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Streszczenie

Jednym z fundamentalnych osiągnięć mechaniki kwantowej było odkrycie bozonów
i fermionów, charakteryzujących się wyraźnie odmiennymi właściwościami
statystycznymi. Przez dziesięciolecia własności tych dwóch typów cząstek
stanowiły punkt wyjścia dla rozwoju wielu obszarów fizyki. Jednym z
interesujących rezultatów tych badań było odkrycie głębokiego podobieństwa
pomiędzy silnie odpychającymi się bozonami a nieoddziałującymi fermionami
w jednowymiarowych układach. W układach bozonowych obecność silnych
oddziaływań sprawia, że dwie cząstki praktycznie nigdy nie mogą znajdować
się w tym samym miejscu, co skutecznie imituje działanie zakazu Pauliego
charakterystycznego dla fermionów. To formalne podobieństwo prowadzi do
zgodności energii oraz funkcji korelacji drugiego rzędu obu typów układów, co stało
się podstawą do określenia takich stanów mianem „sfermionizowanych”. Co istotne,
podobieństwo to występuje nie tylko w przypadku silnie odpychających się bozonów,
ale również w pewnych wysoko wzbudzonych stanach układów o bardzo silnych
przyciągających oddziaływaniach. Te wysoce nieintuicyjne stany nazwano stanami
super-Tonksa-Girardeau. Ich istnienie zostało potwierdzone eksperymentalnie
poprzez przygotowanie sfermionizowanego stanu bozonów, a następnie gwałtowną
zmianę charakteru oddziaływań z silnie odpychających na silnie przyciągające.
Eksperymenty te wykazały zaskakującą stabilność takich układów oraz ich
odporność na termalizację. W niniejszej rozprawie przedstawiono teoretyczne
podstawy tego zjawiska oraz omówiono możliwość jego wykorzystania w realizacji
tzw. procesu pompowania, umożliwiającego generowanie w kontrolowany sposób
stanów wysoko wzbudzonych. Szczególną uwagę poświęcono silnie skorelowanym
stanom wzbudzonym doskonałego gazu bozonowego, w których właściwości układu
wykazują uderzające podobieństwo do zachowania nieoddziałujących fermionów
w modelach o zredukowanej długości. W odróżnieniu jednak od „klasycznej”
fermionizacji, w tym przypadku podobieństwo dotyczy energii i rozkładu pędów,
przy jednoczesnych istotnych różnicach w funkcjach korelacji drugiego rzędu. W
dalszej części pracy przeanalizowano konsekwencje nagłych zmian oddziaływań
w układach bozonowych, w których obecne są dwa konkurujące ze sobą typy
oddziaływań: silnie odpychające kontaktowe oraz nielokalne przyciągające.
Wykazano, że pojawiające się w takich systemach stany samozwiązane można
podzielić na dwie klasy, różniące się zachowaniem po gwałtownej zmianie
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oddziaływań: (i) w przypadku dostatecznie silnego nielokalnego przyciągania
układ pozostaje stabilny, a wśród stanów własnych nowego hamiltonianu pojawia
się stan super-Tonksa-Girardeau; (ii) istnieją również stany samozwiązane,
które ulegają dezintegracji - w ich przypadku nie obserwuje się obecności
stanu super-Tonksa-Girardeau. W rozprawie zastosowano szeroki wachlarz
metod badawczych, ze szczególnym uwzględnieniem analitycznych narzędzi
teorii układów wielociałowych (w tym Ansatzu Bethego) oraz obliczeń ab initio,
takich jak nowoczesne metody numeryczne oparte na sieciach tensorowych
oraz ścisłą diagonalizację z użyciem metody Lanczosa. Najważniejsze wyniki
zaprezentowanych badań to

■ identyfikacja stanów doskonałego gazu bozonowego, charakteryzujących
się identycznym rozkładem pędów jak układ nieoddziałujących fermionów,
możliwych do uzyskania poprzez proces pompowania,

■ oraz wykazanie, że część stanów związanych w układach z oddziaływaniami
dipolowymi nie posiada odpowiednika w postaci analogicznego stanu
super-Tonksa-Girardeau i po skokowej zmianie oddziaływań ulega
dezintegracji.
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Abstract

One of the foundational achievements of quantum mechanics was the discovery
that particles fall into two distinct categories - bosons and fermions - each
governed by fundamentally different statistical laws. For decades, the properties
of these two types of particles have served as a foundation for the development of
numerous fields in physics. One of the intriguing outcomes of these investigations
was the discovery of a deep similarity between strongly repulsive bosons and
non-interacting fermions in one-dimensional systems. In bosonic systems, the
presence of strong repulsive interactions effectively prevents two particles from
occupying the same position, thereby mimicking the Pauli exclusion principle
characteristic of fermions. This formal resemblance leads to agreement in both
the energy and the second-order correlation functions of the two systems, forming
the basis for the concept of “fermionized” states.

Noteworthy, this similarity arises not only in the case of strongly repulsive bosons,
but also in certain highly excited states of systems with strongly attractive
interactions. These counterintuitive states are known as super-Tonks-Girardeau
states. Remarkably, their existence has been experimentally confirmed by
first preparing a fermionized bosonic state, and then suddenly quenching the
interaction character from strongly repulsive to strongly attractive. These
experiments revealed a surprising stability of such systems, as well as their
resistance to thermalization.

This thesis presents the theoretical foundations of this phenomenon and explores
its potential application in realizing the so-called pumping process, which enables
the controlled generation of highly excited states. Particular attention is given
to strongly correlated excited states of an ideal Bose gas, in which the properties
of a system exhibit striking similarities to those of non-interacting fermions in
models with reduced length. In contrast to “classical” fermionization, however,
the observed similarities obey the energy and momentum distribution, while
significant differences remain in the second-order correlation functions.

In the second part of this thesis, the consequences of sudden changes in interaction
strength are analyzed for bosonic systems featuring two competing types of
interactions: strongly repulsive contact interactions and long-range attractive
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ones. It is shown that self-bound states arising in such systems can be classified
into two distinct types based on their behavior a�er the quench: (i) for sufficiently
strong nonlocal attraction, the system remains stable, and among the eigenstates of
the post-quench Hamiltonian, a super-Tonks-Girardeau-like state appears; (ii) there
also exist self-bound states that disintegrate a�er the quench - in which case no
super-Tonks-Girardeau state is observed.

Throughout this dissertation, a broad range of research methods is employed,
with particular emphasis on analytical many-body methods (including the Bethe
Ansatz), as well as ab initio numerical methods, including modern tensor network
techniques and exact diagonalization using the Lanczos algorithm.

The key results of the projects presented here include

■ the identification of states of an ideal Bose gas that exhibit the same
momentum distribution as non-interacting fermions, which can be generated
through a pumping process;

■ and the demonstration that some of the bound states in systems with
dipolar interactions do not have a counterpart in the form of an analogous
super-Tonks-Girardeau state and disintegrate following a sudden change in
interactions.
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Chapter 1

Introduction

The research presented in this dissertation focuses on bosonic systems that, under
certain conditions, can exhibit fermionic characteristics. In the introduction, I
first recall the fundamental properties of fermions and bosons, and then proceed
to the interacting many-body systems consisting of particles in one dimensional
geometries — the main focus of this work.

