift-space signals,
angular clustering still encode information valuable for discriminating between gravity
scenarios. In this work, the angular averaged correlation function and angular cumulants
are denoted by WJ(θ) and SJ(θ), respectively.
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Galaxy and halo angular clustering in ΛCDM
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Using a suite of N-body simulations, we study the angular clustering of galaxies, halos, and dark matter
in Λ cold dark matter and modified gravity (MG) scenarios. We consider two general categories of such
MG models, one is the fðRÞ gravity, and the other is the normal branch of the Dvali-Gabadadze-Porrati
brane world. To measure angular clustering we construct a set of observer-frame light cones and resulting
mock sky catalogs. We focus on the area-averaged angular correlation functions WJ , and the associated

reduced cumulants SJ ≡WJ=W
ðJ−1Þ
2 , and robustly measure them up to the ninth order using counts in cells.

We find that 0.15 < z < 0.3 is the optimal redshift range to maximize the MG signal in our light cones.
Analyzing various scales for the two types of statistics, we identify up to 20% relative departures in MG
measurements from general relativity (GR), with varying signal significance. For the case of halos and
galaxies, we find that third-order statistics offer the most sensitive probe of the different structure formation
scenarios, with bothW3 and the reduced skewness S3 reaching from 2σ to 4σ significance at angular scales
θ ∼ 0.13°. The MG clustering of the smooth dark matter field is characterized by even stronger deviations
(≳5σ) from GR, albeit at a bit smaller scales of θ ∼ 0.08°, where baryonic physics is already important.
Finally, we stress that our mock halo and galaxy catalogs are characterized by rather low surface number
densities when compared to existing and forthcoming state-of-the-art photometric surveys. This opens up
exciting potential for testing GR and MG using angular clustering in future applications, with even higher
precision and significance than reported here.

DOI: 10.1103/PhysRevD.106.043513

I. INTRODUCTION

One of the greatest accomplishments of modern cosmol-
ogy is the formulation of the concordance standard cos-
mological model, the so-called Lambda cold dark matter
(ΛCDM). This is a phenomenological model assuming that
around 30% of the present-day Universe energy density is
in the form of nonrelativistic matter (baryonic and dark)
and the remaining 70% is attributed to the “dark energy,” an
exotic phenomenon propelling the late-time accelerated
expansion of the Universe. ΛCDM is a simple model with
six free parameters that is able to pass successfully many
stringent observational tests, e.g., [1–4].
One of the core predictions of ΛCDM is that the cosmic

large-scale structure (LSS) originated from gravitational
instability acting on early matter distribution [5]. The
widely accepted scenario assumes adiabatic Gaussian
initial conditions (as supported by the cosmic microwave
background measurements [1]), which were then reshaped
due to the nonlinear gravitational evolution. The resulting
LSS is organized into the so-called cosmic web [6], as

traced by its main building blocks—luminous galaxies.
Among the most striking features of this cosmic-web
arrangement are the high anisotropy of the underlying
density distribution (i.e., volume dominance of voids, mass
dominance of filaments) and a scale-dependent clustering
amplitude, observed also in the spatial distribution of
galaxies [7–11].
The scale-dependent hierarchical matter and galaxy

clustering is one of the most striking manifestations of
the gravitational instability paradigm [5].
These unique and characteristic features of the LSS have

been extensively employed as powerful probes of the
standard cosmological model and its core assumptions.
In the past few decades, galaxy photometric and spectro-
scopic catalogs have been growing both in volume as well
as in quality of the data, which allowed for more and more
precise tests of the fundamental components of ΛCDM.
Thanks to these growing observational data, presently

the spatial distribution of galaxies and their time evolution
can be readily used for performing stringent tests of the
gravitational instability scenario. The latter is rooted in two
core assumptions: the adiabatic Gaussian initial conditions
and general relativity (GR) as an adequate and valid
description of gravitational clustering on all scales and at
all times. In this paper we explore the possibility of
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employing the properties of late-time matter and galaxy
angular clustering for testing and differentiating GR and
beyond-GR structure formation scenarios.
One of the simplest characteristics of matter clustering is

the two-point correlation function (2PCF). This statistics is
relatively easy to measure, which makes it a fundamental
object commonly used in cosmology for quantifying matter
and galaxy clustering [8,12–16]. In this context, we can
recall that Wick’s theorem for a Gaussian random field
states that the first two order statistics (i.e., the mean and the
variance) are sufficient to provide a complete statistical
description of the field and clustering. In other words, for
normal distribution all the higher-order odd moments
vanish, and all the higher-order even moments are propor-
tional to the variance.
However, the distribution function of a developed late-

time LSS on scales below a few hundred megaparsecs
deviates from a pure Gaussian distribution. Because of
gravitational evolution, depending on the scale and the
epoch involved, non-Gaussian features emerge, leading to
the highly anisotropic and complex large-scale structure.
Therefore, the variance and related two-point statistics
no longer provide a sufficient description of the late-time
LSS on scales important for galaxy formation and cluster-
ing. To infer additional information, one can resort to
higher-order or beyond-two-point clustering statistics.
Analogically to 2PCF, we can define N-point equivalents.
However, already starting from N ¼ 3, such correlation
functions (CFs) become very expensive computationally
and their use in cosmology has been so far limited to some
special cases [17–21]—but see Refs. [22,23] for some
recent developments.
An approach that is complementary to N-point statistics

involves Nth-order central moments. These are volume-
averaged versions of their full N-point counterparts, but are
significantly easier to compute and model. At the same
time, higher-order central moments, and the associated
cumulants, contain extra information on the shape and
asymmetry of the matter and galaxy distribution. Thus,
these statistics bear information that is complementary to
that carried by two-point statistics, e.g., [24–26].
Both two-point and higher-order clustering statistics

have proven to be insightful and rich cosmological probes.
It is, however, worth mentioning that the higher central
moments are especially well suited for testing departures
from standard structure formation scenarios. This is thanks
to their increased sensitivity to non-Gaussian features of the
distribution functions [5,27,28]. In general, the nonstandard
gravitational instability models would involve some level
of modified gravity (MG). In such scenarios one usually
deals with low-energy effective scalar-tensor modifications
to the Einstein-Hilbert action integral [29]. In that sense,
these models are not new fundamental theories of gravity in
their own right, but rather phenomenological manifesta-
tions (and parametrizations) of deeper underlying theories.

In this work we consider two such MG models, which
constitute a good representative sample of a whole family
of effective phenomenological modifications to gravity.
The first consists of the so-called fðRÞ framework [30,31],
where in the gravity action integral the classical Ricci’s
scalar R is generalized to a functional fðRÞ form [32]. The
second family is the so-called normal branch of the Dvali-
Gabadadze-Porrati (nDGP) brane world model [33,34],
where gravity can propagate in the full five-dimensional
space-time, while the standard elementary particle forces
are confined to a four-dimensional subset space-time of a
brane [35]. Both of these MG scenarios admit the action of
the so-called fifth force on cosmological scales. This extra
force is a manifestation of the additional scalar degrees of
freedom of these models that, when coupled to the usual
matter fields, affect the action of the gravitational instability
and structure formation on galactic and intergalactic scales
[36]. The stringent tests of GR in the strong-field regime
[37–39] and in the weak field for the Solar System and our
own Galaxy [40,41] impose rigorous constraints on the
scales and times on which such a MG-induced fifth force is
allowed to manifest itself. In order to pass these fifth force
tests, viable MG models need to suppress propagation of
the extra degrees of freedom in environments such as the
Solar System or the Milky Way. The physical phenomena
that lead to the fifth force suppression are called the
screening mechanisms. Both the fðRÞ and the nDGP
theories naturally admit for such effects. Tuning the related
theoretical parameters of these theories allows for finding
solutions that simultaneously pass the local gravity tests
and match the global ΛCDM expansion histories.
We focus on angular correlations, i.e., those projected

along the line of sight. While the full 3D CFs give direct
access to such cosmologically important effects as redshift-
space distortions, they can only be observationally studied
with sufficient accuracy using spectroscopic redshift cata-
logs. These often suffer from small-area coverage and/or
sparse sampling and, even in the era of the forthcoming
Dark Energy Spectroscopic Instrument data, will include
only a small fraction of all observable galaxies. Another
problem connected to spectroscopic surveys is that their
analysis requires theoretical input on redshift- to real-space
mapping, which is a strongly model-dependent procedure
[42–44]. On the other hand, photometric (imaging) surveys
typically offer a much better combination of depth, sky
coverage, and completeness than the spectroscopic ones
and, if accompanied by photometric redshifts, give the
possibility to perform tomographic analyses of the density
field. In view of future multibillion galaxy catalogs from
such campaigns as the Vera Rubin Observatory Legacy
Survey of Space and Time [45] or the Euclid space mission
[46], it is timely to investigate possible MG signals from
higher-order angular clustering.
This paper is structured as follows: In Sec. II, we

describe gravity models and simulations used. The broader
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picture of clustering statistics is contained within Sec. III.
Afterward, in Sec. IV, we show the method of clustering
calculations and introduce corresponding analytical pre-
dictions. Later, in Sec. V, we motivate our choice of red-
shift ranges that we use in the search for modified gravity
signals. Then we present all our results, which are
summarized and concluded upon in Sec. VI.

II. MODIFIED GRAVITY
MODELS AND SIMULATIONS

In our study we will examine and compare higher-order
angular clustering in different growth-of-structure scenarios.
For this purposewe invoke the extended lensing physicswith
analytical ray tracing (ELEPHANT) numerical N-body
simulations [47] performed using the ECOSMOG code [48].
They assume the evolution ofNpart ¼ 10243 particles within
an Lbox ¼ 1024=h Mpc sized box. Our fiducial, or baseline,
model of choice is the GR-based flat ΛCDM model with
WMAP 9-yr cosmology [49], with matter and dark energy
density parameters Ωm ¼ 0.281 and ΩΛ ¼ 0.719, and the
Hubble constantH0¼100hkms−1Mpc−1 where h ¼ 0.697.
On top of this background ΛCDM model, we consider

two beyond-GR scenarios. The first of them—the Hu-
Sawicki variant of fðRÞ MG—introduces the fifth force,
which is suppressed in dense environments thanks to the
virtue of the chameleon mechanism [50,51]. Adopting a
standard choice of the free parameters for this model, e.g.,
[30,44,52], we are left with only one variable to be set in
order to characterize the late-time modifications to GR: the
amplitude of the background scalar field at the present times,
usually denoted as fR0. Following the previous works that
employ the ELEPHANT simulation suite [47,53], we label
the two fðRÞ variants used as F6 and F5, which corresponds
to fR0 ¼ f−10−6;−10−5g, respectively.
The second MG family—nDGP models—incorporate

the Vainshtein screening mechanism [33,54] to suppress
the fifth force in the vicinity of massive bodies. In the
parametrization adopted here, the nDGPmodels can be also
fully characterized by a single choice of the model physical
parameter. This is the so-called crossing-over scale rc,
which depicts a characteristic scale where the gravity
propagation starts to leak out to the fifth spatial dimension.
Taking c ¼ 1, we can fix our nDGP variants to have
H0rc ¼ f5; 1g Gpc=h, which we label as N5 and N1,
accordingly.
We calculate angular counts for the projected dark matter

(DM) density field from subsampled data, using only 0.1%
from the each initial 10243 particle load. Such subsampling
severely limits the spatial and angular resolution of the
density fields, but this is needed to facilitate numerical
calculations. Dark matter halos were extracted using the
ROCKSTAR halo finder [55] and mock galaxy catalogs
were generated with the halo occupation distribution
(HOD) method in Ref. [47] using parameters from [56].

Unlike the dark matter particles, dark matter halos and
mock galaxies are not subsampled, and their relatively low
number density (see Sec. VA) is related to the very nature
of the ELEPHANT catalogs.
For our analysis we employ five independent random

phase realizations of initial conditions and take snapshots
saved at z ¼ 0.0, 0.3, 0.5, and 1 for further analysis.
In order to work in a sky-projected observer frame, we

need to construct proper observer light cones from our
snapshots. The redshift range we consider, i.e., 0 < z < 0.5
for galaxies and DM particles, and 0 < z < 1 for halos,
corresponds to comoving scales that by far exceed the
ELEPHANT simulation box size. To cope with that we
locate the observer at the r⃗0 ¼ ð0; 0; 0Þ corner of the box
and use the box replications method (see [57–59]) to build
the light cones. For each snapshot, we copy the adequate
box within ranges defined as half the comoving distance
between the redshift of the current and each adjacent
snapshot.
From our light cones we generate two-dimensional sky

catalogs consisting of a series of ∼1567 deg2 chunks,
which would correspond to sky patches of sizes 40° × 40° if
centered on the equator. Each of our 2D sky catalogs is a
sum of several separate sky chunks.1 We found that for 15
chunks we already attain the maximum spatially indepen-
dent catalog information, as measured by the catalog
effective volume Veff .
This effective volume needs to be defined because, due

to box replications, the catalogs contain many copies of
the same structures. Thus, the total amount of independent
cosmological information is always smaller than it nor-
mally would result from the actual light cone comoving
volume. To get a total measure of unique (i.e., not cloned)
volume, we use the catalog effective volume Veff . We
define it as a sum over all the simulation box texels that are
used at least once, divided by their total number inside the
box. For more details on how Veff is measured, see the
Appendix.
Following Ref. [44], for our halo samples we consider

only objects with Mvir ≥ 1012 M⊙=h. In Ref. [44] it was
found that the abundance of less-massive halos is already
affected by the mass resolution limit of the simulations.
After this initial mass cut, with the same universal threshold
for all the simulations runs, we employ secondary indi-
vidual sample mass cuts. These are administered in such a
fashion to obtain the same object number density within a
given initial condition realization suite among all different
physical models (i.e., F5, F6, GR, N1, and N5). Here
randomly selected least-massive halos are trailed off until a
given sample is reduced to the target number density. The
latter is set by the lowest number density sample within a
given ensemble. This is done to mimic a volume-limited

1Note that some of the sky chunks can partially overlap over
the mock sky. For details, see the Appendix.
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sample selection effect. For the mock galaxy sample, we
applied an analogous operation. However, since for gal-
axies we do not have masses nor luminosities, we trail off
all galaxies picked up randomly.

III. HIGHER-ORDER CLUSTERING

Our goal is to study clustering properties of matter, halo,
and galaxy distributions over a large range of scales and
epochs.Here,wewill define the basic objects andmethods of
our clustering analysis.Wewill work either with physical (r⃗)
or comoving (x⃗) distance units, where the usual relation is
r⃗ ¼ x⃗=ð1þ zÞ. Adopting a standard notation, wewill refer to
comoving units as either h−1 Mpc or h−1 Gpc.
We define the standard density contrast that measures a

local (i.e., at point x⃗) fluctuation of the density around a
uniform background as

δ3Dðx⃗Þ ¼
ρðx⃗Þ
ρ

− 1; ð1Þ

where ρ̄ is the background density. Converting the coor-
dinates into sky frame x⃗ → ½r; Ω⃗�, where r is radial distance
and Ω⃗ represents a sky-pointing angular vector, we can
obtain the projected density contrast,

δ2DðΩ⃗Þ ¼
Z

rmax

rmin

drFðrÞr2δ3Dð½r; Ω⃗�Þ: ð2Þ

Here, the rmin =max values stand for the distance ranges
covered by a given survey and FðrÞ is its selection function.
From now on, for simplicity we will drop the “2D”
subindex whenever referring to δ2D.
The global properties of density fluctuations are encap-

sulated in their 1D probability distribution function (PDF),
which can be estimated by averaging the fluctuations over
many sky directions. Gravitational clustering moves the
shape of the density PDF away from its initial Gaussian
form [60]. All the gravity-induced nontrivial PDF shape
deviations at a certain scale can be characterized by a
hierarchy of the central moments. We will use the standard
definition of a central moment of Jth order,

μJ ¼ E½ðδ − EðδÞÞJ�; ð3Þ

where E is the expected value, δ is our random variable, and
all the variables intrinsically depend on the angular scale θ.
In our work, θ is a radius of a circle centered on a particular
sky direction Ω⃗. We average over many such circles to
obtain our PDFs.
The central moments μJ estimated for a given sky area

at some angular scale θ can be considered as area averages
of the full J-point angular clustering functions. They are
related with J-point correlation functions by [7]

WJðθÞ≡ μJ
hδiJ ¼

1

A

Z
Ω
dΩ1…dΩJwJðθ1;…; θJÞ; ð4Þ

where A ¼ 2πð1 − cos θÞ is the sky area enclosed by
angle θ.
The Jth-order moments can be readily estimated using

the counts-in-cells method [25,61]. The moments are the
ensemble average over all the circular cells (of intrinsic
angular scale θ) cast over the whole area of interest on the
sky Ω,

WJðθÞ≡ hδJθi; ð5Þ

where δθ is a projected angular density fluctuation esti-
mated at scale θ from angular counts.