1.1 100 years of History of Fermions and Bosons

The History of quantum mechanics is commonly said to have begun in 1900, with
Max Planck’s proposal of energy quantization as a way to explain the puzzling
behavior of black-body radiation [1]. This moment marked the birth of what would
become known as the Old Quantum Theory — a period marked by a flood of new
ideas, many of which were not yet fully developed or understood, but which would
later form the foundation of entire scientific and technological fields.

Among the most significant achievements of that era were the investigations of
the statistical properties of photons carried out by Satyendra Nath Bose. His
work [2], later extended by Albert Einstein, led to the concept of indistinguishable
particles and the discovery of bosons. Another major breakthrough was Wolfgang
Pauli’s derivation of the exclusion principle, published exactly 100 years ago in [3],
proposed to explain the curious patterns in electron shell occupation in atoms. This
principle ultimately led to the formal identification of fermions.

The existence of these two types of particles — bosons and fermions — so similar and
yet fundamentally different, appears to influence nearly every domain of physics.
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This seemingly simple mathematical distinction introduces a kind of discontinuity
— a “defect“ in an otherwise elegant crystalline structure of physical laws. The far
reaching consequences of this subtle difference appear in a wide range of fields,
from the Standard Model and string theory to the pure quantum many-body theory.

The difference between fermions and bosons is perhaps most naturally explained
through the lens of the many-body wavefunction — the central object in the
Schrödinger equation [4, 5] — which essentially describes an amplitude of the
probability of observing a particular configuration of particles

Ψ(r1, r2, . . . , rN) (1.1)

where variables {rj} are the spatial positions of the particles. This function can be
used to compute physically measurable quantities — called observables — through
the application of appropriate operators Ô, the contribution of Werner Heisenberg,
Max Born, and Pascual Jordan for the foundations of quantum mechanics

Physical observable O =
∫

Ψ∗(r1, r2, . . . , rN) ÔΨ(r1, r2, . . . , rN) dr1dr2 . . . drN. (1.2)

If the particles are indistinguishable, then swapping them must not alter any
measurable physical quantity. In particular, the expected value of any operator
must remain unchanged under exchange. This implies that as a result of swapping
two particles the wavefunction can only acquire a global phase

Ψ(. . . , ri, . . . , rj, . . .) = eiφΨ(. . . , rj, . . . , ri, . . .). (1.3)

This simple rule appears to be relatively straightforward — at least as long as no two
particles occupy the same position. However, if, for example, the positions of the
i-th and j-th particles coincide ri = rj , a natural question arises: what happens if we
perform the exchange operation twice? This leads to a relatively simple equation
(1.4), yet one that carries far-reaching consequences

Ψ(. . . , ri, . . . , rj, . . .) = eiφeiφΨ(. . . , ri, . . . , rj, . . .). (1.4)

As one can see there e2iφ = 1, and thus eiφ = ±1. The case where eiφ =
+1 corresponds to a symmetric wavefunction, characteristic of bosons, while
the other one implies antisymmetry typical for fermions. Antisymmetry has a
profound consequence — namely, in the state discussed here Ψ(. . . , ri, . . . , rj, . . .) =
−Ψ(. . . , ri, . . . , rj, . . .), what implies that Ψ(. . . , ri, . . . , rj, . . .) = 0. Consequently, as
can be simply proven, no two indistinguishable fermions can occupy the same
quantum state.
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These considerations form a natural basis for further developments, such as the
derivation of the Bose-Einstein and Fermi-Dirac statistical distributions, which
describe the population of quantum states. They also underpin phenomena such
as Bose-Einstein condensation and a wide range of other effects — many of which,
while fascinating, lie beyond the scope of this particular work.

1.2 Theoretical approaches to one-dimensional bosonic

systems

In the following decades, research on many-body systems continued. Among other
efforts, numerous researchers proposed dozens of approaches to determine the
exact form of the wavefunction for interacting bosons, along with key properties
such as their associated energies. Particularly noteworthy in this context are the
late 1950s and early 1960s — a period when the modern approach to many-body
systems began to take shape, laying the foundations for the main currents of
contemporary research in the field.

In chronological order, probably the first truly visionary approach to interacting
quantum many-body systems was introduced by R. Jastrow in [6], where the author
— building on earlier, not fully formalized suggestions by N. F. Mott and the work
of R. B. Dingle [7] — proposed the so-called Jastrow Ansatz for the approximate
description of systems of fermions and strongly interacting bosons. It is worth
noting that this approach later became the foundation for one of the most widely
used computational techniques today: variational Monte Carlo [8, 9]. A few years
later, a somewhat similar approach, this time rooted in certain properties of the
Bose-Einstein condensate (BEC), was independently developed in the works [10, 11],
where the authors introduced what would later be known as the Gross–Pitaevskii
equation — an effective, approximate framework for describing systems of weakly
interacting bosons.

However, for our further discussion, two subsequent works are of particular
importance — both of which consider a simplified case of N indistinguishable
bosons of mass m, where the space is reduced to one dimension and the
corresponding Hamiltonian is given by

Ĥ = − ℏ2

2m

N∑
j

∂2

∂x2
j

+
N∑

j<j′
V (xj − xj′), (1.5)
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where xj is the spatial position of the j-th particle and interaction potentials are
given by V (x− x′).

The first is of M. Girardeau [12], in which author highlights an intriguing similarity
between systems of strongly repulsive bosons, where interatomic interactions
exhibit “impenetrable core“ (i.e.

∫ ϵ
−ϵ V (x)dx → ∞ for ρϵ < 1 where ρ

is the one-dimensional gas density) and the ground states of a systems of
noninteracting fermions. As shown earlier in the context of the antisymmetry of
the many-fermion wavefunction, two fermions cannot occupy the same position
in space. Interestingly, bosonic systems with very strong short-range repulsive
interactions (so-called Tonks-Girardeau states) exhibit a similar property. This
resemblance leads to a number of shared features between the two types of
systems. For instance, their energies are identical. Likewise, correlations that
depend on the modulus of the wavefunction (ΨT G,B = |ΨGS,F |) are also the same
in both cases. These considerations — providing an exact wavefunction for at least
one value of the interaction parameter — represented the first step on the ladder.

Shortly a�erwards, the breakthrough came with the works of E.H. Lieb and W.
Liniger [13, 14], in which the authors brilliantly extended the method previously
known as the Bethe Ansatz [15] to derive the exact wavefunction of a system of
an arbitrary number of bosons interacting via repulsive contact forces of arbitrary
strength, where the interatomic potential is given by V (x − x′) = gδ(x − x′), where
g > 0 is called as a coupling constant. The model they solved — later named a�er
them — belongs to the rare class of many-body quantum models considered exactly
solvable.

I would like to conclude this generation of research with the final work in
chronological order: [16], in which the author — J. B. McGuire — proposed the form
of the wavefunction and the energies of certain eigenstates for a model identical to
that of Lieb and Liniger, but involving attractive interactions (g < 0.

Finally, a third wave of discoveries emerged nearly four decades later. In 2005 a
remarkable publication by G.E. Astrakharchik appeared [17], in which the author
made a highly creative observation: the wavefunction of a bosonic system must
coincide with the modulus of the fermionic wavefunction not only in the case of
infinitely strong repulsive contact interactions (as it was in Tonks-Girardeau state)
but also in the case of infinitely strong attractive interactions. In the latter scenario,
where the ground state is given by the McGuire soliton, this correspondence holds
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for a highly excited super-Tonks-Girardeau state, which nevertheless remains an
eigenstate of the Hamiltonian.

This means that, theoretically, in one dimensional space, one could prepare a
system of strongly repulsive bosons, suddenly switch the sign of the interaction to
strong attraction, and — provided the post-quench attraction is sufficiently strong
— the system would remain essentially unchanged for a long time, avoiding rapid
thermalization [18, 19, 20, 21] and the associated collapse [22]. Counterintuitively,
numerical predictions indicated that for relatively weak attractive interactions,
such a system becomes unstable.

The work mentioned above plays the important role in this work: along with several
follow-up studies that further developed the idea and clarified certain properties of
the observed states [23, 24, 25, 26, 27, 28], will serve as a crucial starting point for
my own investigations.

1.3 Experimental realization of ultracold many-body

bosonic systems in low-dimensional geometries

First, however, I need to make a substantial leap and at least briefly outline
the history of experimental research on strongly interacting bosons in reduced
dimensions.

The first project that needs to be presented in this brief review is the one
described in [29]. In this work, the authors used trapping techniques [30, 29]
to create a very deep two-dimensional lattice, what resulted in the formation
of an array of thousands of quasi-one-dimensional traps populated with
atoms reproducing the bosonic characteristics. Later, experiments have been
continuously conducted at several research centers [31], leading to, among other
achievements, the experimental realization of states predicted in theoretical
studies of Tonks–Girardeau gases [32, 33], the confinement of atoms in ring-shaped
traps that naturally implement periodic boundary conditions [34], and the
observation of prethermalization phenomena [35].

Finally, this remarkably rapid era of experimental testing of fundamental
laws in one-dimensional systems — especially from the perspective of
super-Tonks–Girardeau gases — was brought to a close in 2009, by the experiment
[36]. In that beautiful study, the authors prepared a system of strongly repulsive
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bosons, performed an interaction quench, and confirmed the existence of a stable
super-TG phase. Crucially, when the interaction strength was gradually reduced
from strongly attractive to moderately attractive values they also observed the
collapse of the gas.

At that stage, it appeared that the nature of the super-Tonks–Girardeau states had
been conclusively understood, with experimental observations showing excellent
agreement with numerical simulations. However, later studies demonstrated that
the collapse, previously considered a limiting factor, can in fact be mitigated under
relatively accessible conditions.

A clue pointing to this can be found in a relatively recent experiment conducted by a
research group from Stanford. The involved researchers lead by B. Lev performed a
similar quench experiment involving ultracold atoms in a quasi-one-dimensional
trap. Since 2009, however, there has been significant technological progress —
researchers have learned not only how to trap and study atoms interacting via
short-range forces, but also those with non-zero, strong dipole moments that can
interact both via contact and non-local dipolar interactions [37, 38, 39, 40]. These
new technical capabilities have enabled the exploration of more complex models.
The aforementioned researchers took advantage of this progress, extending their
study beyond purely contact interactions to include weak, seemingly negligible
non-local repulsion as well.

As a result, despite the breaking of the system’s integrability, the setup became
sufficiently stable to avoid collapse during the transition from strongly attractive
to intermediate interaction regimes and researchers were able to complete
a full cycle: a�er the quench, they successfully returned adiabatically to a
non-interacting atomic system, avoiding collapse and ultimately producing highly
excited, intriguing quantum states. What must be highlighted, this experiment was
not just a one-off success. In the following years, the same team conducted a series
of similar experiments, gradually investigating various properties of the states to
which they had suddenly gained access [41, 42].

1.4 Motivation

The experiments discussed in the previous section served as the primary motivation
for two projects originating this dissertation. The further project — presented in

6



Chapter 3 — aimed to clarify the theoretical foundations of the pumping process
reported in Ref. [43] and to explore the properties of the involved quantum states.

The latter focused more on non-local interactions and was closely related to a
parallel line of research within our team, namely the study of phases of matter
emerging in systems with coexisting contact and dipolar interactions. Its goal
was to investigate how the super-Tonks-Girardeau quench influences self-bound
quantum structures, such as quantum droplets.

Additionally, in a somewhat unexpected way, experiments with dipolar gases has
a large impact on the choice of research methods used in this work: over the
decades, a variety of approximate techniques have been developed to describe
many-body bosonic systems — such as the previously mentioned Jastrow Ansatz or
the Gross–Pitaevskii equation. These methods worked remarkably well in systems
with only one type of short-range interactions.

However, it turned out that even a small modification — for example, introducing
weak long-range interactions — could reveal phenomena that these established
methods failed to predict. For instance, in the conventional condensate theory
described by the “classical“ GP equation, only two phases are typically allowed:
uniform gas or a bright soliton [44]. But in reality, other exotic structures appear
— sometimes considered a new phase of matter — such as quantum droplets
[45, 46, 47, 48, 49, 50].

Although earlier approximate approaches were modified to account for the
known effects of non-local interactions [45, 51, 52], the experience underscored
the importance of caution. Given the delicate nature of the processes under
investigation, we prefer the use of exact analytical methods wherever possible. In
cases where this was not feasible, we turned to ab initio numerical techniques
that rested on the fewest possible assumptions. Only upon this solid foundation
we construct further approximations, consistently benchmarking their outcomes
against predictions derived from the most robust theoretical frameworks available.
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Chapter 2

Mathematical formalism and
numerical methods

In the course of investigating the phenomena central to this work, I employed
several numerical techniques, which are briefly outlined in the following sections.
Some of these methods are not directly aligned with the mathematical formalism
used in the main body of the discussion: for example, while the theoretical analysis
is primarily conducted using the first-quantized representation and Bethe Ansatz
framework, the numerical calculations rely on a second-quantized formalism.
Therefore, the methods presented below are preceded by a concise introduction to
the mathematical tools on which they are based.