IV. CLUSTERING AND MOMENTS
OF COUNTS IN CELLS

We estimate the moments of the angular clustering using
the commonly adopted method of counts in cells (CIC)
[25]. We randomly place NC circles of angular radius θ
within the investigated sky area, making sure they are fully
within the considered region. Those extending outside the
footprint are ignored and replaced by new randomly drawn
ones. Then, we count the objects found inside each circle.
The Jth central moment of the CIC distribution is

mJðθÞ ¼
1

Ntot

XNtot

i¼0

ðNi − hNiÞJ; ð6Þ

where Ni stands for the object count in the ith cell, hNi is
the mean count over all the circles with a given radius θ,
and Ntot is the total number of circles used. We choose
Ntot ∝ Asky=ð2πð1 − cosðθÞÞÞ to scale as the number of
independent circles that we can place within the analyzed
sky area. Since we are interested in the specific shape
departures from a normal distribution, we will work with
the connected moments μJ. That is, we subtract from the
central moments the parts expected for a Gaussian PDF.
The first few connected moments are

μ2 ¼ m2;

μ3 ¼ m3;

μ4 ¼ m4 − 3m2
2;

μ5 ¼ m5 − 10m3m2: ð7Þ

Since we will work with relatively sparse samples, the
mean counts, especially at small θ, can become small and
the impact of the shot noise will become significant. To
reduce it, we follow the procedure of Ref. [25] and subtract
from the connected moments the contribution expected
from a Poisson distribution for a given mean count hNi [see
Eq. (A6) therein].
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The shot-noise correction is obtained by considering the
contribution to the moments from a Poisson distribution
with the same mean number of counts hNi as the studied
sample. For reference we only recall the first few shot-noise
corrected moments kJ,

k2 ¼ μ2 − hNi;
k3 ¼ μ3 − 3k2 − hNi;
k4 ¼ μ4 − 7k2 − 6k3 − hNi;
k5 ¼ μ5 − 15k2 − 25k3 − 10k4 − hNi: ð8Þ

Finally, the Jth-order corrected and averaged correlation
function can be written as

WJ ¼
kJ

hNiJ ; ð9Þ

and the rescaled cumulants, or more commonly dubbed in
cosmology as “hierarchical amplitudes,” will be

SJ ¼
WJ

WJ−1
2

≡ WJ

σ2J−2
: ð10Þ

A. Signal significance

Following a standard approach, we estimate the error on
the quantities given by Eqs. (9) and (10) as the variance
around the mean, obtained as the ensemble average over all
equivalent realizations of a given dataset (i.e., a light cone).
In practice, we will be more interested in assessing the
differences between each MG model and the fiducial
ΛCDM case. This is measured by the relative difference
of paired observables always taken with respect to the GR
case. Both the fiducial GR and any given MG model
sample will be characterized by their own individual
variance. For that reason, comparing clustering moments
of different models with different individual variances
might be difficult and not intuitive. To foster a more
natural and easy-to-interpret comparison, we will use the
signal significance parameter ψ, defined as

ψJ ¼
X − Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X þ σ2Y

p ; ð11Þ

where X and Y are measurements and σX;Y are their
respective uncertainties. Here, J indicates the order of
the X and Y statistics used to calculate the significance. So,
for example, ψ3 can indicate either thatW3 or S3 was used.
In this work, we will always take Y as GR and any given
MG model is taken as X. The significance ψ gives a simple
notion of the direction of the difference with respect to the
fiducial case, preserving the sign of the difference, and
automatically traces the significance of this difference due
to the normalization factor in the denominator.

B. Perturbation theory predictions

Our main results in this work are based on the analysis of
N-body simulations, which by design can probe deeply into
the nonlinear regime of structure formation. However, it is
very informative and beneficial to provide also analytical
predictions with which the numerical results can be gauged.
For that purpose, we use calculations based on the weakly
nonlinear perturbation theory (PT), which yield predictions
for low-order moments. These are obtained by integrating
over the matter power spectrum with appropriate window
and selection functions (see [62,63]).
The second moment is given by

W2ðθÞ¼
1

2π

Z
Rmax

Rmin

r4F2ðrÞdr
Z

∞

0

kPðkÞW2
2DðkθrÞdk; ð12Þ

where PðkÞ is a given model power spectrum, and

W2DðkÞ ¼ 2
J1ðkÞ
k

ð13Þ

is the window function for which we take a circular top hat
in the Fourier space with the first-order spherical Bessel
function J1. The Rmin =max stand for catalog comoving
distance ranges and FðrÞ is the radial selection function
normalized in a such way that

Z
Rmax

Rmin

r2FðrÞdr ¼ 1: ð14Þ

In our catalogs, we do not use specific selections mimick-
ing the observations, hence the selection function becomes

FðrÞ ¼ 3

R3
max − R3

min

¼ const: ð15Þ

For the third order, we have

W3ðθÞ ¼ 6
θ−4

ð2πÞ2
Z

Rmax

Rmin

r2F3ðrÞdr
Z

∞

0

qW2
2DðqÞPðkÞdq

×

�
5

14

Z
∞

0

qW2
2DðqÞPðkÞdq

−
1

4

Z
∞

0

q2W2
2DðqÞ

dPðkÞ
dq

dq

�
; ð16Þ

where q ¼ kθr.
The formulas for higher orders become longer and

recurrently more involved (see, e.g., [7]). Thus, we opt
to stop at the third order only, since detailed tests of PT are
not our aim here, and we will use these predictions for
approximate trend comparisons only. In yielding our PT
predictions, we have used both linear and nonlinear (i.e.,
the Halofit [64]) power spectra models computed with
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CAMB software [65] taken at the effective catalog red-
shift zeff ¼ 0.242.

V. RESULTS

Now we are ready to present and investigate the results
covering the angular clustering, distributions of the counts
in cells, and the associated moments. All the presented
results concern dark matter, halo, and galaxy samples
extracted from the same depth ELEPHANT-based light
cones, as described above.

A. Finding optimal light cone depth

Previous studies of clustering have indicated that, in the
case of MG models considered here, the magnitude of the
deviations from the GR-fiducial case is changing with
the cosmic time, in a nonmonotonic way (see, e.g., [66–68]).
In the case of single redshift snapshots, commonly used
in the distant observer approximation, it is straightforward
to depict a redshift with maximal deviation from GR.
However, in our case, in the light cone projection, cluster-
ing information from the redshift range of the whole light
cone is entangled. We want, therefore, to find an optimal
redshift range for a light cone galaxy catalog that max-
imizes the relative deviation from GR of the MG clustering
signal as far as the moments are concerned.
Considering the redshift ranges we have for our halo

(0 < z < 1) and galaxy samples (0 < z < 0.5), we create a
4 × 4 grid of catalogs with varying minimum redshift zmin
and a defined thickness Δz ¼ zmax − zmin. For the optimi-
zation procedure, we define our merit parameter to be the
ψ3 estimator as defined later in Eq. (11), which measures
the relative amplitude of the deviation between a given MG
model and the GR case.
Optimization performed over all models and scales

would be computationally very expensive. However, since
our goal here is just to find an approximated optimal
redshift light cone range, we opt to focus on only two MG
models, N1 and F5, and only one angular scale of
θopt ¼ 0.08°. These two MG variants are characterized
by the largest difference in the linear growth rate with
respect to GR. The θopt value was selected as a reasonable
compromise between the nonlinear regime, where the
clustering deviations usually are the largest, and at the
same time a scale where the shot noise and simulation
resolution effects are not too severe yet.
We have found that the redshift range2 0.15 < z < 0.3

maximizes the MG signal for halos, while the range 0.15 <
z < 0.25 is optimal for the galaxies. Considering the fact
that halo light cones provide wider redshift ranges in
comparison with galaxies and the halos provide stronger
signals than galaxies, we kept 0.15 < z < 0.3 as the best
redshift ranges for all the catalogs. The final data samples

with the imposed redshift cuts have the following character-
istic projected number densities:

(i) DM particles, ∼51 deg−2;
(ii) halos, ∼40 deg−2;
(iii) galaxies, ∼15 deg−2.
Given the effective depth of our light cones, the spatial

resolution of the ELEPHANT suite, and taking into account
that we consider only resolved halos, we can estimate
that our catalogs will be spatially resolved down to
∼0.5–1 h−1Mpc [53]. Within the redshift range we use,
this sets the minimum angular scales that we can consider
as resolved to be θres ≈ 0.05°.

B. Probability density functions

We begin by showing in Fig. 1 an excerpt of angular
counts-in-cells distributions for dark matter (top panel),
halos (middle panel), and galaxies (bottom panel). These
example PDFs are measured at the angular scale of
θ ¼ 0.3°. Considering the median redshift of our light
cones (i.e., z ∼ 0.242), this scale corresponds to a projected
comoving separation of R ¼ 3.6 h−1 Mpc. We pick this
scale since it constitutes a reasonable compromise between
the scales where the influence of both the cosmic variance
and the sparse sampling remains limited. For clarity we

FIG. 1. Probability density functions of the counts in cells from
circles of 0.3° radius, corresponding to ∼3.6 h−1 Mpc physical
scales at the effective redshift of our light cones (zeff ∼ 0.24).
Shown from top to bottom are the results for dark matter, halos,
and galaxies, derived from the ELEPHANT suite for three gravity
models indicated in the legend. The numbers in the headers
indicate mean counts for each case.2The exact range is 0.1525 < z < 0.3025.
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show only two modified gravity variants, N1 and F5, on top
of the GR case.
This example already brings a few interesting observa-

tions. First, we can infer that dropping angular object
number density drives the resulting PDF away from a
Gaussian and more toward a Poissonian distribution, thus
highlighting the importance of the shot-noise corrections
for samples with small mean number counts hNi. The
second noticeable feature is that for all three samples (i.e.,
galaxies, halos, and dark matter) different models arrive
at very similar mean number counts. Furthermore, the
associated variances, or the distribution widths, are also
comparable. Only, when we move away from the PDF’s
centers, toward the tails, the differences between GR and
MG models become more and more appreciable. This is a
clear illustration of how important it is to go beyond central
and second-order moments, which are much more sensitive
to information contained in the distributions tails (i.e., the
PDF asymmetry and overall shape deviations).

C. Dark Matter

We start our analysis of angular clustering by looking at
the projected dark matter density field. Although this is not
directly observable, there is a strong connection between
the underlying smooth projected dark matter distribution
and quantities accessible via gravitational lensing effects.
These, among others, include convergence and shear power
spectra [62].
There are also tomographic techniques to obtain recon-

structed 3D dark matter distribution on large scales
[69–71]. Here, we will focus on simple sky-projected dark
matter density fields measured from a subsampled dark
matter N-body particle distributions. These distributions
and their moments are not directly connected to observa-
tions, but provide a very good test bed. Moreover, analyz-
ing the dark matter clustering will enable us to compare our
CIC results with PT predictions as given in Sec. IV B and
will provide additional physical insight about the higher-
order angular clustering in MG in linear and nonlinear
regimes.
We begin by comparing the N-body CIC moments with

the PT predictions. This will serve both as a useful test of
our estimators, as well as the indicator of scales where the
transition between the nonlinear and weakly nonlinear
angular clustering regimes occurs. In Fig. 2 we show the
first two moments W2ðθÞ and W3ðθÞ (upper panel) and the
reduced skewness S3ðθÞ (bottom panel). The continuous
lines indicate our N-body results; the dotted and dashed
curves are the PT prediction obtained using the linear
(dotted) and Halofit [64] (dashed) dark matter power
spectra. The shaded regions indicate 1σ scatter from the
simulation ensemble mean.
The PT predictions agree very well with the N-body

results at large scales, θ ≳ 0.2°. For smaller angles, the
simulation results quickly surpass the values based on the

linear theory PðkÞ. Interestingly, using Halofit as the
nonlinear power spectrum model readjusts the PT predic-
tions, making them follow the N-body lines much more
closely, extending good PT accuracy down to scales of
θ ∼ 0.04°. However, even if the PT predictions for W2 and
W3 separately look reasonable, their combination into the
reduced skewness S3 accumulates the deviation of each
individual moment. This is clearly manifested in the bottom
panel of Fig. 2, where both the PT-based forecasts fail and
underpredict the skewness dramatically for θ ≲ 0.3°. To get
a better prediction here, one would need to call for higher-
order PT templates (see, e.g., [72–74]). This test indicates
that our N-body results capture well both the linear and
nonlinear regimes. In addition, all the significant
differences that we might find in GR vs MG clustering
above θ ≃ 0.3° could be highlighted in future analyses
using weakly nonlinear PT predictions as detailed in
Sec. IV B.
Before we move to the main part of the analysis, with the

focus on clustering of halos and galaxies, we take a quick
look at the angular variance and reduced skewness of the
dark matter projected density field in our models, shown,
respectively, in Figs. 3 and 4. To facilitate easier compari-
son, we group the MG models’ families, keeping the fðRÞ
models in the left-hand side panels and nDGP in the right-
hand side. The shaded areas for θ < 0.05° indicate the
angles lower than the angular convergence scale of
ELEPHANT.
Looking first at the angular variance (W2), we can

already make a number of very interesting observations.
First, F6 seems to accommodate only minute differences
from GR and is virtually indistinguishable from it for all

FIG. 2. First two reduced moments (top) and reduced skewness
(bottom) of angular clustering calculated in the ΛCDM model at
an effective redshift of z ¼ 0.242. The solid lines with shaded
error ranges show N-body simulation results, while the dotted
(dashed) lines illustrate the perturbation theory predictions
derived using linear (nonlinear) power spectra as detailed in
Sec. IV B.
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scales. Second, all the remaining variants, i.e., F5, N1, and
N5, exhibit inW2ðθÞ some unique scale-dependent patterns
of their significance signals. The departure of the F5 signal
from GR saturates at around θ ≲ 0.1° and then decreases to
converge to GR at θ ≃ 1°. For both the nDGP variants we
notice a similar decrease in the signal, but now on two sides
from the maximal deviation scale of θ ≃ 0.2°. Thus, the
departure of W2 in nDGP from GR assumes a peaklike
shape in angular scaling. Moreover, here also the N5
model, generally weakly departing from GR, fosters
significant deviations from the GR case, in contrast to
its fðRÞ cousin, F6. This is a new result, as such features
have not been found in the earlier 3D dark matter clustering
studies (see, e.g., [67,68]).
The dark matter results for S3 feature a bit different

picture. Here, the noise and errors on both W2 and W3

moments are amplified, and the resulting signal becomes

generally weaker and more erratic. While for N1 and N5
the significance is severely reduced, F5 interestingly still
reaches jψ3j ≃ 4 at θ ∼ 0.1°. Interestingly enough, for all
the MG models, their skewness takes values lower than in
the fiducial GR, which indicates the known fact that the
relative asymmetry of MG evolved density distributions is
lower than in ΛCDM (see again [67,68]).