2.1 Plane wave expansion

To explore the properties of few-body quantum systems that are intractable
by analytical methods, this work among other numerical methods employs
so-called plane wave expansion. Although this term does not fully reflect the
complexity of the problem and, strictly speaking, refers only to the initial stage
of the entire process, it will be used here to denote a broader computational
procedure comprising three main stages: (i) reformulating the problem within
the second-quantized formalism; (ii) efficiently constructing the Hamiltonian
matrix and numerically computing a specified number of its eigenstates; and (iii)
extracting the desired physical information from the obtained eigenstates. The
following sections briefly outline each of these steps. I would like to highlight, that
the following introductions obey the one-dimensional system.
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1 Second quantization

The method described above is closely related to the second-quantized formalism,
and the introduction will be conducted within this framework. Therefore, before
presenting the technique itself, I briefly introduce the key concepts arising in
this formalism. Second quantization can be naturally introduced by examining
the structure and properties of the many-body wavefunction. As is well known,
any single-particle wavefunction in the position (or, equivalently, momentum)
representation can be expanded as

Ψ(x) =
∑

j

cj φj(x), (2.1)

where cj are the expansion coefficients and functions in {φj(x)} span a complete
orthonormal basis. In the case of many-body systems (i.e. wavefunctions depending
on multiple coordinates), an analogous expansion can be carried out

Ψ(x1, x2, . . . , xN) =
∑

j
cj Φj(x1, x2, . . . , xN), (2.2)

where, analogously, the set {Φj(x1, x2, . . . , xN)} must form a complete basis for
the N-particle Hilbert space, and the sum runs over multi-index j. Notably, the
multi-index j may include repeated values, corresponding to multiple occupations
of the same single-particle orbital.

At this point, it is common to introduce a simplification based on particle
indistinguishability. Since the wavefunction describing identical bosons must be
symmetric under particle exchange, it is convenient to choose basis functions
with the same symmetry. A typical choice is the symmetrized basis, given by the
permanent of a matrix composed of single-particle orbitals

Φj(x1, x2, . . . , xN) = N perm


φj1(x1) φj1(x2) · · · φj1(xN)
φj2(x1) φj2(x2) · · · φj2(xN)

...
... . . . ...

φjN
(x1) φjN

(x2) · · · φjN
(xN)

 , (2.3)

where N is the normalization factor.

Fock states

A closer analysis of such symmetrized wavefunctions reveals an important insight:
what truly matters is how many particles occupy each single-particle orbital. This
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observation motivates the introduction of the so-called Fock states, which are
labeled by the occupation numbers

|n0, n1, n2, . . . ⟩. (2.4)

In this notation, the number nj indicates how many particles occupy the j-th single
particle orbital.

Together with Fock states, it is necessary to introduce the bosonic creation and
annihilation operators, b̂†j and b̂j , which respectively create or annihilate a particle
in the j-th orbital, following the relation

b̂j|n0, n1, . . . , nj, . . . ⟩ = √
nj |n0, n1, . . . , nj − 1, . . . ⟩ (2.5)

b̂†j|n0, n1, . . . , nj, . . . ⟩ =
√
nj + 1 |n0, n1, . . . , nj + 1, . . . ⟩. (2.6)

For bosons, these operators satisfy the canonical commutation relations

[b̂j, b̂
†
j′ ] = δj,j′ . (2.7)

Finally, any Fock state can be constructed from the vacuum state |vac⟩ (containing
no particles) by successive application of creation operators

|n0, n1, . . . ⟩ =
∏
j

(b̂†j)nj√
nj!

|vac⟩. (2.8)

Quantum field operators

The exact connection between first and second quantization can be most clearly
illustrated by introducing the so-called quantum field operators: the annihilation
operator Ψ̂(x) and the creation operator Ψ̂†(x), defined as

Ψ̂(x) =
∑

j

φj(x) b̂j, Ψ̂†(x) =
∑

j

φ∗j(x) b̂†j, (2.9)

where {φj(x)} form a complete single-particle basis, and b̂j , b̂†j are the bosonic
annihilation and creation operators associated with the j-th orbital. These field
operators carry a natural physical interpretation: Ψ̂(x) annihilates, while Ψ̂†(x)
creates a particle at position x. The commutation relation between these operators
is given by [Ψ̂(x), Ψ̂†(x′)] = δ(x− x′).

Within this formalism, a first-quantized, spatial (coordinate) wavefunction — which
gives the amplitude for finding particles at specific positions — can be extracted
from a second-quantized, many-body Fock state via the following procedure

Ψ(x1, x2, . . . , xN) ∝ ⟨vac| Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN) |n0, n1, . . . , nM⟩ . (2.10)
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Finally, utilizing introduced formalism one can simply transform the Schrödinger
equation — originally expressed as a complex differential equation — into an
equivalent, but more tractable, problem: the numerical diagonalization of a
Hamiltonian matrix within a chosen Fock basis.

Hamiltonian matrix

To lay the ground for this procedure, I will first introduce the general form of the
many-body Hamiltonian that will be analyzed in the subsequent chapters. In the
position-space representation, this operator takes the form

Ĥ = − ℏ2

2m

N∑
j=1

∂2

∂x2
j

+
N∑

j<j′
V (xj − xj′), (2.11)

where ℏ is the Dirac constant, m is the particle mass and V (xj − xj′) stands for the
interaction potential between particles.

This differential operator plays the central role int the quantum mechanics. It
governs the time evolution of quantum systems, as the wavefunction must satisfy
the Schrödinger equation

iℏ
dΨ(t, x1, ..., xN)

dt
= ĤΨ(t, x1, ..., xN), (2.12)

it defines the mean energy of quantum states

E = ⟨Ĥ⟩ =
∫

dx1 . . . dxN ,Ψ∗(x1, . . . , xN)ĤΨ(x1, . . . , xN), (2.13)

and, through the time-independent Schrödinger equation, determines the
stationary states of the system.

The procedure of transforming the Hamiltonian into its matrix representation
involves constructing an object of the form presented in Eq. (2.14)

Ĥ =


H11 H12 H13 . . .

H21 H22 H23 . . .

H31 H32 H33 . . .
...

...
... . . .

 , (2.14)

where the matrix elements are given by

Hjk =
∫ ∞
−∞

dx1 . . . dxN ϕ
∗
j (x1, x2, . . . , xN) Ĥ ϕk(x1, x2, . . . , xN) = ⟨j| Ĥ |k⟩ . (2.15)
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As can be shown, the eigenvectors of this Hamiltonian matrix correspond to the
coefficients of the eigenfunctions of Ĥ expressed in the chosen basis. That is,

Ĥ = V DV −1, (2.16)

where D is a diagonal matrix containing the eigenvalues (energies) En, and V is a
matrix whose columns are the eigenvectors

Ĥ v⃗n = En v⃗n. (2.17)

Although the procedure for constructing the Hamiltonian matrix outlined above is
conceptually straightforward, it becomes computationally expensive as the system
size grows. A more efficient and general approach exploits the symmetries of the
system and employs the formalism of quantum field operators.

Specifically, by making use of the indistinguishability of particles and the algebra of
field operators, the Hamiltonian can be expressed in second quantized form. This
involves decomposing the Hamiltonian into parts corresponding to single-particle
and two-particle processes (and also higher-order processes if needed, i.e., in the
case of Hamiltonian including three-particle terms).

In the system of interest, we observe the single-particle “processes“ represented by
the kinetic energy term

ĤK = − ℏ2

2m

N∑
j=1

∂2

∂x2
j

, (2.18)

and two-particle processes arising from interatomic interactions

ĤV = 1
2

N∑
j,j′=1

V (xj − xj′). (2.19)

By using the field operators Ψ̂(x) and Ψ̂†(x), these terms can be rewritten in second
quantized form as

K̂ = − ℏ2

2m

∫
S

dx Ψ̂†(x) ∂
2

∂x2 Ψ̂(x), (2.20)

and

V̂ =
∫
S

dx dx ′ Ψ̂†(x)Ψ̂†(x′)V (x− x′)Ψ̂(x′)Ψ̂(x), (2.21)

where S denotes the full spatial domain of the system. These operator expressions
serve as the starting point for constructing the many-body Hamiltonian matrix
directly in the Fock basis, making numerical implementation far more efficient and
scalable.
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2 Single particle basis

At the latest, at this point we encounter a fundamental question: which
single-particle orbital basis should we choose? In practice, a common strategy
is to select a basis such that at least one part of the Hamiltonian matrix
becomes diagonal. This is o�en achieved by choosing the eigenfunctions of the
single-particle component of the full Hamiltonian. For example, in a system where
particles are confined in a harmonic potential with the single-particle Hamiltonian
given by

Ĥh.o. = − ℏ2

2m
d2

dx2 + 1
2mω

2x2, (2.22)

an appropriate choice of basis would be the eigenfunctions of the harmonic
oscillator

φj,h.o.(x) = N e−
mωx2

2ℏ Hj

(√
mω

ℏ
x
)
, (2.23)

where Hj denotes the j-th Hermite polynomial and N is a normalization constant.

In the case more relevant to our studies — namely, a system of particles confined in a
box with periodic boundary conditions — it is optimal to use plane wave eigenstates
of the kinetic energy operator

φj(x) = 1√
L
ei 2πj

L
x. (2.24)

Applying such states ensures that the kinetic part of the Hamiltonian is represented
by a diagonal matrix and automatically enforces the periodic boundary conditions
(PBC) on the wavefunction.

Conservation of the total momentum

The chosen basis has another significant advantage: the single-particle orbitals are
eigenstates of the momentum operator, meaning they possess precisely defined
momenta. As a result, the many-body basis states constructed from them also
have well-defined total momentum. Since the total Hamiltonian does not contain
any terms that change the total momentum of the system, it commutes with the
total momentum operator. Without delving into the mathematical formalism, this
implies that the Hamiltonian matrix will be sparse.

This feature becomes especially apparent when computing the Hamiltonian matrix
elements. In chosen momentum basis, the kinetic and interaction parts of the
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Hamiltonian given in Eq. 2.20 take the forms

K̂ = − ℏ2

2m

∫
S
dx Ψ̂†(x) ∂

2

∂x2 Ψ̂(x) = ℏ2

2mL
∑
j,j′

(
2πj′
L

)2 ∫ L

0
dx ei

2π(j′−j)
L

xb̂†j b̂j′

=
∑

j

2π2ℏ2j2

mL2 n̂j =
∑

j

Kjn̂j,

(2.25)

and

V̂ = 1
2

∫ L

0
dx
∫ L

0
dx′ Ψ̂†(x)Ψ̂†(x′)V (x− x′)Ψ̂(x′)Ψ̂(x)

= 1
2L

∑
p′,q′,q,p

b̂†p′ b̂
†
q′ b̂q b̂p

∫∫ L/2

−L/2
dx dx′ e

i 2π
L

(
(p−p′)x+(q−q′)x′

)
V (x− x′).

(2.26)

where n̂j = b̂†j b̂j is the occupation operator. As expected, the kinetic energy operator
is diagonal in that basis. The interaction term, however, has a more complex
structure. Fortunately, due to the conservation of total momentum, two-particle
scattering processes must conserve the overall momentum (mathematically, this
manifests through the fact that the exponential integral

∫ L/2
−L/2 e

i 2π
L

jxdx is nonzero
only for j = 0). This constraint simplifies the interaction term and allow us to write
it as

V̂ = 1
2L

∑
q,p

∑
k

b̂†p−kb̂
†
q+kb̂q b̂p

∫∫ L/2

−L/2
dx dx′ ei 2π

L
k(x−x′)V (x− x′) = 1

2
∑

k,k′,q

Vq b̂
†
k+q b̂

†
k′−q b̂k′ b̂k,

(2.27)

where Vq = 1
L

∫ L/2
−L/2 dx

∫ L/2
−L/2 dx

′ ei 2π
L

q(x−x′)V (x − x′) is the Fourier transform of the
interaction potential. Before proceeding further, it is useful to take a second look
at the last term in Eq. (2.27). Its interpretation is as follows: the interaction occurs
between two particles, initially occupying the k-th and k′-th orbitals. As a result
of the interaction, the particles undergo scattering and are transferred to new
orbitals, namely the (k+q)-th and (k′−q)-th, respectively. The apparent asymmetry
in the final states is not an issue. Since the summation runs over all possible values
of the initial orbitals k and k′, the Hamiltonian accounts for scattering into all
possible final states.

Importantly, the coefficient Vq can be interpreted as a transition amplitude that
determines how frequently particles scatter into orbitals shi�ed by q from their
initial positions. The larger the absolute value of Vq, the higher the probability that
the scattering process will result in a transition to a given final state. Another key
point is that the scattering amplitude depends only on the displacement q, not on
the specific initial orbitals. This implies that the “probability“ of scattering from
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k = 0, k′ = 4 to k = −1, k′ = 5 is identical to the “probability“ of scattering from
k = 100, k′ = 104 to k = 99, k′ = 105.

Orbital cutoff

Another important aspect related to the diagonalization method described above is
the necessity of choosing an appropriate size for the computational basis. As can be
easily demonstrated, a plane wave basis, in order to be considered complete, must
include an infinite number of orbitals. Naturally, such a condition cannot be fulfilled
in numerical simulations. Therefore, it becomes necessary to introduce a cutoff by
selecting a maximal orbital function φkmax(x) beyond which no further basis states
are considered. This is equivalent to assuming that all higher-energy orbitals have
zero occupation.

Fortunately, as long as we are primarily interested in the ground state and
low-energy excitations, even for relatively small cutoffs kmax this truncation does
not lead to significant discrepancies from physical reality. It can be shown that
orbitals with high indices correspond to high kinetic energies. Consequently, the
probability of particle occupation in such high-energy orbitals is very low.

An example of how the ground state energy varies with the orbital cutoff for systems
composed of two and three particles in one dimensional PBC box of the length L,
interacting via a Dirac delta potential V (x− x′) = gδ(x− x′) is illustrated in Fig. 2.1.