D. Halos and galaxies

The angular clustering patterns we observed for the dark
matter, albeit very interesting, cannot be easily nor directly
translated into expectations for any observables that we can
extract from galaxy surveys. Some potential implications
for weak gravitational lensing could be drawn, but we keep
this discussion for later (see Sec. VI). On the other hand, the
angular counts and related statistics of discrete objects,
such as halos and galaxies, have much more direct and
straightforward connection and interpretation in the context
of existing observational catalogs. Thus, we now move to
the main part of our analysis and take a look at the
hierarchical clustering of halos and galaxies.
In Fig. 5 we summarize the third-order statistics (W3,

columns to the left; S3, to the right) for halos (top blocks of
panels) and galaxies (bottom blocks). We focus here on the
third-order statistics, since a detailed analysis for all higher-
order moments would be unfeasible, and additionally the
moments higher than the fourth contain similar information
to orders 3 and 4. We choose not to present here and discuss
separately the case for the angular variance W2, as its
amplitude, in general, is fully degenerate with the first-
order angular bias parameter bθ,

Wh;g
2 ðθÞ ¼ ðbh;gθ Þ2WDM

2 ðθÞ: ð17Þ

Here, ðh; gÞ stands for halos and galaxies, respectively. In
Ref. [44] it has been shown that the second-order clustering
statistics in MG are affected by this bias degeneracy. For
that reason, higher-order moments and their combinations
(like skewness and kurtosis) may contain a more genuine
MG signal. The reason is that, to the first order, the bias
degeneracy is reduced for them (see also [53,75,76]).
Let us first discuss the MG signal for the halo population.
As we have verified for the case of DM density, the

significance of the departure from the GR prediction is
higher forW3 alone, compared to the skewness. Again, this
is expected given the standard error propagation properties.
Focusing on the converged scales, i.e., θ ≳ 0.05°, we can
observe a number of interesting features. First, theweaker F6
variant is characterized by stronger deviations from the GR
case than F5. This might appear as a surprise at first, but can
be explained. Although, in terms of the background field
value, the F6 variant should experience weaker scalar-field
effects than F5, the former model is actually inherently more
nonlinear than the latter, in terms of the chameleon screening
behavior. This propertymanifests itself especially for the less

FIG. 3. Two-point area-averaged angular correlation function
of dark matter particles for ΛCDM (black lines) as compared to
two MG scenarios: fðRÞ in the left-hand column and nDGP in the
right-hand one. The MG models have two variants each, as
indicated in the legends. Top: the correlation function. Bottom:
illustrate the significance of departure in the MG models from the
fiducial GR scenario, as defined in Eq. (11). The shaded regions
cover the θ < 0.05° range, which we do not use for inferring the
signal significance due to the limitations of the ELEPHANT
simulations.

FIG. 4. Similar to Fig. 3, but for the reduced skewness.
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massive, smaller halos (which actually dominate the sample).
This phenomenon was to some extent already encountered
and studied in Ref. [77]. This trend is reversed when we look
at the skewness,where again F6 ismarginally consistentwith
GR for all scales,while F5 also shows small deviations, albeit
larger than F6.
In the case of the nDGP models, we observe behavior

that qualitatively agrees with what we have seen already for
the variance in the dark matter field. The N1 deviation again
assumes a peaklike scale dependence, with the maximum
significance attained at θ ≃ 0.1°, both in W3 and S3. The
departure signal of the N5 variant stays weak and insig-
nificant for all scales. The differences in scale and magni-
tude dependence between the fðRÞ and nDGP models
clearly indicate that the different physics of their screening
mechanisms manifests itself to some degree in different
halo clustering.
For the galaxy population, we encounter an interestingly

different picture. Here we need to recall that the
ELEPHANT mock galaxy catalogs were constructed using
HOD parameters tuned for each MG model separately, so

the resulting distributions have the same (to within 1%–2%)
projected 2PCFs. Since the real-space 3D clustering was
anchored, the higher-order moments will carry here the
genuine residual MG signals. This property of the mocks
resulted in quite interesting trends we can single out in the
galaxy statistics. First, we now see that signals for the F5
and F6 models have opposite signs of the effect on W3ðθÞ,
but now also F5 reaches comparable deviations in the
magnitude as F6. For nDGP, we no longer observe a
peaklike shape of the scale dependence, but instead a
saturation of significance at the level of ∼1 for N1 at
θ ≲ 0.2°. For N1, the effect is also opposite to the one we
have just noted for halos. The disappearance of peaklike
scale dependence in galaxies for the N1 scenario is related
to the fact that our halo catalogs consist of only central
halos, while for galaxies we also consider satellites. A
related issue has been already discussed in Ref. [53].
In the case of the skewness, the effect is also flipped

(when compared to W3) for F5 and N1, with a clear
difference that now for F5 the maximum signal is margin-
ally stronger than for the halo population.

FIG. 5. Three-point-averaged angular correlation function (left columns to the left) and reduced skewness (columns to the right) for
halos (top blocks) and galaxies (bottom blocks) extracted from ELEPHANT simulations for ΛCDM and two MG scenarios. See caption
of Fig. 3 for further details.
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The remaining higher-order moments and reduced
cumulants up to J ¼ 9 reveal a qualitatively similar picture
to what we have just shown and discussed for the third
order. The general trends are continued, but the scatter in
these quantities and associated errors grow quickly with the
order. To obtain a general impression of the trends, we
show all the collected WJ’s and SJ’s (for J ¼ 2;…; 9) for
dark matter, halos, and galaxies in Fig. 6. Here the top row
is for the smooth DM density, the central one for halos, and
the bottom one for galaxies. Columnwise, the plots are
organized as the area-averaged correlation functions WJ’s

(left-hand column) and reduced cumulants SJ’s (right-hand
column). The particular orders are organized as indicated
by the labels, while the lines are colored according to
gravity models in the same way as in Figs. 3–5.
For the cumulants, but also to some extent for the

moments, we can observe that the relative errors explode
at two regimes: for small and large angles. This can be
easily attributed to the shot noise at θ ≲ 0.01° scale and to
finite catalog size (i.e., cosmic variance) influencing the
θ ≳ 2° range. Higher moments are more sensitive to these
effects, due to growing powers in Eq. (6), which multiplies

FIG. 6. Clustering of all orders considered in this work. From top to bottom, we present the results for dark matter, halos, and galaxies.
The left column shows area-averaged correlation functions WJ for 2 ≤ J ≤ 9; right column includes hierarchical amplitudes SJ for
3 ≤ J ≤ 9. The particular orders are indicated with the numbered labels on the left-hand side of each panel. Lines of different colors
correspond to the gravity models as in the legend. Light gray bands illustrate the errors in the GR case; those for MG are comparable.
The dark gray vertical bands cover the angular scales, which we do not use for inferring the MG signal.
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any initial error on the mean counts at a given scale hNiθ.
Such conditions introduce significant heteroscedasticity
into the clustering measurements. The partly missing
measurements in Fig. 6, especially for the eighth- and
ninth-order statistics, are due to negative values that cannot
be represented in the logarithmic scaling.
The precision of our measurements scales roughly as a

square root of object number density (e.g., the relative errors
are ∼1.5–2 times bigger in the case of galaxies than for DM
pseudoparticles catalog; see Sec. VA). This fact makes
searching for MG signals among highest orders inaccessible
using these catalogs, since onewould need to greatly increase
the sampling or to consider much larger sky coverage.
Overall, we have found that only orders of up to J ≤ 5
are useful for MG signal searches in our catalogs. Although
the deviations from the fiducial GR case are growingwith the
order, the associated scatter grows even faster. Thus, for the
light cone samples used here, significant signals can be
extracted only from the statistics up to fifth order.
A noteworthy feature is that galaxies are characterized by

larger values of CIC moments than halos and DM particles.
This is a natural consequence of both biased structure
formation and the HOD catalog construction method used
(i.e., introduction of satellites for the galaxy sample).
One final note about the hierarchical clustering ratios,

shown in the right-hand panels of Fig. 6, is that their
amplitudes generally do not depend strongly on the scale.
This is in agreement with both theoretical predictions, as
well as with the analyses of observational data (e.g.,
[25,27,67,78]).

E. Summary

With nine orders of moments, eight of cumulants, and
with three different samples of five various gravity models,
we have dealt with massive and complex data describing
angular clustering in our light cones. Detailed analysis of
all potential deviations from GR and associated signal
significance would be very industrious and at best cum-
bersome. Therefore, we chose to present only the most
interesting findings from this large body of statistics and we
summarize them here in a survey manner.
The most promising features of the MG angular cluster-

ing we analyzed are given in Table I. There we quote the
absolute values of the deviation from GR significance, jψ j
[Eq. (11)], alongside the characteristic angular scales at
which they are noted, the statistics for which the signal is
found, and the MG model they are reported for.
As we have already indicated, the sampling density of

ELEPHANT allows us to reliably use up to fifth-order
statistics, as far as a ratio of MG to GR is concerned. The
higher orders become too noisy, and the associated ratios
with respect to the GR case become scatter dominated.
When we are concerned with the MG signal significance,
the general trends are that the lower-order statistics (i.e.,
J ¼ 2, 3) are favored over the higher ones. However, in just
one case (F5 for galaxies) the fourth and fifth orders reach

higher significance than the lower moments. Here, the
signal significance is reaching jψ3;4;5j ≃ f1.4; 2.4; 2.5g for
the third, fourth, and fifth order, respectively. Interestingly,
we find cases where even if some WJ’s reach small values
of jψ j, the associated reduced cumulants SJ’s can arrive at
much larger significance. This indicates that the reduced
cumulants, due to their unique intrinsic length (or variance)
scaling, contain extra constraining information about the
underlying structure formation models.
The statistics we measured for the nDGP models reveal

that this MG family is characterized by much less signifi-
cant deviations from the fiducial GR case than fðRÞ.
Especially if we focus on the hierarchical amplitudes
SJ’s. This would suggest that departures from GR at higher
orders do not differ significantly from the departures at
J ¼ 2. Indeed, for instance, considering DM particles
we obtain jψ2;3j ≃ f7.3; 6.4g for N1, while F5 provides
jψ2;3j ≃ f4.8; 1.8g. Generally, we find that the hierarchical
amplitudes of the galaxy samples offer a slightly better
sensitivity to deviations from GR than halos and DM. In
contrast, for the halo sample, we find that the area-averaged
correlation functions WJ’s seem to perform marginally
better in differentiating the models.
Finally, our results facilitate a general trend, where the

MG models with larger theoretical growth-rate departure
from the ΛCDM case are characterized by stronger angular
clustering deviations as well. There is one notable excep-
tion to that trend: the F6 model, whose halo sample offers
larger jψ j than that of the F5 variant, while the latter has
theoretically larger growth rate. This is not a complete
surprise, however, as previous studies already found
evidence that the F6 model can exhibit more nonlinear
behavior than its F5 cousin, owing to the intrinsic nonlinear
nature of the chameleon screening [53,77].

VI. CONCLUDING REMARKS

In this work we have studied angular clustering by
analyzing the moments of the counts in cells for two

TABLE I. The most significant MG deviations from GR in
angular clustering in the light cones studied in this work. For a
given tracer, we provide the model-statistics pair (columns 2 and
3) that give the largest signal significance as listed in the fourth
column. The fifth column indicates the angular scales at which
this maximal signal appears.

Tracer Model Statistics jψmaxj θð°Þ
Dark matter F5 W2 4.8 0.05

F5 S3 4.5 0.08
N1 W2 7.3 0.13

Halos F6 W3 4.0 0.13
F5 S3 2.1 0.16
N1 W3 3.0 0.13

Galaxies F5 W5 2.5 0.16
F5 S3 3.1 0.16
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modified gravity scenarios. The literature offers many
studies of three-dimensional clustering, including red-
shift-space distortion analyses for such beyond-GR scenar-
ios [44,52,79–81]. So far, however, very little (to our best
knowledge) was known about the properties of angular
clustering in the light cone sky-projected density in such
scenarios. Our work here is the first approach to remedy
this lack. To this end, based on the ELEPHANT suite, we
have designed a number of light cones containing dark
matter, halo, and galaxy samples. We then proceeded to
build an ensemble of effective sky catalogs that we have
used as the main object for our analysis.
Below, we summarize and recapture the most important

results:
(i) The PT predictions for the GRW2 andW3 moments

offer a reasonable agreement with the N-body dark
matter results for θ ≥ 0.2°, if only the linear-theory
power spectrum was used. A much better agreement
is obtained, down to smaller scales, when using a
nonlinear Halofit model for the power spectrum. For
that case, the PT and simulations agree down to
θ ∼ 0.05°. We note, however, that the PT prediction
for the reduced skewness S3 is grossly underestimated
when compared with N-body data for θ ≤ 0.5°.

(ii) Our light cone analysis yielded an optimal catalog
depth for maximizing the departures from GR in the
angular clustering. For the case of our simulations
and models, this turned out to be 0.15 ≤ z ≤ 0.3.

(iii) On various scales and for various statistics, we found
up to 20% relative departures from GR. Our data do
not allow for probing robustly the scales both
smaller than θ < 0.05° and larger than θ > 1°, where
the effects of the shot noise and a limited catalog
size, respectively, dominate.

(iv) The reduced skewness S3 of the galaxy sample has
proven to be especially sensitive statistics for the
fðRÞ family models.

(v) We found significant signals even in the catalogs
with as low object number density as 15 deg−2 (for
galaxies); this indicates an optimistic outlook for
measuring MG signals in real angular galaxy data.

(vi) Hierarchy between the second and higher moments is
preserved in all the structure formation scenarios,with
no clear or dramatic changes in weak scale depend-
ence of the reduced cumulants for all scenarios.

(vii) In our data, the modified gravity signals can be
extracted from higher-order statistics up to order
J ¼ 5. In practice, we can expect that catalogs with
better sampling, in terms of both sky coverage and
surface number density, should allow measurements
that cover even higher orders and larger scales.

Our main findings agree with the picture where the
angular correlations, due to their intrinsic spatial-scale
mixing, offer a unique specific window for clustering
analysis, especially in the context of scale-dependent GR

modifications. In general, the deviations from GR might
not get as large for angular correlations as in the case of
redshift-space distortions and 3D clustering. However, the
projected counts could gain much in signal significance, if
one could tap the rich potential of much denser sampling
stemming from usually many times bigger volumes of
photometric galaxy catalogs than for often sparsely
sampled redshift surveys.
Taking into account that, due to the limitations of the

simulation suite used, our galaxy and halo catalogs are
characterized by much smaller object number densities
when compared to existing and forthcoming imaging sky
surveys [45,82–85], one can expect that all the relevant
shot-noise and even cosmic-variance effects should be
strongly suppressed in future analysis of observational
data. Our mock galaxy catalogs contain only ∼15 objects
per square degree. For comparison, depending on the
chosen galaxy sample, the Dark Energy Survey provides
∼3.42 × 105 galaxies at ∼4200 deg2 for the redshift range
similar to ours, 0.15 < z < 0.35 [86], or even ∼1.7 × 106

galaxies at 0.2 < z < 0.35. This gives from 5 up to 27
times higher galaxy surface density when confronted with
our galaxy catalogs.
The fact that we have found significant, and therefore

hopefully detectable, deviations from GR in our rather
sparse mock galaxy catalogs, which have many times
smaller object number density when compared to real
galaxy samples, offers very promising prospects for testing
GR and beyond-GR structure formation scenarios in the
imaging data—an avenue that has not been exploited so far.
However, to fully undertake such endeavor, one will need
to account more robustly for the involved angular and
redshift selection effects along with better galaxy popula-
tion modeling in beyond GR. We leave this exciting
undertaking for future work.
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APPENDIX: EFFECTIVE VOLUME

The so-called effective volume measures the amount of
independent information in the catalog. As mentioned in
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Sec. II, calculating and maximizing the effective volume is
critical for dealing with the issue of finite simulation
box size.
We pixelize each replicated box (by dividing it into 303

cubic pixels) and then for each pixel we check whether its
center belongs to the catalog. If this condition is fulfilled,
the pixel contributes to Veff .
The partial effective volume Veff;sh½i� (i.e., corresponding

to the ith shell) is then calculated from

Veff;sh½i� ¼
nðgoodÞpix

npix
; ðA1Þ

where npix is the number of pixels that the simulation box

was divided into, and nðgoodÞpix counts the pixels that fulfill the
aforementioned condition. Next, we obtain complete effec-
tive volume by summing up the values from all the shells,

Veff ¼
Xnshells
i¼0

Veff;sh½i�: ðA2Þ

Figure 7 illustrates briefly our method of calculating Veff
for just one light cone shell considered (½z1; z2� in the plot).
For simplicity, the figure shows the two-dimensional case,
but of course we perform the procedure in 3D space.
The left part of the figure symbolizes the light cone with

the redshift cut (light blue) and also angular cut (dark blue).
We marked the observer’s position with the red dot in the

center of the light cone. The right part visualizes the counts
which would result from the situation presented in this
figure. As an example, we distinguished two pixels. Note
that we do not include two different pixels twice if they
occupy the same position within the output box.
Focusing on the redshift range that we identified as

optimal for our study (0.15≲ z≲ 0.30), we maximize Veff
by drawing nrun ¼ 3000 times a set of 15 randomly
oriented sky chunks covering ∼1567 deg2 each, as
described in Sec. II. Such numerous collection of sky
fragments enabled us to obtain a satisfying level of Veff
even from such thin redshift range in the catalog. From
these we chose one set that provides the highest Veff value.
We noticed that nrun ¼ 3000 is sufficient due to the
saturation of the largest Veff found.
Figure 8 shows the positions of sky chunks used in our

catalogs within this work, in Hammer equal-area projec-
tion. Our procedure allowed us to obtain Veff ¼ 0.75.
Theoretically, it is possible to obtain Veff as high as 0.94
with our redshift ranges. However, it requires a drastic
increase in the number of sky chunks and becomes
computationally ineffective, providing simultaneously a
weak increase of independent information in the catalog.
Note that the value of effective volume is not limited to 1 by
definition. The value Veff ¼ 1 would indicate that poten-
tially constructed catalog contains all the information from
one simulation box, i.e., one light cone shell. Getting
Veff > 1 could be easily achieved, e.g., by selecting an
entire sky and full redshift range of ELEPHANT light cone
z ∈ ½0; 0.5�—for that case, we would get Veff ∼ 2.23.