Effective interatomic potential

A closer analysis of Fig. 2.1(c,d) reveals an adverse tendency: as the number of
particles increases, the required cutoff kmax also grows, resulting in a rapid growth
of the Hilbert space required to perform the calculations. This behavior is strongly
tied to the nature of the used interaction potential. To better understand the
source of this issue, let us consider the Fourier transform of the potential shown
in Fig. 2.2(a). As seen in the figure, the Fourier transform of a Dirac delta function
is a uniform distribution in the momentum representation. This implies that
scattering events between particles interacting via such a potential can populate
single-particle states with arbitrarily high energies — particles initially occupying
low-energy orbitals (e.g. k = k′ = 0) can scatter with equal probability into final
states such as k = 1, k′ = −1 and k = 100, k′ = −100. Consequently, accurately
capturing the physics of such systems requires a very high orbital cutoff.
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Figure 2.1: (a,b) Ground state energy of a system of with N = 2, 3 particles
interacting via a Dirac delta potential V (x − x′) = gδ(x − x′), confined in a box
with periodic boundary conditions, as a function of the orbital cutoff (i.e., the
maximum single-particle orbital allowed to be occupied). (c,d) Comparison between
the numerically obtained energy and the exact analytical result. Here, ρ = N/L is
the one-dimensional gas density.

To mitigate this issue and accelerate computations, the Dirac delta potential can be

replaced by a narrow Gaussian function V (x−x′) = g 1
σ
√

2π
e−

(x−x′)2

2σ2 . This modification
significantly restricts the range of scattering processes (see Fig. 2.2(a)), allowing for
a substantial reduction in the size of the computational basis. Importantly, this
substitution does not noticeably alter the structure of the wavefunctions or the
energies of the states of interest (see Fig. 2.2(b)).
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Figure 2.2: (a) Fourier transforms of two types of potentials used to model contact
interactions. As shown, the Fourier transform of the Dirac delta function is a
uniform distribution, whereas the Fourier transform of a Gaussian function in
position space is a Gaussian in momentum space. (b) Comparison of ground state
energies for systems with different interaction types as a function of orbital cutoff.
It can be observed that the energy converges more rapidly when Gaussian potentials
are used.

3 Diagonalization methods and Lanczos algorithm

A�er constructing the Hamiltonian matrix, the next step is to determine its
eigenstates. This can be achieved using well-established, highly optimized, and
parallelizable exact diagonalization methods, which are particularly effective for
small and dense matrices. Alternatively, in the case of sparse matrices, it is
advantageous to employ approximate techniques such as the Arnoldi or Lanczos
algorithms [53, 54]. The aforementioned Lanczos approach is an iterative method
that can be used to effectively approximate a few largest or smallest eigenvalues and
corresponding eigenvectors of hermitian matrices. In the numerical computations
underlying the results presented in the following chapter, I employ that approach,
whose key principles are briefly outlined below.

Particularly, given a Hermitian matrix H and a starting normalized vector v1, the
Lanczos algorithm constructs an orthonormal basis {v1, v2, . . . , vm} of the Krylov
subspace

Km(H, v1) = span{v1, Hv1, H
2v1, . . . , H

m−1v1}. (2.28)
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Within this subspace, the matrix H is projected onto a much smaller m × m

tridiagonal matrix Tm, whose eigenvalues approximate those of H. The iterative
procedure generates the basis vectors and tridiagonal matrix elements using the
recurrence relations

βj+1vj+1 = Hvj − αjvj − βjvj−1,

αj = ⟨vj|H|vj⟩,

βj+1 = ∥Hvj − αjvj − βjvj−1∥,

(2.29)

with initial conditions v0 = 0, β1 = 0, and v1 chosen as an arbitrary normalized
vector. The resulting tridiagonal matrix Tm can then be diagonalized using standard
methods dedicated to that type of matrices. Its eigenvalues provide approximations
to the extreme eigenvalues of H, and the eigenvectors can be used to reconstruct
approximations to the eigenvectors of H in the original space. What need to be
highlighted, the approximations are the better the more iterative steps were done
and, subsequently, the larger is the tridiagonal matrix (see Fig. 2.3).

Figure 2.3: Distribution of energies obtained via diagonalization using the Lanczos
algorithm, shown as a function of the number of Lanczos steps M .

4 Correlation functions

Given an eigenvector of the Hamiltonian, one can straightforwardly extract various
physical properties of the system. Of particular importance are the second-order
correlation functions, defined as

G2(x, x′) =
∫∫
S
dx3 . . . dxN |Ψ(x, x′, x3, x4, . . . , xN)|2 = ⟨Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)⟩, (2.30)
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where the integration is performed over the entire configuration space S and which
can be interpreted as the conditional probability of finding a particle at position x′

given that another particle is located at x. The corresponding operator takes the
form

Ĝ2(x, x′) = Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x) =
∑

j,j′,k,k′
φ∗j′(x)φ∗k′(x′)φk(x′)φj(x) b̂†j′ b̂

†
k′ b̂kb̂j. (2.31)

The value of the correlation function is obtained by evaluating the expectation value
of this operator in the given many-body eigenstate |Ψ⟩

G2(x, x′) = ⟨Ψ| Ĝ2(x, x′) |Ψ⟩ . (2.32)

Importantly, in systems with periodic boundary conditions, the correlation function
depends only on the relative distance between the points x and x′. In such cases, it
is customary to express it as a function of a single variable

G2(x, x′) = G2(x− x′, 0) = G2(x). (2.33)

2.2 Density matrix renormalization group

The Density Matrix Renormalization Group (DMRG) method is one of the most
powerful and widely used techniques for investigating the ground states of discrete
one-dimensional quantum systems, particularly when interactions are limited to
short ranges (i.e., between sites separated by at most a few lattice spacings).
Originally introduced in [55, 56], the method has since been significantly developed,
most notably through its formulation in terms of tensor network notation, which
allows for a compact and efficient representation of quantum many-body states.

In this section, I briefly outline the core principles of the DMRG algorithm,
specifically in the context of the problems to which it has been applied in
this thesis: the calculation of the ground state of a systems of few bosons
confined in one-dimensional lattices with open-boundary conditions described by
Bose-Hubbard Hamiltonian

Ĥ = J
M∑

j=0

(
b̂†j+1b̂j + h.c.

)
+ U

2

M∑
j=0

n̂j(n̂j − 1), (2.34)

where operators b̂j , b̂†j and n̂j indicates annihilation, creation and occupation
operators at j-th lattice node. However, given the vast amount of theoretical and
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practical knowledge surrounding this method, for a more in-depth treatment the
reader is encouraged to consult one of the many pedagogically excellent reviews,
such as [57, 58, 59, 60, 61], as well as the documentation of the numerical libraries
[62, 63, 64].

1 Tensor diagram notation

The working principle of the Density Matrix Renormalization Group can be
explained in two distinct ways. Historically, the original formalism was rooted in
fundamental quantum mechanical concepts such as density matrices, operator
representations and partial trace. However, more recent approaches usually use
the language of tensor networks, in which quantum states and operators are
represented graphically as interconnected blocks. Since modern tutorials and
numerical frameworks use almost exclusively the latter representation, I will also
follow this path.

Moving forward, the success of the Tensor Diagram Notation (TDN) lies in its ability
to represent objects such as vectors, matrices, and higher-order tensors as simple
blocks annotated with appropriate indices, as illustrated in Fig. 2.4. Furthermore, by
introducing the concept of tensor contraction, this notation allows for an intuitive
graphical representation of fundamental algebraic operations, such as matrix
multiplication or taking the matrix trace.