FIG. 7. Illustration of our method to calculate the effective
volume. For clarity, we visualize only one light cone shell ½z1; z2�,
included within the catalog ranges ½zmin; zmax�.

FIG. 8. Locations of sky fragments jointly maximizing the Veff .
The Nfrag value refers to the number of sky chunks overlapping at
certain sky position.
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3.2 Summary

The found EG signals reaching up to 20% consist a promising result in context of fu-
ture observational constraints. The optimal redshift where the deviations from GR are
maximized, is however linked with used geometry. In fully 3D representation the redshift
favored in context of searching EG signals does not necessarily have to be identical. In
lightcone geometry, selecting the objects within small redshift is related with much less
data compared to larger-z probe with the same radial thickness. This increases the shot-
noise uncertainties, consequently suppressing potential low-z EG signals. Additionally,
the adopted angular counts-in-cells are accompanied with mixing physical scales at vari-
ous distances. For the same radial thickness of the catalog, the mixing is naturally more
severe at low redshifts. The combination of these effects leads to the optimal redshifts for
EG signal as spotted in this work, 0.15 ≤ zopt ≤ 0.3.
Understanding how geometry effects and assumptions influence the findings is crucial for
further studies on constraining the gravity.
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Chapter 4

Paper II: Real and redshift-space
clustering

4.1 Introduction

The previous study focused on identifying EG signals with angular clustering in real
space. The observational data is however accessible in redshift space. Despite of the main
argument for working with angular statistics which state that spectroscopic observations
provide sparser data than photometry, the success in finding strong signals in angular
statistics motivates to study the clustering fully in three dimensions. This involves in-
vestigating redshift space distortions which consist of Fingers of God and Kaiser effect.
In order to better understand how the redshift-space representation affects cosmic web
statistics, we prepare both real and z-space catalogs. While for angular case we worked
with lightcone catalogs, in this study we focus on measuring the statistics on represen-
tative samples without mixing redshifts. To obtain that, we use the distant observer
approximation.
This study depicts an approach for measuring 3D averaged correlation functions in real
and z-space using dark matter pseudo-particles, halos and HOD galaxies. We focus on
cumulants, especially skewness s3, as it more clearly highlights the differences between
two configurations: real and redshift space. The complete test of used gravity scenarios
using these measures would require catalogs mimicking real observations, based on re-
alistic and physically consistent cosmology simulations with GR, f(R) and nDGP. This
research however identify where to search for deviations from GR and how redshift space
changes them.
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We study the counts-in-cells reduced skewness s3 for dark matter, halo, and galaxy distributions
in both real and redshift space, using the ELEPHANT (Extended LEnsing PHysics with ANalyt-
ical ray Tracing) suite of N -body simulations. We compare General Relativity (GR) with two
extended (EG) gravity models: f(R) gravity with chameleon screening and the normal-branch
Dvali–Gabadadze–Porrati (nDGP) model with Vainshtein screening. We quantify the suppression
of s3 by redshift-space distortions (RSD), finding that while small-scale skewness is strongly re-
duced, the F5 model retains a ∼ 4% deviation from GR in galaxy samples, corresponding to a 2σ
significance. We show that the ratio sRSD

3 /sreal3 is approximately independent of the gravity model
across tracers and redshifts. Our results demonstrate that real-space predictions can help reliably
infer redshift-space skewness in both GR and extended gravity, providing a new tool for testing
gravity with current and forthcoming galaxy redshift surveys.

I. INTRODUCTION

The large-scale structure of the Universe provides a
rich testing ground for cosmological models, particularly
through statistical analysis of density and velocity fields.
Traditionally, two-point statistics such as the power spec-
trum and two-point correlation function have been in-
strumental in constraining cosmological parameters [e.g.
1–6]. Yet, these measures alone cannot fully capture
the complexity of the Cosmic Web. Higher-order statis-
tics, such as skewness and kurtosis, complement two-
point measures by probing the non-linear gravitational
clustering process, which can significantly differ between
General Relativity (GR) and various Extended Gravity
(EG) models (in the literature also dubbed as ’Modified
Gravity’)[7–9].

Recent studies highlight that these higher-order statis-
tics are sensitive to subtle deviations from GR, mak-
ing them powerful tools for testing structure forma-
tion scenarios in EG theories [10–13]. Measurements
of skewness and kurtosis in particular can reveal mod-
ifications to gravity or dark energy beyond the stan-
dard ΛCDM model. Despite their promise, such anal-
yses have predominantly focused on theoretical configu-
ration space[7, 8, 14, 15]. However, actual observations
readily access only galaxy positions in redshift space,
where peculiar velocities introduce distortions that com-
plicate the interpretation of clustering statistics [16–19].
These redshift-space distortions (RSD), while adding fur-
ther complications to the galaxy clustering pattern, also
carry valuable information about the growth rate of cos-
mic structure. Accurate modeling of RSD is thus crucial
for interpreting observations and testing gravity theories
[20, 21].

A systematic exploration of higher-order statistics in
redshift space, particularly skewness, remains lacking but
can become important for the next generation of robust

∗ (pdrozda, hellwing, bilicki)@cft.edu.pl

cosmological tests. Constraints on cosmological parame-
ters based on different statistics, scales, and phenomena
are pivotal for internal consistency checks and for iden-
tifying potential unknown systematic effects that could
limit the precision of these tests. Here, the potential of
higher-order cumulants of the matter, halo, and galaxy
density fields, remains largely unexploited and not fully
tapped.

Addressing this gap, we perform a detailed study of
skewness in both real and redshift space, comparing GR
with two prominent EG scenarios: the f(R) gravity
model with chameleon screening and the normal-branch
Dvali-Gabadadze-Porrati (nDGP) gravity model employ-
ing Vainshtein screening. We analyze how the transition
from real to redshift space influences the detectability of
gravity-induced differences, investigating separately the
dark matter, halo, and galaxy distributions. Hence, this
paper is a natural extension of our previous study focused
on the angular clustering moments.[9]

Recent simulation-based studies have demonstrated
that modifications to gravity can significantly alter
higher-order clustering statistics, such as skewness and
kurtosis, in both dark matter and halo distributions
[7, 8, 22, 23]. In particular, deviations in the reduced
skewness s3 have been identified as a sensitive probe of
screening mechanisms, with models like f(R) and nDGP
showing scale-dependent signatures in real-space clus-
tering. However, translating these signatures into red-
shift space remains challenging. While RSD can sup-
press or mask EG signals at small scales [18, 19], new ap-
proaches incorporating realistic velocity distributions [20]
and angular clustering statistics [9] offer promising av-
enues for observational tests. Furthermore, recent theo-
retical developments emphasize the need to move beyond
two-point functions, using bispectra and parity-breaking
correlations [10, 21], to robustly probe deviations from
GR in upcoming surveys. Nonetheless, a comprehensive
and systematic study of higher-order cumulants in red-
shift space across different tracer populations and gravity
models remains largely unexplored. Our work aims to fill
this gap.
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This paper is structured as follows: Section II describes
the simulations and catalogs; Section III introduces the
statistical tools employed; Section IV presents our anal-
ysis and findings, emphasizing skewness across real and
redshift spaces; and Section V discusses the broader im-
plications of our results.

II. SIMULATIONS AND CATALOGS

In this work, we use the ELEPHANT (Extended
LEnsing PHysics with ANalytical ray Tracing) N -body
simulation suite [24], performed with the ECOSMOG
code [25], a modified version of RAMSES adapted for
EG models. The simulations evolve 10243 dark matter
pseudo-particles within a (1024/h Mpc)3 comoving box,
generated from five independent realizations of the initial
power spectrum. The assumed background cosmology
corresponds to the WMAP9 results [26], with parameters
ΩM = 0.281, ΩΛ = 0.719, and h = 0.697. Dark matter
halos were identified using the ROCKSTAR halo finder
[27], which employs a phase-space friends-of-friends al-
gorithm. We also utilize ELEPHANT-dedicated galaxy
mock catalogs, constructed using the Halo Occupation
Distribution (HOD) method. The HOD parameters were
calibrated to reproduce the projected two-point correla-
tion function of BOSS CMASS DR9 galaxies [28] and
to match the number density of a volume-limited sam-
ple [29]. The mocks are constructed to recover the as-
sumed satellite-to-centrals ratio (varying from 10 − 15%
across redshifts see Hernández-Aguayo et al. [30] fro de-
tails), giving us a chance to study separately all-galaxy
and centrals-only samples.

For biased tracers, we construct three halo samples,
H1, H2, and H3, characterized by their mean number
densities of 10−3, 5 × 10−4, and 10−4 (h/Mpc)3, re-
spectively, following the definitions in [31]. For each
model, sample, and redshift, the desired number density
is achieved by rejecting halos with masses smaller than an
established threshold Mmin that fulfills the target num-
ber density criterion. The exact mass cuts are listed in
Table I, along with the corresponding number densities
for both the halo and galaxy catalogs. The mass cuts
are based on the halo virial mass, M200c, defined as the
mass enclosed within the volume where the mean den-
sity exceeds 200 times the critical density. For galaxies,
the catalogs exhibit slight variations in number density;
therefore, in Table I, we show the range of values rather
than a single number.

A. Extended Gravity

In addition to the standard ΛCDM cosmology with
GR-based structure formation, we consider two popular
phenomenological extensions of General Relativity, im-
plemented within the ELEPHANT suite. These are:

TABLE I. Mass cuts in halo catalogs for a given sample, model
and redshift. The column corresponding to object number
densities shows values both for halos (H1-H3 samples) and
galaxies.

z Sample
n Mmin[1013M⊙/h]

[10−4 (Mpc/h)−3] GR F6 F5 N5 N1

H1 10 0.26 0.30 0.30 0.27 0.27

0 H2 5 0.58 0.64 0.66 0.58 0.59

H3 1 2.73 2.80 3.22 2.76 2.84

Galaxies 3.8-3.9 - - - - -

H1 10 0.26 0.30 0.31 0.26 0.27

0.3 H2 5 0.56 0.59 0.64 0.56 0.58

H3 1 2.41 2.44 2.83 2.43 2.53

Galaxies 3.1-3.3 - - - - -

H1 10 0.23 0.26 0.30 0.23 0.25

0.5 H2 5 0.53 0.55 0.62 0.54 0.55

H3 1 2.13 2.14 2.49 2.15 2.25

Galaxies 3.1-3.3 - - - - -

• The f(R) gravity model with the chameleon screen-
ing mechanism [32, 33],

• The normal branch of Dvali-Gabadadze-Porrati
(nDGP) gravity with the Vainshtein screening
mechanism [34, 35].

These two EG models provide a testbed for cosmolog-
ical inference based on real and redshift-space reduced
cumulants, and we will compare their predictions with
those of GR.

B. Redshift-Space

In this study, we work both in configuration (real)
space and in redshift space. The latter can be con-
structed using information about the positions and ra-
dial velocities of objects relative to the observer. To con-
struct our redshift-space catalogs, we employ the distant
observer approximation, that is, the galaxy/halo line-of-
sight (LOS) directions are assumed to be parallel.

Geometrically, this can be understood as placing the
simulation box at an effective comoving distance D ≫
x̃12, where x̃12 is the mean separation between galaxies or
halos. While at z = 0.3 and z = 0.5 the distant observer
approximation is fully applicable, at z = 0 it should be
interpreted as a redshift-space analysis without including
projection effects. To obtain redshift-space positions, we
modify the object positions along the LOS according to:

x⃗RSD = x⃗ +
1 + zsnap
H(zsnap)

(
v⃗ · ê∥

)
ê∥, (1)

where x⃗RSD and x⃗ are the redshift-space distorted and
original comoving positions, respectively, v⃗ is the pecu-
liar velocity, ê∥ is the normalized LOS direction, and
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H(zsnap) is the Hubble parameter at the snapshot red-
shift zsnap.

To maximize the information extracted from the 3D
velocity field, we distort the simulation box separately
along each of the three Cartesian directions [x, y, z], as-
suming the LOS along each axis in turn. Computations
are performed independently for each LOS orientation.
Although the large-scale three-dimensional peculiar ve-
locity field is correlated, meaning that the three pro-
jections are not fully independent, this procedure effec-
tively yields approximately

√
3 times more independent

redshift-space realizations compared to a single projec-
tion.

III. AVERAGED CORRELATION FUNCTIONS
AND MOMENTS

We work with the three-dimensional volume-averaged
correlation functions [36, 37] defined as

ξ̄J(R) ≡ ⟨δJR⟩, (2)

where R is the smoothing scale.1Here, δR = ρR/ρ̄R−1 de-
notes the density contrast, defined as the excess of the lo-
cal density ρR over the mean density ρ̄R. The lower index
subscript R indicates that the density field is smoothed
using a three-dimensional top-hat spherical window func-
tion of a co-moving radius R, and the angle brackets ⟨·⟩
denote ensemble averaging over the entire catalog.

When working with discrete data, the smoothed den-
sity ρR at a given radius R can be approximated by
counting the number of objects within a sphere of radius
R. As long as the number of objects N ≫ 1, the discrete
distribution provides a good approximation to a contin-
uous background fluid [1, 38]. We estimate ξ̄J(R) by
performing counts-in-cells (CIC) over random positions
within the catalog and computing the central moments
of the counts:

MJ(R) = E
[
(N − E[N ])J

]
, (3)

where E[N ] denotes the expected value of the counts N ,
after applying normalization and shot-noise corrections
(see e.g. [39]). Now, to get an estimate of ξ̄J from Eqn.
(2) we just need to dive the central moments by E[N ]J .
In addition, we consider the reduced cumulants sJ de-
fined as

sJ ≡ ξ̄J

ξ̄J−1
2

. (4)

Under the assumption of a power-law power spectrum,
perturbation theory predicts the reduced cumulants to

1 For transparency, throughout this paper we denote the smooth-
ing scale as R regardless of whether it refers to real or redshift
space.

be weakly varying monotonic functions of scale [38, 40],
making them useful diagnostics for cosmological tests.

The connection between volume-averaged correlations
and the central moments shows that ξ̄J(R) depends on
the shape of the probability distribution function (PDF)
of the counts. More precisely, these correlation functions
are the connected parts of the moments, hence they quan-
tify the departure from a Gaussian distribution. Simul-
taneously, the deviations of the PDF from an initially
Gaussian form are driven by gravitational evolution of
the density field (see [37, 41, 42]).

Thus, ξ̄J(R) capture the growth of non-Gaussian fea-
tures and quantify the gravitational structure formation
and evolution of the large-scale Universe.

IV. REAL AND REDSHIFT SPACE SKEWNESS

We begin our analysis by examining the statistical
properties of the density contrast. Figure 1 shows the
probability distribution functions (PDFs) of the density
contrast δR, estimated from CIC by treating the discrete
particle counts as a proxy for the local density. We dis-
play results at three chosen smoothing scales, both in
configuration (real) space and redshift space, for the GR
model at redshift z = 0.3.

The histograms of counts converted into density con-
trast reveal clear RSD effects. At small scales (R =
3h−1Mpc), the density contrast is suppressed in redshift
space due to the Fingers-of-God (FoG) effect [17]. This
is strikingly evident by comparing the long exponential
tail of the real-space histogram, extending up to δ ∼ 200,
with the much more compact redshift-space distribution,
where few cells reach even moderate contrasts of δ ∼ 100.

At intermediate scales (R = 15h−1Mpc), which mark
the transition from the non-linear to the linear regime
in classical gravitational instability theory, the real and
redshift-space PDFs are remarkably similar.

Finally, in the large cell volume limit (R =
43h−1Mpc), we observe that the density contrast PDF
in redshift space is wider than that of real space. This
is a clear manifestation of the so-called Kaiser squashing
effect, where coherent large-scale infall motions enhance
the redshift-space density around large-scale structures
[17].

We can take a more quantitative view of the CIC distri-
butions by examining the first two moments and the re-
lated ξ̄J and sJ statistics. Figure 2 shows the second- and
third-order volume-averaged correlation functions (left
panel) and the corresponding reduced skewness s3 (right
panel) for both real and redshift space at z = 0.3. We
limit our analysis to scales R ≲ 40h−1Mpc. For larger
cell radii, the third moment of the CIC becomes signif-
icantly affected by finite-volume effects stemming from
the combination of the simulation box size and the lim-
ited number of realizations [43].

The most striking feature is the significant reduction
of s3 in redshift space for scales R ≲ 30h−1Mpc com-
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FIG. 1. Distribution of the density contrast of dark mat-
ter simulation pseudo-particles in real space (black) and red-
shift space (dark cyan) at z = 0.3 for three chosen smoothing
scales. Thinner semi-transparent lines correspond to PDFs
from individual realizations, while the thick solid line shows
the average over all realizations, separately for each scale and
space. Note the different horizontal and vertical axis ranges.

pared to real space. This suppression is caused by sta-
tistically random peculiar motions of objects on small
scales, leading to the FoG effect. This behavior of skew-
ness was already reported by [44], who showed that the
redshift-space s3 is much less scale-dependent than its
real-space counterpart. A similar suppression is also vis-
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FIG. 2. The second- and third-order volume-averaged corre-
lation functions (top panel) and the third-order reduced cu-
mulant (bottom panel) at redshift z = 0.3. Dashed lines
correspond to real space, while solid lines to redshift space.
All results are for the GR scenario for dark matter particles.

ible in the volume-averaged correlation functions ξ̄J for
J = {2, 3}, manifesting as a reduction of the signal at
R < 10h−1Mpc in redshift space compared to real space.
These trends are consistent with the previous results ob-
tained from the CIC analysis (Figure 1).

At larger scales, redshift space yields slightly higher
ξ̄J values compared to real space. However, due to the
construction of the cumulants, the overall trend of the
s3 amplitude reduction in z-space is preserved. The in-
terpretation of behavior of volume-averaged correlations
is more convoluted, whereas cumulants show the real-to-
redshift space transition that makes a more direct link
to the predictions of perturbation theory (PT). There-
fore, in this work, we focus primarily on the sJ statistics,
especially the skewness s3.

Next, we compare different gravity models in the con-
text of real and redshift-space. Figure 3 shows the skew-
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FIG. 4. Analogous plot as Fig. 3, but for the halos from sample H1.

ness s3 for the GR, f(R), and nDGP models. The trend
of redshift-space suppression of the s3 signal is quantita-
tively similar across all models. Even for the F5 model,
which exhibits a significantly lower s3 than the other
models in real space, this difference relative to GR per-
sists in redshift space.

On the other hand, the ratio of redshift- to real-space
skewness, shown in the bottom panels, is in strong agree-
ment among the different gravity scenarios. We discuss
the potential universality of the real-to-redshift-space
transition in Section IV C. Higher-order reduced cumu-
lants sJ with J > 3 exhibit similar behavior and we do
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not show them here.
As we checked, the skewness in redshift space also

shows slight variations across redshifts. At z = 0, we
observe that s3 slowly decreases (by ≲ 10%) with scale
between 3 and 30h−1Mpc, a feature that is not present
at higher redshifts.

A. Dark matter halos

We now move from the counts of dark matter field trac-
ers (particles) to the clustering analysis of halos. While
the CIC of dark matter particles capture the properties
of the smooth dark matter background field, it is the dis-
tribution of halos that is more directly related to obser-
vations. Halos are not only biased tracers of the underly-
ing dark matter distribution but also host the luminous
counterparts — galaxies. Thus, the analysis of the CIC
distributions of the real and redshift-space halo fields pro-
vides information that has both stronger physical context
and a more direct connection to observations.

The large-scale dark matter density field approxi-
mately follows a log-normal distribution, with positive
skewness reflecting the continuous accumulation of mat-
ter into dense regions. Gravitational instability leads to
the formation of collapsed halos, whose abundance —
the halo mass function — depends primarily on the halo
virial mass [45, 46]. Motivated by this, we divide our halo
population into three samples based on different virial
mass cuts (as listed in Table I) and analyze their hierar-
chical clustering separately.

We begin by examining the skewness of the H1 halo
sample at z = 0.3, shown in Figure 4. This can be di-
rectly compared to the corresponding statistics for the
smooth dark matter field presented in Figure 3. The first
striking difference lies in the magnitude and scale depen-
dence of RSD. For the smooth dark matter case, the s3
amplitude was suppressed in redshift space up to R ∼
30–40h−1Mpc; for the H1 halo sample, however, we iden-
tify a qualitatively different redshift-space behavior with
two distinct regimes. At small scales (R ≲ 10h−1Mpc),
the skewness is clearly suppressed in redshift space, sim-
ilarly as was the case for the smooth density field. How-
ever, at larger separations (R ≳ 10h−1Mpc), this trend
is reversed: the amplitude of s3(R) is enhanced com-
pared to real space. This behavior parallels the classical
picture of the monopole of the two-point correlation func-
tion (2PCF): at small scales, random virial motions cause
amplitude suppression (FoG effect), while at large scales,
coherent infall enhances the clustering amplitude (Kaiser
squashing effect [17]).

The Kaiser effect should be also present in the dark
matter density field. For the case of our simulation scales
and resolution it appears, however, that it is subdomi-
nant even at larger scales, where the overall suppression
from virial motions seems to dominate the full s3 am-
plitude. In contrast, for halos, where we only consider
bulk motions of their centers of mass, the large-scale in-

fall is dominating the velocity field, allowing the Kaiser
enhancement to become significant at large-scales. Addi-
tionally, the overall amplitude of s3 is consistently lower
for halos than for the smooth dark matter field, reflecting
the effect of halo biasing on hierarchical clustering [47].

From Figure 4, it is evident that the differences in
skewness amplitude between GR and EG models iden-
tified in real space are strongly suppressed in redshift
space. The fact that both the shapes and amplitudes of
s3 converge across GR and EG models in redshift space
indicates that the overall effects of enhanced structure
formation, as fostered by EG, somehow conspire to bring
the redshift-space skewness back close to GR values. It
seems that the more enhanced the real-space clustering
becomes in a given EG model, the stronger the cor-
responding redshift-space suppression is, resulting in a
near-cancellation of the two trends. This is particularly
evident in the lower panels of Figure 4, where we show
the ratio of skewness in redshift space to real space for
all models. Both f(R) and nDGP models exhibit ratios
very close to the fiducial GR case. A weak exception ap-
pears for the N1 model, where H1 halos exhibit slightly
stronger redshift-space suppression at R ≲ 10h−1Mpc
compared to GR. However, given the size of the 1σ scat-
ter, this effect is small and likely difficult to be detected
observationally.

Interestingly, if this near-universality of the real-to-
redshift-space skewness transition also holds for other
halo samples and for galaxies, this implies that knowl-
edge of the real-space clustering alone could be sufficient
to predict the skewness amplitude in redshift space, re-
gardless of the underlying gravity model. Qualitatively
similar trends are found for higher-order reduced cumu-
lants such as kurtosis (J = 4) and hyper-kurtosis (J = 5)
but we do not display them here, focusing just on skew-
ness.

So far, we have compared the skewness amplitudes be-
tween real and redshift space by considering all models
together. We now investigate the actual relative differ-
ences between the EG models and the fiducial GR case
taken as a reference. These results are shown in Fig-
ure 5. For this exercise, we selected the z = 0.5 and
H2 halo sample, since for this case the deviations from
GR appear to be maximized. Examining the top panel,
we recover the well-known results for real-space cluster-
ing (see e.g., Fig. 11 in [48]) for a comparable halo
sample. Here, the differences between various EG mod-
els and GR are typically contained within 5% at small
scales (R ≲ 10h−1Mpc), while at larger scales the dif-
ferences become insignificant. The situation is some-
what reversed when we move to redshift space, as il-
lustrated in the bottom panel of Figure 5. At small
scales (R ≲ 10h−1Mpc), we observe convergence of s3
for all models, with no significant deviations. Only at
larger scales do some EG models show hints of departure
from GR. The most notable case is the F5 model, which
around R ∼ 20–30h−1Mpc exhibits ∼ 2% difference from
GR, marginally reaching 1σ significance.
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FIG. 5. Relative differences in the reduced third-order cu-
mulant s3 between EG models and GR for the halo sample
H2 at z = 0.5 for real (top panel) and redshift-space (bottom
panel).

While considering different halo samples at z = 0.5,
we found that a statistically significant signal for the F5
model is also present for the H3 sample, both in real and
redshift space (at the ∼ 5% level), whereas for the H1
sample, the signal vanishes completely in redshift space.
Interestingly, at z = 0.3, the only significant deviation
from the GR case is observed for the F5 model and the
H3 halo sample. The H1 sample, which has the high-
est spatial abundance, would in principle be expected to
provide the strongest signal-to-noise ratio for CIC distri-
bution functions. However, the suppression of the signal
in redshift space persists.

For a more complete view, we present the results for
the H1 sample collected across all three redshift epochs
considered, as shown in Figure 6. Firstly, one can no-
tice that the net differences between EG models and GR
decrease with increasing redshift across all models con-
sidered. Interestingly, for this halo sample (i.e., H1), it
is the F6 model that exhibits the strongest overall de-
viations from GR. Although initially surprising, this re-
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FIG. 6. Relative redshift-space differences in the reduced
third-order cumulant s3 between EG models and GR for the
H1 halo sample at three redshifts: z = 0 (top), z = 0.3 (mid-
dle), and z = 0.5 (bottom).

sult is consistent with findings in the literature (see e.g.,
[49, 50]), which indicate strong non-linear behavior of F6
halos in the small-mass regime. As in the previous case
of the smooth density field, we find qualitatively simi-
lar trends when examining higher-order moments, such
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as kurtosis and hyper-kurtosis. The main takeaway from
our halo sample CIC analysis is that, although signifi-
cant differences in real-space skewness amplitudes exist
between EG and GR cases, most — if not all — of the
signal is suppressed when moving to counts performed in
redshift space. This is a quite remarkable and important
negative result. In the subsection below, we investigate
how the situation changes when analyzing CIC for the
mock galaxy sample.

B. Mock Galaxies

We now move to the observable tracers of the cosmic
density field — galaxies. In this case, we work with a
number density of ∼ 3.2 × 10−4 (h/Mpc)3, which places
our mock galaxy sample between the H2 and H3 halo
datasets in terms of spatial abundance. We performed
an analogous analysis to that presented above for halos.

We find that the nDGP models mostly match GR
across all cases, except at z = 0 in real space, where
1σ deviations appear for the N1 model at some limited
range of scales. However, these deviations disappear af-
ter moving to redshift space. For the f(R) models, the
situation is different. The F5 variant exhibits significant
deviations from GR at every redshift in real space, and
the signal partially survives in redshift space at z = 0.5
and, to a lesser extent, at z = 0 (at approximately the
1σ level). At z = 0.3, the F5 model shows strong devi-
ations from GR, but only for the full galaxy sample in
real space. For the F6 model, 1σ deviations are observed
that appear to be largely independent of redshift.

Since signals in redshift space are the most relevant
in the observational context, we focus our attention on
the models at z = 0.5. Figure 7 shows the relative dif-
ference between EG and GR for the reduced skewness
s3, comparing the models in both real and redshift space
at this redshift. One can notice a significant EG sig-
nal for the F5 model. Unlike F6, which drops below 1σ
significance in redshift space, the F5 model maintains a
∼ 4% deviation with ∼ 2σ significance in redshift space.
This result is in agreement with Refs. [11]. For F6, the
differences in redshift space are practically undetectable.
Moreover, galaxies may in some cases provide a stronger
EG signal in redshift space than halos. A comparison
between Figure 7 and Figure 5 shows that the deviation
of F5 from GR is approximately twice as large for galax-
ies compared to the H2 halo sample, which provides the
most comparable number density (see Table I). However,
at lower redshifts, this enhancement is much less pro-
nounced. This result is encouraging, as galaxies are the
only directly observable large-scale tracers of the cosmic
web. Although the ∼ 5% difference observed for the H3
halo sample at z = 0.5 is slightly stronger than that for
galaxies, the galaxy signal remains promising for obser-
vational constraints.

The signal of F5 shown in Figure 7 is particularly
promising in this context. Results from [51] indicate un-
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FIG. 7. Relative differences in the reduced third-order cumu-
lant s3 between EG models and GR for the full galaxy sample,
comparing real (top) and redshift space (bottom) at z = 0.5.

certainties on skewness measurements of ∼ 5–15% for
selected galaxy samples at comparable redshifts (see Fig.
12 therein). Given that those measurements were based
on a survey covering approximately 155 square degrees,
surveys with larger coverage should provide much tighter
constraints on skewness. Confronting such observational
data with s3 predictions for GR and F5 from mock galaxy
catalogs mimicking the observations could potentially
verify the validity of the models with high significance.

We find qualitatively similar trends and signals for
higher-order reduced cumulants s4,5 for the mock galax-
ies. In fact, the differences between GR and extended
gravity models grow larger for J = 4 and J = 5; however,
the associated uncertainties also increase more rapidly re-
ducing the overall significance. Therefore, we focus our
analysis on s3.

Up to this point, all results discussed refer to the full
galaxy sample including both central and satellite galax-
ies. A notably different behavior of the skewness signal
arises when considering only central galaxies in redshift
space.
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subsample (bottom), both at z = 0.5.

Figure 8 shows that the skewness signal for the full
galaxy sample is stronger than that for the centrals-only
at most scales. At first glance, this behavior might seem
surprising, since satellite galaxies, which typically reside
within the virial radius of their host halos, are expected
to contribute additional signal primarily at scales smaller
than the average halo size, roughly ≲ 2h−1Mpc [28, 52,
53].

The strengthening of deviations from GR for the full
sample is likely related to the enhanced small-scale non-
linearities introduced by the satellite population, partic-
ularly within the one-halo regime.2

The observed all-scale increase of the F5 deviation in

2 In f(R) gravity, satellites do not experience fundamentally dif-
ferent forces compared to centrals on small scales, due to effi-
cient screening within dense halo environments. However, their

the full sample is a manifestation of the nature of the
statistics used. Although the effects of satellites are most
prominent at small distances, we use volume-averaged
correlation functions in this work. Consequently, larger
scales also incorporate contributions from smaller scales,
allowing the satellite effect to propagate beyond the one-
halo regime. We find that this effect persists at all red-
shifts considered, i.e z = {0, 0.3, 0.5}.

Another interesting feature we find is that for central-
only galaxies, s3 is smaller in real space than in red-
shift space at all scales, which is very distinct behav-
ior than for both DM and halos. This inversion is in-
deed observed consistently across all gravity models we
consider and contrasts with the behavior found for dark
matter and halos, where real-space skewness typically ex-
ceeds redshift-space skewness. This can be interpreted
in two ways: either adding RSD in centrals-only galaxies
increases the nonlinearities, or ignoring satellite galax-
ies in real space decreases the skewness at all scales,
but primarily around the one-halo regime, whereas in
redshift space the effect is distributed more uniformly
across scales. The first interpretation highlights that the
centrals-only sample is much more selective compared to
the full galaxy sample, leading to weaker spatial correla-
tions on scales below the mean inter-galaxy separation.
This is primarily due to the halo exclusion effect: in
a centrals-only sample, no two galaxies can occupy the
same halo, which suppresses the one-halo contribution to
clustering. In contrast, including satellites reintroduces
close galaxy pairs, reconstructing the missing small-scale
clustering power associated with the one-halo term. The
velocity field encodes additional clustering information
— for example, from satellites that are absent in the
centrals-only sample. Therefore, the redshift-space the
amplitude is boosted relative to real space.