Figure 2.4: Basic objects (le� column) and operations (right column) that appears
in Tensor Diagram Notation.
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2 Matrix product state and matrix product operator

To demonstrate how TDN can be used to represent quantum states and operators,
let me begin with the most basic form of this approach. Formally, any quantum state
describing a discrete system — e.g. a group of N atoms on a lattice with Ns sites —
can be expressed in terms of a basis of Fock states as follows

|Ψ⟩ =
∑

σ1,...,σNs

ψσ1,...,σNs
|σ1, . . . , σNs⟩ , (2.35)

where σi denotes the local degree of freedom at site i (e.g. occupation number),
andψσ1,...,σNs

is the amplitude associated with the configuration {σi}. This high-rank
tensor ψσ1,...,σNs

can be represented in the form of a matrix product state (MPS) as
follows

|Ψ⟩ =
∑

σ1,...,σNs

Uσ1Uσ2 · · ·UσNs |σ1, . . . , σNs⟩ , (2.36)

where each Uσi is interpreted as a matrix (or more precisely, a rank-2 or rank-3
tensor) corresponding to a fixed physical index σi. More concretely, the tensor Uσi

has componentsUσi
αi−1,αi

, where αi−1 and αi are referred to as virtual or bond indices,
and σi is the physical or visible index.

Graphically, this decomposition corresponds to expressing the full rank-Ns tensor
ψσ1,...,σNs

as a network of Ns interconnected rank-2 and rank-3 tensors (see Fig. 2.5).
The horizontal links represent contractions over virtual indices (i.e. matrix
multiplications), while the vertical legs correspond to the physical indices of the
system. What needs to be highlighted, any quantum state can be written in the MPS
form [59].

Singular value decomposition

To fully understand the idea behind the Matrix Product State formalism and
to highlight its most important advantages, it is necessary to introduce a key
mathematical operation — Singular Value Decomposition (SVD) — which plays a
crucial role in the following sections. Specifically, the singular value decomposition
of an m× n complex matrix M is a factorization of the form

M = USV † (2.37)

whereU and V are unitary matrices of dimensionsm×m and n×n, respectively, and
S is a diagonal matrix of size m× n with real, non-negative entries on the diagonal.
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Figure 2.5: Tensor diagram representation of a quantum state in the Matrix
Product State form. Vertical legs correspond to physical (visible) indices σj , which
encode the local configuration of the quantum state, while horizontal bonds denote
virtual (hidden) indices connecting adjacent tensors. These virtual indices allow the
high-rank wavefunction tensor Ψ to be efficiently represented as a tensor train.

Importantly, SVD can be used for efficient information compression. By rewriting
the matrix M as

M =
r∑

j=1
UjSj,jV

†
j , (2.38)

whereUj andV †j represent the j−th column or row of matricesU andV † respectively,
it becomes clear that the contribution of each combination of vectors Uj and Vj to
the structure of M is determined by the corresponding singular value Sj,j . This
means that by retaining only the largest singular values (and the corresponding
columns of U and V ), one can efficiently approximate the original matrix using
a smaller number of vectors. While this truncation does not always result in
a significant reduction in size, it has been shown to work remarkably well for
the one-dimensional systems of interest here — specifically, those with gaped
Hamiltonians — yielding very effective compression.

To demonstrate how SVD can be used to construct MPS representations, let us
walk through the process in more detail. Referring back to Eq. (2.35), consider
decomposing the tensor ψσ1,...,σNs

ψσ1,...,σNs
= Ψσ1,(σ2,...,σNs ) =

∑
α1

Uσ1,α1Sα1,α1V
†

α1,(σ2,...,σNs ) =
∑
α1

Uσ1,α1ψ
(α1)
σ2,...,σNs

, (2.39)

where ψ(α1)
σ2,...,σNs

denotes the remaining part of the tensor a�er the first
decomposition. Next, the same procedure can be recursively applied to the
remaining tensor

ψσ2,...,σNs
= Ψσ2,(σ3,...,σNs ) =

∑
α2

Uσ2,α2Sα2,α2V
†

α2,(σ3,...,σNs ) =
∑
α2

Uσ2,α2ψ
(α2)
σ3,...,σNs

. (2.40)
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This procedure can be continued for each subsequent site in the chain until the full
tensor is decomposed into the MPS form

ψσ1,...,σNs
=

∑
α1,...,αNs−1

Uσ1,α1Uα1,σ2,α2 · · ·UαNs−2,σNs−1,αNs−1UαNs−1,σNs
. (2.41)

It is important to note that in the general case — without applying truncated SVD
or exploiting any symmetries of the system — the dimensions of the tensors Uσ

will grow as (1, d), (d, d2), (d2, d3), …, (d2, d), (d, 1). This means that the number
of parameters required to describe a quantum state grows exponentially with
the number of lattice sites, which is suboptimal compared to storing the full
wavefunction as a single tensor.

Examples of MPS

Since understanding of tensor-network notation is crucial for DMRG algorithm,
below I present examples of few characteristic quantum many-body states
appearing in the context of the Bose-Hubbard model, expressed in the matrix
product state formalism. First, let us consider the Fock state corresponding to
a single atom localized at the first site of a lattice with Ns = 3 nodes, namely
|Ψ⟩ = |100⟩. Since it is a product state, its MPS representation has bond dimension
equal to 1, and all “tensors” reduce to scalars

U [σ1=0] = 0, U [σ1=1] = 1; U [σ2=0] = 1, U [σ2=1] = 0; U [σ3=0] = 1, U [σ3=1] = 0.
(2.42)

More complicated version of a previous example is the so-calledW state, where the
single atom can occupy any lattice site

|W3⟩ = 1√
3

(|100⟩ + |010⟩ + |001⟩) . (2.43)

Its MPS representation is given by the following matrices

Site 1 (1 × 2 matrices): U [σ1=0] =
[
1 0

]
, U [σ1=1] =

[
0 1

]
,

Site 2 (2 × 2 matrices): U [σ2=0] =
 0 1
− 1√

2 0

 , U [σ2=1] =
− 1√

2 0
0 0

 ,
Site 3 (2 × 1 matrices): U [σ3=0] =

−
√

2√
3

0

 , U [σ3=1] =
 0

1√
3

 .
(2.44)

Importantly, the structure presented above generalizes naturally to a lattice with
more sites. For example, the analogous state in lattice with Ns = 4 sites |W4⟩ is
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described by

Site 1 (1 × 2 matrices): U [σ1=0] =
[
1 0

]
, U [σ1=1] =

[
0 1

]
,

Site 2 (2 × 4 matrices): U [σ2=0] =
 0 1 0 0
− 1√

2 0 1√
2 0

 , U [σ2=1] =
− 1√

2 0 − 1√
2 0

0 0 0 1

 ,

Site 3 (4 × 2 matrices): U [σ3=0] =


−
√

2√
3 0

0 −1
0 0
0 0

 , U [σ3=1] =


0 0
1√
3 0

0 0
0 0

 ,

Site 4 (2 × 1 matrices): U [σ4=0] =
√3

2

0

 , U [σ4=1] =
 0
−1

2

 .
(2.45)