In contrast, for the full galaxy sample, small-scale mo-
tions primarily act to decrease the strong skewness sig-
nal originating from satellites, which are now included in
the catalog. We find that the aforementioned effects are
present also at other redshifts, except for R < 6h−1Mpc
at z = 0 for the centrals-only sample, where the real-
space skewness becomes approximately 10% larger than
in redshift space for the F5 model.

The second interpretation is more straightforward. Ig-
noring satellite galaxies in real space lowers the skew-
ness primarily at the one-halo scale where satellites re-
side. However, due to volume averaging, this suppres-
sion also partially influences larger scales. In redshift
space, much of the small-scale signal from satellites is
suppressed by RSD. Hence, removing satellites does not
induce as strong a scale-dependent change. Nonetheless,
the additional nonlinearities encoded within the veloc-
ity field still enhance the skewness in the centrals-only

presence enhances the small-scale clustering signal, particularly
within the one-halo regime, and thus indirectly contributes to
the observed skewness deviations.
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redshift-space sample.

C. Universality of Real to Redshift-Space
Transition

Our results, both for the dark matter density field and
for halo clustering, indicate that the ratio between skew-
ness in redshift and real space exhibits a very close agree-
ment across all EG models and the fiducial GR case.
This finding provides a promising opportunity for pre-
dicting higher-order redshift-space clustering cumulants
in EG scenarios based solely on real-space predictions.
We discuss this feature further in the Appendix, where we
additionally compare one example of the s3 ratios with
the ratios of the volume-averaged correlation functions
ξ̄2 and ξ̄3, from which the skewness s3 is constructed.
While these results hold robustly for the dark matter
and halo populations the situation is different for galax-
ies. Here, the agreement between redshift-to-real-space
skewness ratios across different gravity models is limited
to specific cases and redshifts, largely due to the proba-
bilistic nature of the halo occupation distribution (HOD)
method used to construct the mock catalogs. In partic-
ular, the random assignment of satellite galaxies intro-
duces additional small-scale peculiar velocities that are
not fully correlated with the underlying matter density
field. This synthetic velocity component partially decou-
ples the galaxy clustering from the local density environ-
ment, making it more difficult to preserve the universal-
ity of the redshift-to-real-space ratio observed for dark
matter haloes [see e.g. 54, 55].

V. SUMMARY AND CONCLUSIONS

In this work, we have investigated the skewness of the
three-dimensional dark matter and galaxy density fields
across different redshifts and gravity scenarios, focusing
on the impact of redshift-space distortions. The com-
parison between real and redshift space revealed several
remarkable trends, which we summarize below:

• For dark matter density, the skewness s3 is sup-
pressed in redshift space relative to real space at
all scales and for all gravity models (Figure 3).

• For halos, skewness is not universally suppressed
in redshift space (Figure 4). At large scales, s3 is
enhanced due to the Kaiser squashing effect, which
is damped in dark matter particles by random mo-
tions.

• Differences between GR and EG models are sup-
pressed in redshift space compared to real space,
especially for halos. This significantly limits the
utility of skewness as a gravity diagnostic for f(R)
and nDGP models.

• Up to ∼ 5% deviations between GR and EG
are found for halos in real space (Figure 5), but
redshift-space differences are generally smaller (∼
2%) and only marginally significant at ∼ 1σ.

• For the H1 halo sample (number density of 10−3

(Mpc/h)−3), deviations in EG from GR decrease
with redshift. Interestingly, the F6 model shows the
strongest deviations for H1, whereas F5 dominates
for the sparser H2 and H3 samples (Figure 6).

• For galaxies, nDGP models do not show significant
deviations from GR in redshift space (Figure 7). In
contrast, the F5 f(R) model maintains a ∼ 2–4%
deviation.

• Galaxies in redshift space can reveal stronger EG
signals than halos. Comparing Figure 7 and Fig-
ure 5 shows that the F5 deviation is about twice as
large for galaxies than for halos with similar num-
ber densities.

• Separating out central-only galaxies from the full
sample reveals additional features (Figure 8). Sam-
ples containing both centrals and satellites show
stronger skewness signals for F5, although for the
F6 model the difference is negligible.

• The ratio of skewness between redshift and real
space appears nearly universal across gravity mod-
els, especially for f(R) (Figure 4). This glimpse of
universality is discussed in the Appendix, where we
find that while s3 ratios match well across models,
the underlying ξ̄2 and ξ̄3 ratios differ.

Our analysis demonstrates significant and complex ef-
fects of redshift-space distortions on higher-order cluster-
ing statistics. For the dark matter density field, skewness
is universally suppressed in redshift space due to virial
small-scale motions generating the Fingers-of-God effect.
Halo populations exhibit a more nuanced behavior, with
suppressed skewness at small scales transitioning into en-
hanced skewness at intermediate scales (∼ 10h−1Mpc)
due to coherent large-scale infall motions (Kaiser squash-
ing).

Critically, the differences in skewness between GR and
EG scenarios, prominent in real space, become much less
pronounced in redshift space. Nevertheless, the F5 f(R)
model maintains a statistically significant deviation from
GR at approximately 4% level for galaxy samples, sug-
gesting potential observational detectability, particularly
with the current new stage and large-scale galaxy sur-
veys.

Interestingly, we uncover that the ratio of skewness be-
tween redshift and real spaces is remarkably stable across
different gravity models. This approximate universality
implies that real-space clustering predictions can be effec-
tively used to estimate redshift-space skewness, greatly
simplifying theoretical modeling for EG scenarios.

Furthermore, our study reveals enhanced sensitivity of
galaxy skewness compared to halo skewness in redshift
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space, especially when satellite galaxies are included.
Satellites thus provide critical clustering information, re-
inforcing their importance in cosmological analyses aim-
ing to test gravity models.

In summary, our findings highlight both challenges and
opportunities in using higher-order clustering statistics to
test gravity. While redshift-space distortions complicate
direct interpretations of deviations from GR, our results
point to viable pathways for utilizing observational data,
emphasizing the role of satellite galaxies and the robust-
ness of skewness ratios as powerful diagnostic tools.
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Appendix A: Real to Redshift-Space Transition

In this section, we discuss the ratio between statistics
computed in redshift and real space. We define the ratio
as:

ηJ =
XJ,RSD

XJ,REAL
, (A1)

where XJ can refer either to the volume-averaged corre-
lation functions ξ̄J or to the reduced cumulants sJ , de-
pending on whether ratios of correlations or cumulants
are being considered. The subscripts RSD and REAL
denote redshift and real space, respectively.

We find that the ratios for cumulants are, in many
cases, universal with respect to the underlying gravity
model. In this Appendix, we focus on halo clustering, as
constructing halo catalogs comparable to ours requires
relatively few additional assumptions. The situation for
mock galaxy samples is more complicated due to the
necessity of modeling specific selection functions, stellar
masses, and luminosities. At the same time, the redshift-
space clustering of the smooth dark matter density field
cannot be directly observed or easily connected to mea-
surable quantities. Thus, halos offer the most practi-
cal case for investigating potential universal relations be-
tween configuration and redshift space. We find that in
many cases, the ratio ηJ agrees between gravity mod-
els, particularly for sJ , but not necessarily for ξ̄J . Here,
the nDGP model family however generally perform much
worse than f(R), indicating much lower degree of univer-
sality.

Figure 9 shows an example for the H1 halo sample at
z = 0.3, for f(R) and GR. For this example, we addi-
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FIG. 9. Real-to-redshift space ratios at z = 0.3 for the H1
halo sample. The comparison is made in terms of ξ̄2 (solid
lines), ξ̄3 (dashed), and s3 (dotted) for the f(R) gravity sce-
narios considered. The empirical fit for the s3 case (Eq. A2)
is marked in red. For clarity, the s3 results have been offset
downward by 0.5.

tionally fit the ratio ηJ(R) with an empirical function:

η̂J(R) = A× Rα

Rα + B
, (A2)

where R is the smoothing scale in h−1Mpc, and A, α,
and B are free parameters. Due to finite-volume effects
— i.e., cosmic variance limited by the simulation box size
— the statistical uncertainties grow at larger scales. To
ensure statistically robust fits, we restrict our analysis to
scales R < 50h−1Mpc. The ratios for other halo sam-
ples, redshifts, and higher orders are also well fitted by
a function of the form given in Eq. A2. However, we do
not provide the fitting parameters for all cases, as they
strongly depend on the specific simulation details and
do not carry physical meaning. Instead, we demonstrate
the potential universality of ηJ and provide an empirical
fitting form that could be tested in future works.

The main findings regarding the real-to-redshift space
transition can be summarized as follows:

• Differences in the ηJ ratios between f(R) models
and GR are generally strongly suppressed when
considering cumulants. We observe this effect con-
sistently across all samples and redshifts.

• In most cases, one can reliably estimate the
redshift-space skewness for both GR and extended
gravity scenarios based on the universality of s3.

The finding that the redshift-to-real-space ratio does
not depend significantly on the assumed gravity model
is promising for recovering real-space skewness from
redshift-space observations. Furthermore, this effect can
be tested against results from other simulations, help-
ing to better constrain background fifth-force screening
mechanisms in redshift space.
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4.2 Summary

While the differences between used extended gravity scenarios and GR are suppressed in
redshift space, there are also promising results. Firstly, the deviations from GR are not
reduced completely in z-space. It can be taken advantage of especially when employing
larger catalogs, since the current uncertainties are still relatively large. In the era of
large observational data, employing more detailed catalogs is highly motivated. Also as
noticed in previous work, higher orders reveal bigger relative deviations from GR, but
these also suffer from larger errors. Increasing the amount of information by using denser
simulations should improve also high-order measures. Additionally, in this work about
3D clustering we found the signals coming from galaxy statistics to be twice as strong,
compared to halos. This is promising, hence the decisive gravity tests using clustering
will be naturally performed with galaxies rather than halos.
The aspect worth pointing out about studying the cosmic web with central moments-
based statistics, is that even if these allow for low-cost investigation of higher orders,
the information gained from J-point correlation functions is richer than from averaged
correlation functions. Optimally one would use a method to obtain more information
than from higher order ξ̄J , simultaneously keeping similar computational cost. Such a
method requires generalization of counts-in-cells prescription and it is the subject of the
next work.
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Chapter 5

Paper II: Shape-dependent clustering
with ellipsoid correlation function

5.1 Introduction

One of the solutions for better discriminating between cosmic web evolved through dif-
ferent gravity scenarios is to employ the statistics which allows for extracting more infor-
mation. While the averaged correlation functions provide low-cost access to higher-order
statistics of LSS, other statistics such as N-point correlation functions encode also the
information about directional inter-object separations. Another example is anisotropic
2-point correlation function, splitting the inter-object separation on component parallel
and perpendicular to line of sight. This is a convenient solution while working in redshift
space. An equivalent approach can be used for volume averaged correlation functions by
generalizing the counts-in-cells method. Instead of counts in spheres one can perform
counts within ellipsoids with defined semi-axes perpendicular and parallel to line of sight.
This enables for low-cost computation of any statistical order of LSS central moments and
simultaneously gives access to additional information related with anisotropic counts. As
for a new method, the results obtained from anisotropic averaged correlation functions
firstly require careful interpretation and testing. In this part we discuss the developed
anisotropic functions in terms of usage and link them with previously used statistics.
Additionally we analyze how different growth of cosmic structure affects our statistics.
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Anisotropic Counts-in-Cells in Redshift Space:
A New Route to Cosmological Constraints from Galaxy Surveys

Pawe l Drozda,∗ Wojciech A. Hellwing, and Maciej Bilicki
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46,02-668 Warsaw, Poland

(Dated: June 3, 2025)

We introduce a novel extension of the volume-averaged correlation function (VACF) framework
by replacing the traditional spherical smoothing kernels with anisotropic, ellipsoidal windows. This
generalized approach enables the study of shape-dependent clustering statistics and captures di-
rectional information encoded in large-scale structure, particularly in redshift space where galaxy
distribution is distorted by peculiar velocities. We define and compute ellipsoidal VACFs ξ̄J(r∥, r⊥)
and the corresponding reduced cumulants sJ(r∥, r⊥), allowing for joint sensitivity to both scale
and anisotropy across arbitrary statistical order J . Using a suite of COLA N-body simulations
spanning a grid of cosmologies with varying ΩM and σ8, we analyze the behavior of ellipsoidal
VACFs and cumulants in both real and redshift space. We find that the shape of the smoothing
kernel that maximizes the clustering signal depends strongly on the redshift-space distortion regime:
spherical in real space, prolate in the Fingers-of-God-dominated regime, and oblate in the Kaiser
squashing-dominated regime. While the standard VACF amplitude is mainly sensitive to σ8, the
shape-dependence of redshift-space skewness shows a coherent response to the combined growth
parameter fσ8, with a typical sensitivity at the 1–3σ level between neighboring models. Our results
demonstrate that ellipsoidal VACFs offer a computationally efficient and information-rich general-
ization of counts-in-cells analysis, with promising applications to galaxy survey data, halo catalogs,
and cosmological tests of gravity beyond ΛCDM.

I. INTRODUCTION

The large-scale structure (LSS) of the Universe origi-
nates from the gravitational amplification of primordial
density perturbations, modulated by baryonic processes
in an expanding cosmological background. The current
standard model of cosmology, ΛCDM, successfully de-
scribes a broad range of observations across cosmic time.
Nonetheless, persistent tensions—such as those concern-
ing the Hubble constant and the growth rate of struc-
ture—motivate the investigation of extensions to the
standard model, including modifications to gravity and
the nature of dark energy.

The two-point correlation function (2PCF) and its
Fourier counterpart, the power spectrum, remain cen-
tral tools in the statistical analysis of LSS. While pow-
erful, these second-order statistics are inherently lim-
ited in their ability to capture non-Gaussian features
and the full nonlinear complexity of cosmic structure
formation. To address this, various higher-order statis-
tics—such as three-point correlation function and bis-
pectrum , marked correlation functions, and hierarchical
cumulants—have been developed, albeit at considerable
computational cost [e.g. 1–3].

The use of correlation functions in cosmology was pi-
oneered by Peebles in the 1970s and 1980s [4]. Build-
ing on the fair-sample hypothesis, volume-averaged cor-
relation functions (VACFs) were later introduced as
the moments of the counts-in-cells (CiC) distribution,
offering a more tractable alternative to high-order n-

∗ (pdrozda, hellwing, bilicki)@cft.edu.pl

point functions. This framework was significantly ad-
vanced in the 1990s, mostly through the work of
Juszkiewicz, Bernardeau, Colombi, and Gaztañaga, who
demonstrated that VACFs and their reduced combina-
tions could be used to test the gravitational instabil-
ity paradigm and to constrain cosmological parameters
[5–8]. In subsequent decades, CiC-based statistics have
been widely employed to explore a range of alternative
cosmological scenarios, including modified gravity mod-
els [e.g. 9–12].

In practice, VACFs are computed as the central mo-
ments of tracer counts within smoothing volumes of
varying size—typically spherical. This traditional im-
plementation, while computationally efficient and con-
ceptually clear, suffers from a key limitation: the use
of spherical kernels imposes isotropy and suppresses di-
rectional information. As a result, it fails to capture
the anisotropic features of the Cosmic Web, such as the
elongated morphology of filaments or the flattened struc-
ture of walls [13–17]. Furthermore, in spectroscopic sur-
veys, peculiar velocities introduce anisotropies along the
line-of-sight (LOS), giving rise to redshift-space distor-
tions (RSD). These distortions encode additional cosmo-
logical information—especially about the growth rate of
structure—but their directional signature is diluted by
isotropic averaging.

This issue is especially pressing in the era of preci-
sion cosmology. Galaxy spectroscopic surveys provide
three-dimensional maps of the cosmic density field with
high fidelity, particularly along the LOS. Past and cur-
rent datasets such as 2dFGRS, SDSS, or GAMA, along
with next-generation surveys including Euclid, DESI,
and 4MOST, offer unprecedented volumes and sizes of
spectroscopic samples [e.g. 18–22]. These data present a
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unique opportunity to perform high-precision CiC anal-
yses that fully exploit their anisotropic information con-
tent. However, doing so requires extending the tradi-
tional isotropic framework to account for LOS-dependent
effects introduced by RSD.

While RSD signals have been extensively utilized in
two-point statistics to constrain the growth rate and
galaxy bias, their incorporation into higher-order CiC
statistics has remained underdeveloped. A natural and
long-overdue extension of the CiC formalism is to intro-
duce anisotropic smoothing volumes that are sensitive to
redshift-space effects. In this work, we address this gap
by generalizing the VACF methodology to include ellip-
soidal smoothing kernels with independently controlled
axes parallel and perpendicular to the LOS. This exten-
sion allows us to explicitly probe shape-dependent clus-
tering, capture anisotropies induced by cosmic velocities,
and gain access to information otherwise suppressed by
spherical averaging.

We apply this new estimator to a suite of N-body
simulations based on PiCOLA (Parallel COmoving La-
grangian Accelerator) dynamics[23], exploring a grid of
cosmological models with varying matter density ΩM

and fluctuation amplitude σ8. By analyzing anisotropic
VACFs and their associated cumulants in both real and
redshift space, we uncover distinctive morphological pat-
terns and RSD signatures that trace the growth of struc-
ture. Our results show that ellipsoidal VACFs provide
a powerful and flexible tool for extracting anisotropic
clustering information from spectroscopic surveys.

This paper is organized as follows. In Section II, we de-
fine the ellipsoidal VACF estimator and describe its nu-
merical implementation. Section III presents the simula-
tion data and construction of redshift-space catalogs. In
Section IV, we present our results for real- and redshift-
space VACFs and cumulants across a range of cosmo-
logical models. Finally, in Section V, we summarize our
findings and discuss their implications for future analy-
ses of large-scale structure.

II. SHAPE-DEPENDENT DENSITY FIELD
STATISTICS

The starting point of our analysis is the matter density
contrast field, defined as

δ(x⃗) =
ρ(x⃗)

ρ̄
− 1, (1)

where ρ(x⃗) is the local matter density at position x⃗, and
ρ̄ is the mean cosmic density.

To probe the statistical properties of the density field
beyond the two-point level, we consider the volume-
averaged correlation function (VACF) of order J , defined
as

ξ̄J(R) ≡ ⟨δ̄J⟩, (2)

where δ̄(x⃗) denotes the density contrast field smoothed
over a finite volume using a three-dimensional window
function W3D,

δ̄(x⃗) =

∫
d3x′ δ(x⃗′)W3D(x⃗− x⃗′). (3)

In the standard formulation, W3D is taken to be a
spherically symmetric top-hat kernel of radius R [2, 4].
Under the assumption that the smoothed local density
can be approximated by counting tracers (e.g. halos or
galaxies) within spheres of radius R, the VACF can be es-
timated as the central moments of the CiC distribution.
As stated earlier, in this work we generalize the VACF
formalism by introducing an anisotropic smoothing ker-
nel with ellipsoidal geometry. We define the ellipsoidal
window function as

W3D(x⃗; r∥, r⊥) =





3

4πr∥r2⊥
, if

x2
∥

r2∥
+

x2
⊥,1 + x2

⊥,2

r2⊥
≤ 1

0, otherwise,

(4)
where r∥ and r⊥ denote the semi-axes of the ellipsoid
aligned parallel and perpendicular to the LOS, respec-
tively. The position vector x⃗ is decomposed as x⃗ =
(x∥, x⊥,1, x⊥,2), where we assume symmetry in the plane
perpendicular to the LOS, i.e. r⊥,1 = r⊥,2 = r⊥. This
assumption preserves azimuthal symmetry around the
LOS and ensures that rotational orientation within the
perpendicular plane does not affect the clustering mea-
surement.

The resulting generalized VACF is thus a function of
both ellipsoid axes:

ξ̄J(r∥, r⊥) ≡ ⟨δ̄J⟩ with W3D as in Eq. (4). (5)

In practice, we estimate ξ̄J(r∥, r⊥) by computing the
central moments of the distribution of tracer counts
within ellipsoidal volumes defined by (r∥, r⊥). From
these raw moments, we further derive the connected mo-
ments and apply Poisson noise corrections following the
formalism of Gaztanaga [8].

A schematic illustration of the procedure is shown in
Fig. 1. For each pair (r∥, r⊥), we compute counts-in-
ellipsoids across the simulation volume, derive the mo-
ments, and assemble the ellipsoidal VACFs.1

In addition to the raw and connected moments, we
compute reduced cumulants—also known as hierarchical
amplitudes—defined as

SJ(r∥, r⊥) =
ξ̄J(r∥, r⊥)

ξ̄J−1
2 (r∥, r⊥)

, for J ≥ 3. (6)

1 The corresponding code is publicly available at
github.com/Pawel-96/Avcorr.
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FIG. 1. Illustration of the ellipsoidal counts-in-cells procedure used to compute ξ̄J(r∥, r⊥). For each pair of kernel axes (r∥, r⊥),
ellipsoidal shells are tiled across the simulation volume. The resulting count distribution is used to compute connected and
Poisson-corrected central moments.

These normalized quantities remove the dominant scale
dependence of ξ̄2 and highlight deviations from Gaus-
sianity and linear growth. In particular, the reduced
third-order cumulant or skewness, S3 = ξ̄3/ξ̄

2
2 , is fre-

quently used to test the predictions of gravitational in-
stability and probe higher-order mode coupling,[5, 24].
In the weakly nonlinear regime, SJ are predicted to be
nearly scale-independent [25] and are sensitive to both
cosmological parameters and the shape of the initial
power spectrum [26, 27].

III. DATA

This work is based on a new suite of gravity-only N-
body simulations generated using the COLA (COmov-
ing Lagrangian Acceleration) method [28], in particular
we used the MG-COLA variant [29]. These simulations
were specifically constructed to explore the impact of
cosmological parameters on anisotropic clustering and
higher-order statistics. They represent the first applica-
tion of this COLA ensemble, which is optimized to strike
a balance between computational efficiency and sufficient
resolution for analyzing the matter density field.

The fiducial cosmology is based on the
Planck 2018 results [30], corresponding to the
TT,TE,EE+lowE+lensing+BAO solution from Ta-
ble 2 of Planck Collaboration et al. [30]. The adopted
cosmological parameters are:

• Hubble parameter: h = 0.6766,

• Baryon density: Ωb = 0.049,

• Total matter density: Ωm = 0.3111,

• Dark energy density: ΩΛ = 0.6889,

• Power spectrum normalization: σ8 = 0.8102,

• Spectral index: ns = 0.9665.

Each simulation evolves 10243 dark matter particles in
a periodic box of size Lbox = 500h−1Mpc, starting the
time integration at redshift z = 19 and integrated using
52 global time steps. Forces are computed on a regular
mesh with 15363 cells, yielding a spatial resolution of ap-
proximately 325 kpc/h. This level of resolution is well
suited for studies of the continuous matter density field,
though it is not sufficient for resolving halo substructure
or detailed halo assembly histories. A dedicated analy-
sis of halo and galaxy clustering using higher-resolution
simulations will be presented in a follow-up work.

The full suite consists of 9 distinct background cos-
mologies, spanning ±10% variations in Ωm and σ8

around the fiducial model (see Table I). For each cos-
mology, we generate 5 independent realizations using
different initial condition seeds, resulting in a total of 45
simulations. This design ensures robust statistical power
for measuring redshift-space clustering and cosmological
trends.

We analyze three redshift snapshots: z =
{0.1, 0.2, 0.5}, using dark matter pseudo-particles as



4

TABLE I. Cosmological models used in this study, with spec-
ified values of σ8, ΩM , and the derived fσ8. The fiducial
model is denoted as Cen.

Model σ8 ΩM fσ8

Ls8COM 0.7292 0.3111 0.3837

Ls8HOM 0.7292 0.3422 0.4043

Cs8LOM 0.8102 0.2800 0.4023

Cen 0.8102 0.3111 0.4263

Cs8HOM 0.8102 0.3422 0.4492

Hs8LOM 0.8912 0.2800 0.4425

Hs8COM 0.8912 0.3111 0.4689

Hs8HOM 0.8912 0.3422 0.4941

tracers. All statistics are computed in the distant ob-
server approximation [31–33], without applying light-
cone projection or relativistic corrections.

To facilitate interpretation and comparison with
growth-based observables, we compute the derived com-
bination

fσ8 = f(Ωm)σ8 ≈ Ω0.55
m σ8, (7)

where f ≡ d lnD/d ln a is the linear growth rate. This
parameter is frequently used in redshift-space distortion
analyses as a robust measure of structure growth [34–36].

In addition to real-space catalogs, we construct
redshift-space versions of each snapshot using the dis-
tant observer approximation. For each tracer particle,
the redshift-space position is computed as

x⃗zspace = x⃗ +
1 + zsnap
H(zsnap)

v∥ ê∥, (8)

where v∥ is the peculiar velocity component along the
LOS and ê∥ is the LOS unit vector. This transformation
introduces anisotropies from both coherent infall (Kaiser
effect) and small-scale dispersion (Finger-of-God effect)
[37].

To average over orientation-dependent effects, we gen-
erate three redshift-space realizations for each snapshot
by aligning the LOS direction with each Cartesian axis
in turn. All redshift-space measurements are averaged
over these three direction-projections and over 5 initial
phase retaliations, following standard practice [38, 39].

IV. ANISOTROPIC COUNTS-IN-CELLS

We begin our analysis by examining the geometric and
physical properties of ellipsoidal volume-averaged corre-
lation functions (VACFs). As a starting point, we con-
sider the second-order VACF, ξ̄2(r∥, r⊥), measured in the
real space for the fiducial cosmological model using dark
matter particles. The result is shown in Figure 2.

To aid interpretation, we highlight two important ge-
ometric structures in the (r∥, r⊥) plane:
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FIG. 2. Second-order ellipsoidal VACF ξ̄2(r∥, r⊥) in real
space at redshift z = 0.1. Dashed cyan lines denote iso-
correlation contours; dark blue diamond-shaped curves indi-
cate iso-volume contours (4π/3 · r∥r2⊥ = const); orange-red
lines trace the ellipsoidal shapes [r∥, r⊥] that maximize ξ̄2 at
fixed volume.

• Iso-volume contours connect ellipsoidal kernels
of constant volume, defined by V = (4π/3) · r∥r2⊥.
These contours allow one to compare the cluster-
ing signal across different shapes while holding the
enclosed volume fixed.

• Iso-correlation contours follow lines of constant
VACF value, ξ̄2(r∥, r⊥) = const. Their geometry
reveals how clustering strength depends jointly on
the kernel size and anisotropy.

In an isotropic and homogeneous matter distribution,
these two families of contours would be expected to align.
Thus, any misalignment between them signals the pres-
ence of structure in the cosmic density field. Indeed,
Figure 2 shows that the iso-correlation lines (dashed
cyan) systematically deviate from the iso-volume con-
tours (dark blue), reflecting the anisotropic nature of the
Cosmic Web. As expected, the amplitude of ξ̄2 decreases
with increasing scale. Along the diagonal r∥ = r⊥, cor-
responding to spherical kernels, the VACF reduces to its
standard isotropic form which we studied in [40]. How-
ever, for fixed volume, the clustering signal is consis-
tently maximized for spherical kernels, as indicated by
the orange-red curves. This behavior is in line with the
statistical isotropy of over- and under-dense regions in
real space: spherical kernels best isolate coherent struc-
tures, while elongated kernels tend to span across dif-
ferent environments, suppressing the variance in counts
and hence reducing ξ̄2.

We also observe a symmetry in the VACF response
to ellipsoidal shape: for fixed volume V , kernels with
axis ratio η = r∥/r⊥ yield the same VACF as those with
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function of ellipsoidal kernel shape at redshift z = 0.1.

inverse ratio 1/η,

ξ̄2(r∥/r⊥ = η)
∣∣
V

= ξ̄2(r∥/r⊥ = 1/η)
∣∣
V
. (9)

This symmetry arises from the isotropy of real space,
where no direction is privileged. Consequently, the
VACF depends only on the kernel’s shape and volume,
not on its orientation with respect to the observer.

At higher orders J > 2, similar trends persist, though
the statistical noise increases due to the growing sensitiv-
ity of higher-order moments to sample variance. More-
over, the location of maximum ξ̄J at fixed volume begins
to drift away from the diagonal as non-Gaussian features
become more prominent.

To gain deeper insight, we now turn to the skewness
statistic. Figure 3 shows the third-order reduced cumu-
lant, S3, for the same dark matter sample in real space.

In perturbation theory (PT), the reduced cumulants
SJ are proportionality factors relating ξ̄J to powers of
ξ̄2, i.e., SJ ∝ ξ̄J/ξ̄

J−1
2 [2, 41]. In the linear regime,

these ratios are scale-independent and determined by the
gravitational growth dynamics [2]. Deviations from this
behavior indicate nonlinear evolution or the breakdown
of PT assumptions.

Several key features emerge in Figure 3. First, S3 is
the largest at small scales, where nonlinear gravitational
clustering enhances higher-order correlations. Second,
strong variations appear along the axes r∥ = const and
r⊥ = const, resulting in a cross-shaped structure. This
behavior stems from the asymmetric response of ξ̄3 and
ξ̄2 to changes in the ellipsoid’s geometry.

In particular, we find that for fixed r⊥ and increas-
ing r∥ ≪ r⊥, the third-order moment ξ̄3 declines more

rapidly than ξ̄22 , leading to a local enhancement in S3. A
similar effect occurs for fixed r∥ and small r⊥ ≪ r∥. This
results in skewness enhancements along the vertical and
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FIG. 4. Iso-value contours of ξ̄J(r∥, r⊥) for orders J = 2, ..., 6,
color-coded as indicated. Dashed dark blue lines mark iso-
volume contours passing through r∥ = r⊥. Only one quad-
rant is shown for clarity.

horizontal axes. Interestingly, the effect is stronger along
the horizontal axis (r⊥), which reflects the geometry of
the smoothing kernel: the ellipsoidal volume depends
quadratically on r⊥, making the statistic more sensitive
to its variation.

This cross-like morphology in S3 reflects a broader
trend observed across higher-order VACFs. In Figure 4,
we plot the iso-value contours of ξ̄J(r∥, r⊥) for several
orders J = 2 through 6.

As J increases, the iso-ξ̄J contours converge toward
the iso-volume lines (dashed blue diagonals in the Fig-
ure). This convergence explains why all reduced cumu-
lants SJ exhibit similar cross-like features: the higher the
order, the more closely ξ̄J depends only on the total vol-
ume, with diminishing sensitivity to ellipsoid shape. For
J → ∞, one might expect ξ̄J(r∥, r⊥) to become purely
volume-dependent.

This behavior is somewhat counterintuitive. One
might expect higher-order statistics—sensitive to rare
events and extreme structures—to exhibit greater
anisotropy. Yet our results suggest that the geometric
dependence of ξ̄J becomes increasingly isotropic with or-
der. A possible explanation may lie in the slower evo-
lution of higher-order nonlinearities, or in their reduced
sensitivity to small-scale anisotropies, but further theo-
retical investigation is needed to clarify this effect.

A. Redshift-space effects

We now turn to the redshift space, the natural do-
main of galaxy spectroscopic surveys and the primary
motivation for our anisotropic CiC estimator. In this
context, the parameterization [r∥, r⊥] acquires particu-
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lar relevance, as it allows us to separate the clustering
signal along and across the LOS.

To facilitate comparison across different ellipsoidal
volumes, we define an effective radius:

reff ≡
(
r∥r

2
⊥
)1/3

, (10)

which corresponds to the radius of a sphere with the
same volume as the ellipsoid.

Figure 5 shows iso-correlation contours of the second-
order VACF, ξ̄2(r∥, r⊥), in both real and redshift space at
redshift z = 0.1. The solid lines indicate the ellipsoidal
shapes that maximize ξ̄2 at fixed volume.

Several key trends emerge. In real space, the VACF
is maximized by spherical kernels (r∥ = r⊥), consis-
tent with the statistical isotropy of density fluctuations.
In redshift space, however, this symmetry is broken
by redshift-space distortions (RSD), leading to a scale-
dependent shift in the optimal kernel shape.

At small scales (reff ≲ 10 h−1Mpc), the maximal sig-
nal is achieved for prolate ellipsoids elongated along the
LOS (r∥ > r⊥). This reflects the dominance of the
Fingers-of-God (FoG) effect [42, 43], where random virial
motions elongate structures along the LOS, smearing the
density field. At larger scales, the Kaiser squashing effect
[32, 44] dominates: coherent infall velocities compress
structures along the LOS, and the VACF is maximized
for oblate ellipsoids with r∥ < r⊥. The transition be-

tween these regimes occurs near reff ≈ 12 h−1Mpc, con-
sistent with previous studies of redshift-space clustering
[e.g., 31, 42, 45].

To build physical intuition, it is helpful to recall the
standard configuration-space prediction for RSD in lin-

ear theory. In the Kaiser model[31], the redshift-space
two-point correlation function ξs(r, µ) depends on the
separation r and the cosine µ of the angle between the
pair vector and the LOS:

ξs(r, µ) =
∑

ℓ=0,2,4

ξℓ(r)Lℓ(µ), (11)

where Lℓ(µ) are Legendre polynomials and the multi-
poles ξℓ(r) are given by:

ξ0(r) =

(
1 +

2β

3
+

β2

5

)
ξ(r), (12)

ξ2(r) =

(
4β

3
+

4β2

7

)[
ξ(r) − ξ̄(r)

]
, (13)

ξ4(r) =
8β2

35

[
ξ(r) +

5

2
ξ̄(r) − 7

2
¯̄ξ(r)

]
, (14)

with β = f/b the linear redshift-space distortion param-
eter. Here, ξ(r) is the real-space two-point correlation

function, while ξ̄(r) and ¯̄ξ(r) are its first and second
volume-averaged integrals:

ξ̄(r) =
3

r3

∫ r

0

ξ(s)s2 ds, (15)

¯̄ξ(r) =
5

r5

∫ r

0

ξ(s)s4 ds. (16)

Our ellipsoidal VACF estimator probes the same
anisotropic effects encoded in ξs(r, µ), but from a com-
plementary angle: by systematically varying the shape
of the counting kernel and averaging over all directions,
we recover the imprint of RSD without requiring explicit
pair counts or angular binning.

Notably, the redshift-space VACF does not preserve
the symmetry described in Eq. 9, as the LOS direction
introduces a preferred axis. This breaks the equivalence
between ellipsoids with axis ratios η and 1/η, leading to
asymmetric behavior in the [r∥, r⊥] plane.

We also observe that, at small scales, the redshift-
to-real-space ratio of ξ̄2 is suppressed (< 1), while at
larger scales it becomes enhanced (> 1). This agrees
with well-known results for the monopole component of
the two-point function and its volume-averaged variants
[e.g., 32, 33, 46].

Furthermore, the ellipsoidal formalism allows us to
identify the shapes that yield the most extreme differ-
ences between real and redshift space. At small vol-
umes, oblate ellipsoids (r∥ < r⊥) provide the lowest sig-
nal in redshift space, amplifying the FoG suppression rel-
ative to real space. At large volumes, those same oblate
shapes yield the strongest enhancement, aligning with
the Kaiser effect. Interestingly, the maximal redshift-
to-real-space ratio is not achieved at the most oblate
shapes, suggesting that the mapping ξ̄2(r∥/r⊥) is asym-
metric and has a well-defined peak but no true minimum
within the physical domain r∥ > 0.
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These findings demonstrate that ellipsoidal VACFs en-
code rich anisotropic information beyond that available
from spherical statistics. The additional degrees of free-
dom—smoothing scale and shape—enable a more nu-
anced analysis of large-scale structure morphology and
redshift-space distortions.

B. Growth rate dependence

In the previous sections, we examined the behavior
of ellipsoidal volume-averaged correlation functions and
their cumulants in both real and redshift space. We now
turn to investigating how the anisotropic VACFs respond
to changes in the growth rate of cosmic structure, as en-
coded by variations in the cosmological parameters ΩM

and σ8.
Figure 6 shows iso-correlation contours and lines of

maximal ξ̄2(r∥, r⊥) at constant effective volume for a set
of cosmological models sampled at redshift z = 0.1, all
computed in redshift space.

As expected, variations in σ8 have a stronger effect on
the amplitude of the correlation function than changes
in ΩM . This reflects the role of σ8 in normalizing the
matter power spectrum, to which ξ̄2 is directly related.
In contrast, ΩM influences the shape of the power spec-
trum and the growth rate f , resulting in more subtle
changes to ξ̄2.

At scales smaller than the transition threshold reff ≲

10 Mpc/h, increasing ΩM leads to a suppression
of the clustering signal. This is consistent with
stronger redshift-space distortions—specifically the FoG
effect—expected for models with faster growth rates.
On larger scales, where the Kaiser effect dominates, the
trend reverses slightly: models with larger ΩM exhibit
slightly enhanced ξ̄2, although the effect is weaker.

Interestingly, the location of the maximum ξ̄2 at fixed
volume shifts with σ8, especially on small scales. Higher
σ8 models tend to peak for more prolate ellipsoids (r∥ >
r⊥), consistent with stronger FoG elongations along the
LOS. Conversely, for volumes beyond reff ∼ 10 Mpc/h,
models with lower σ8 exhibit maxima at more oblate
shapes. This counterintuitive behavior arises because
in high-σ8 models, strong small-scale FoG suppression
persists even when averaged over larger volumes.

At higher redshifts (not shown here), we observe a
systematic shift of the maxima toward more oblate el-
lipsoids. This trend reflects a reduction in the FoG ef-
fect and an enhancement of the Kaiser effect at earlier
cosmic times, when coherent infall motions were more
prominent. This evolution is in agreement with theoret-
ical expectations (e.g., [34]).

While the amplitude of ξ̄2 is clearly sensitive to σ8, its
dependence on the combined parameter fσ8 = Ω0.55

M σ8

is non-monotonic. For example, the model Cs8LOM
(fσ8 = 0.4023) yields a stronger ξ̄2 than Ls8HOM
(fσ8 = 0.4043), while in other cases, such as between
Hs8COM and Hs8HOM, the ranking is reversed. This
degeneracy makes ξ̄2 a poor discriminator of fσ8.

The situation improves when we turn to higher-order
statistics. In Figure 7, we show iso-contours of the re-
duced skewness s3 in both real and redshift space, col-
ored by the corresponding fσ8 values.

In real space, all models yield nearly identical s3 maps,
making it difficult to distinguish between them. In con-
trast, in redshift space the contours are clearly separated
and follow a consistent trend with increasing fσ8. This
enhanced sensitivity highlights the utility of anisotropic
skewness as a growth-rate probe.

We also observe a significant difference in the shape
of the s3 map between real and redshift space. The
redshift-space suppression of s3 is strongest at small
r∥ and r⊥, corresponding to small effective volumes.
Moreover, the suppression is anisotropic: for fixed reff ,
oblate ellipsoids (r∥ < r⊥) experience greater suppres-
sion than prolate ones. This anisotropy reflects the di-
rectional nature of FoG distortions and confirms that
shape-resolved cumulants offer a richer characterization
of redshift-space clustering.

To explore these trends in more detail, we show cross-
sections of s3(r∥, r⊥) at various kernel configurations in
Figure 8. The diversity of shapes across panels under-
scores the richness of the signal. Differences between
models reach the 1 − 3σ level, particularly for cross-
sections that probe oblate ellipsoids. For instance, in
the bottom right panel, the s3 signal rises with increas-
ing reff up to ∼ 10 Mpc/h, before falling off at larger
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FIG. 7. Iso-contours of reduced skewness s3(r∥, r⊥) at z =
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dashed line marks spherical ellipsoids.

scales. This turnover scale is sensitive to fσ8 and is
promising for model discrimination.

We conclude that reduced skewness in redshift space,
computed using anisotropic ellipsoidal kernels, is a sen-
sitive and robust probe of cosmological growth. In con-
trast to isotropic VACFs, the directional information re-
tained by ellipsoidal CiC provides access to subtle fea-
tures of the Cosmic Web and redshift-space distortions,
offering a promising avenue for future observational anal-
yses.

V. CONCLUSIONS

In this work, we introduced a novel generalization
of volume-averaged correlation functions (VACFs) and
their associated cumulants by extending the standard
counts-in-cells methodology to anisotropic, ellipsoidal

kernels. These ellipsoidal volume-averaged correlation
functions, denoted by ξ̄J(r∥, r⊥), and the correspond-
ing reduced cumulants sJ(r∥, r⊥), represent a natu-
ral configuration-space analogue of the widely used
anisotropic two-point function ξ(rp, π). Our approach
distinguishes between directions parallel and perpendic-
ular to the line of sight, allowing for explicit sensitivity
to redshift-space distortions (RSD) in higher-order clus-
tering statistics.

We explored the behavior of these estimators in both
real and redshift space, using a suite of COLA-based N-
body simulations with varying values of ΩM and σ8, and
analyzed their ability to capture the imprint of cosmic
structure growth and velocity-induced anisotropies. Our
main findings can be summarized as follows:

• In real space, the VACF ξ̄J(r∥, r⊥) at fixed ellip-
soidal volume is maximized for spherical kernels
(r∥ = r⊥). In redshift space, however, this symme-
try is broken by RSD. The preferred kernel shape
becomes prolate (r∥ > r⊥) on small scales domi-
nated by Fingers-of-God (FoG) effects, and oblate
(r∥ < r⊥) on large scales where the Kaiser effect
enhances LOS compression (Fig. 5).

• The shape dependence of higher-order statistics
evolves systematically with order J . While lower-
order VACFs show strong deviations from iso-
volume contours, higher-order ξ̄J functions tend to
align with iso-volume shapes (Fig. 4). This sug-
gests that at sufficiently high J , the statistics be-
come effectively volume-dominated and less sensi-
tive to ellipsoidal anisotropy.

• In redshift space, variations in σ8 produce a signif-
icantly stronger effect on ξ̄2 than equivalent varia-
tions in ΩM (Fig. 6). At small scales, models with
higher σ8 show stronger FoG suppression and fa-
vor more prolate kernel shapes. At larger scales,
the transition to the Kaiser regime occurs at larger
effective radii for these models.

• While ξ̄J does not exhibit a monotonic dependence
on the composite growth-rate parameter fσ8, the
redshift-space cumulants sJ , particularly the skew-
ness s3, do. In real space, models with different
fσ8 values are nearly indistinguishable, but in red-
shift space they exhibit clear, coherent differences
(Fig. 7).

• Cross-sectional analyses of s3(r∥, r⊥) (Fig. 8) con-
firm that models with adjacent fσ8 values can be
separated at the ∼ 0.5−1σ level across a range
of ellipsoidal configurations, especially in redshift
space.

Ellipsoidal VACFs and their cumulants offer a power-
ful extension of the standard counts-in-cells framework,
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with strong potential for extracting anisotropic cluster-
ing information from future redshift surveys. By provid-
ing access to directional and morphological dependen-
cies in higher-order statistics, this approach opens a new
window onto the physics of structure formation, redshift-
space distortions, and the growth of cosmic large-scale
structure. Its computational efficiency and general ap-

plicability to any cumulant order make it a promising
addition to the toolbox of modern cosmological analysis.

Looking ahead, the application of ellipsoidal VACF
statistics to galaxy and halo catalogs from simulations
and observations represents a particularly promising av-
enue. Galaxy redshift surveys such as DESI, Euclid,
and 4MOST will deliver high-fidelity three-dimensional
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maps of the cosmic density field, ideally suited to this
type of anisotropic analysis. Furthermore, since redshift-
space distortions carry complementary information to
real-space clustering, our method can serve as an in-
dependent probe of the growth of structure—enabling
cross-validation of results from standard multipole-based
RSD analyses. Finally, the sensitivity of ellipsoidal cu-
mulants to directional anisotropies and nonlinear struc-
ture makes them a natural tool for testing extensions
of the standard model, including modified gravity the-
ories and alternative dark sector physics. In particular,
their ability to access non-Gaussian signatures through
higher-order cumulants while resolving geometric distor-

tions makes them ideal for next-generation consistency
tests of ΛCDM.
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5.2 Summary

While the developed anisotropic averaged correlation functions ξ̄J(r∥, r⊥) along with
constructed cumulants sJ(r∥, r⊥) are less straightforward for interpretation than spher-
ical functions, these consist an useful tool in cosmic web analysis. The appearance of
anisotropic functions in [r∥, r⊥] representation can be qualitatively explained by shapes of
structures within cosmic web. An important feature raising especially in redshift space
is the line of maximized ξ̄J at given ellipsoid volume, which points out which shapes of
structures are preferred to provide strongest correlation signal. This information can not
be obtained with standard spherical approach and may consist an useful footprint for
distinguishing cosmology models.
The anisotropic functions are well suited for comparing cosmic web with different structure
growth. Especially anisotropic cumulants offer intriguing signals in [r∥, r⊥] representation.
Since the used method is new, there might be much more properties of anisotropic counts
to take advantage of.
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Chapter 6

Conclusions

In this thesis we have studied central moments-based averaged correlation functions and
cumulants of simulated tracers of the cosmic web. The work is organized into two parts.
In first part, we assessed the potential for testing gravity on cosmological scales by com-
paring extended gravity scenarios (Hu–Sawicki f(R) and nDGP) to General Relativity
(GR). In Chapter 3, we examined angular clustering in a light-cone geometry. By opti-
mizing over the amount of information from catalogs, we identified the range in which
deviations from GR (the EG signals) are strongest. We detected significant signals for
dark matter particles, halos, and HOD galaxies, which motivated us to extend our anal-
ysis to fully three-dimensional clustering.
Because projection and scale mixing affect angular statistics, the redshifts corresponding
to strongest EG signals in 3D differs from that found in the light-cone study. In Chapter
4, we therefore measured 3D clustering across all available simulation snapshots, in both
real and redshift space. Rather than presenting every order of the correlation hierarchy,
we focused on skewness, which most clearly highlights the differences between real and
redshift space. We found that EG signals are weaker in redshift space - an important
caveat, since observations are inherently redshift-space measurements. However,galaxy
samples still exhibit stronger deviations than halos, offering a promising route for future
tests. In both the angular and 3D analyses, we also observed that higher-order statistics
produce larger EG deviations but suffer from rapidly increasing uncertainties, suggesting
that very high orders may become useful only with larger, more complete catalogs.
The second part (Chapter 5) explores how to extract additional information from exist-
ing catalogs by replacing spherical counts with ellipsoidal ones. The used higher-order
moments-based functions are averaged versions of J-point correlation functions. Despite
of being much more achievable computationally, these contain less information than their
multi-dimensional cousins. To account for that, we developed anisotropic, averaged cor-
relation functions: central moment-based analogues of the standard anisotropic two-point
function—computed along and across the line of sight, in both real and redshift space.
Applying these new statistics to models with different structure-growth rates, we demon-
strated that they reveal features inaccessible to spherical counts. This approach not only
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remains far less computationally demanding than full J-point correlation functions but
also captures direction-dependent clustering signatures, opening a novel window on large-
scale structure.
Overall, this thesis identifies clear EG signals and illustrates the power of higher-order, av-
eraged correlation functions to discriminate between cosmic webs evolved under different
gravity scenarios. We quantify how detectability differs in real versus redshift space and
introduce ellipsoidal averaged measures to harness the additional anisotropic information
present in redshift-space data.

6.1 Future prospects

New and forthcoming photometric surveys such as Euclid [182] or Legacy Survey of Space
and Time (LSST) [183] - will observe tens of billions of galaxies, vastly increasing the
volume of available data. At the same time, new spectroscopic facilities like the Wide-
field Spectroscopic Telescope (WST) [184] will furnish precise redshifts for hundreds of
millions of galaxies. Together, these surveys will tighten constraints on cosmological
parameters and deepen our understanding of dark energy and dark matter.

Such extensive datasets are especially valuable for clustering analyses. They will
enable measurements of the higher-order averaged correlation functions developed in this
work with unprecedented precision. Along with structure growth rate estimations, these
statistics will allow a sensitive search for signatures of extended gravity. Moreover, by
employing the anisotropic, ellipsoid-averaged functions introduced here, one can probe the
cosmic web from a novel vantage point. Due to the richness of forthcoming observational
data, one might identify features not detected so far.
In summary, the future will present both significant challenges and unique opportunities
to refine our picture of the components of Universe, its evolution and to put tighter
constraints on the nature of gravity itself.
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