Le�- and right-orthogonality

When discussing matrix product states, one shall discuss so called le�- and right
orthogonality of tensors. Basically, as long as we operate only on the whole matrix
product states it is not important, but problem arises when we want to “divide“
tensor train into two parts. Lets take a look at the state

|Ψ⟩ =
∑

σ

Aσ1Aσ2 ...AσNs−1AσNs |σ1σ2...σNs−1σNs⟩ (2.46)

This state can be written also in the form “split“ into two parts - A and B

|Ψ⟩ =
∑
αl

|αl⟩A |αl⟩B (2.47)

where

|αl⟩A =
∑

σ1,...,σl

(Aσ1 ...Aσl)1,αl
|σ1...σl⟩ (2.48)

|αl⟩B =
∑

σl+1,...,σNs

(Aσl+1 ...AσNs )αl,1 |σl+1...σNs⟩ (2.49)

At this point there appear the unexpected issue: it would be beneficial to heave both
of these states orthonormal, i.e. A ⟨αl′ |αl⟩A =B ⟨αl′|αl⟩B = δl,l′ . From the definition,
these values are given by

A ⟨αl′ |αl⟩A =
∑

σ1,...,σl

(Aσl†...Aσ1†Aσ1 ...Aσl)α′
l
,αl

(2.50)

B ⟨αl′|αl⟩B =
∑

σl+1,...,σNs

(Aσl ...Aσ1Aσ1†...Aσl†)α′
l
,αl

(2.51)
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For this reason, when a bipartition of the state is expected, it is beneficial to
represent the tensors belonging to subsystem A in a le�-orthogonal and belonging
to subsystem B in a right-orthogonal form. Specifically, for sites j ≤ l, all tensors
satisfy the condition

∑
σj
Aσj†Aσj = I , while for sites j > l, the tensors satisfy∑

σj
AσjAσj† = I . This ensures the orthogonality of the MPS around the cut.

Graphically, this orthogonality can be represented as the contraction of appropriate
tensor trains yielding the identity matrix (see Fig. 2.6).

Figure 2.6: Graphical presentation of the right- and le�-orthogonal tensors.

Matrix product operator

Analogously to quantum states, quantum mechanical operators can also be
represented in the tensor train form.

Figure 2.7: Tensor diagram representation of a quantum operator expressed in the
Matrix Product Operator form.

Formally, any operator Ô acting on an M-site Hilbert space can be written as

Ô =
∑

σ′
1,...,σ′

M

∑
σ1,...,σM

Oσ′
1,...,σ′

M
σ1,...,σM

|σ′1, . . . , σ′M⟩ ⟨σ1, . . . , σM | , (2.52)
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where the coefficient tensor Oσ′
1,...,σ′

M
σ1,...,σM can be decomposed into a product of local

tensors as

Oσ′
1,...,σ′

M
σ1,...,σM

=
∑
{α}

T σ′
1,α1

σ1 T σ′
2,α2

α1,σ2 · · ·T σ′
M ,

αM−1,σM
, (2.53)

where {α} denotes the set of auxiliary bond indices. This tensor network structure
is depicted graphically in Fig. 2.7.

3 Finite system DMRG

Having introduced the basic concepts, we are ready to outline the finite-size DMRG
algorithm. At this point, it is worth mentioning the distinction between the classical
and modern approaches to DMRG. Historically, the process began with the so-called
infinite DMRG; however, in contemporary implementations, this step is usually
omitted [58, 59].

Step 1: optimization and adaptation of first bond

As a first step, one need to prepare an initial version of the quantum state. In the
code implementation used in the later parts of this project, the DMRG algorithm
begins from the le� side of the lattice. Therefore, in the initial state, all tensors
corresponding to visible indices greater than one should be right-orthogonal (see
Fig. 2.8(a)).

The MPS is then divided into two parts: the le� part containing sites 1 and 2, and the
remaining part of the chain. This operation results in two new tensor trains with
an additional unconnected index α2, which was previously the bond index between
the original tensors. Next, the tensors corresponding to sites 1 and 2 are contracted
over their shared bond, forming a single object denoted as B12.

Then, the effective “Hamiltonian“ that will be used to optimize the tensorB12 needs
to be constructed. To do so, the part of the MPS corresponding to sites 3, 4, 5,...
is used to average out the Hamiltonian contributions from the higher-index sites.
As a result, the effective Hamiltonian depends only on six indices, as illustrated in
Fig. 2.8(b).

The effective Hamiltonian can then be used to optimize the tensor B12, i.e., to
minimize the total energy of the system by selecting appropriate values for this
tensor. This optimization can be efficiently performed using iterative eigensolvers

27



such as the Lanczos or Davidson algorithm [65]. The result of this procedure is a new
tensor, denoted as B′12, which minimizes the total energy (see Fig. 2.8(c)).

Once the optimized tensor B′12 is obtained, it is necessary to restore the matrix
product state form. This is typically achieved using the truncated singular
value decomposition. In this procedure, the tensor is decomposed into three
components: a le�-orthogonal matrix U (with orthogonality guaranteed by the
properties of the SVD), a diagonal matrix S containing the singular values, and
another right-orthogonal matrix V .

At this stage, the most important aspect of the DMRG algorithm takes place:
data compression by truncations in SVD. Specifically, by retaining only the most
significant singular values in the matrix S, one can effectively reduce the bond
dimension (this procedure is discussed in more detail in Sec. 2). Finally, to maintain
concise notation, the truncated matrix S is then absorbed into the right tensor, and
the whole MPS is reconstructed into a single tensor train.

Optimization and adaptation of remaining bonds

A�er restoring the MPS form, the algorithm proceeds by repeating a similar
procedure for the pair of MPS tensors associated with the second bond index
(tensors with visible indices i2 and i3). First, these two tensors are merged to define
a new bond tensor B23. Next, B23 is optimized to minimize the total energy of the
effective Hamiltonian resulting in new tensor B′23.

Once the improved bond tensor is obtained, it is factorized using a truncated
singular value decomposition to compress the state, restore the MPS form and adapt
the bond dimension. Finally, to prepare for the optimization of the next bond, the
singular value matrix S23 is merged with right hand side matrix and the structure of
a MPS is restored.

The procedure outlined in the previous steps is then systematically repeated for
subsequent bonds, following the scheme illustrated in Fig. 2.9. Upon reaching the
final bond of the system, the direction of the sweep is reversed, and the optimization
is continued in the opposite direction. This sweeping procedure is iterated until the
assumed convergence criteria — typically defined in terms of changes in energy and
entanglement entropy — are satisfactorily met.
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Figure 2.8: Schematic representation of the stages involved in optimizing the first
bond using the DMRG algorithm. (a) The initial Matrix Product State is partitioned
into two segments. The tensors corresponding to sites 1 and 2 are then contracted
over their shared bond to form a rank-3 tensor B12. (b) The remaining part of the
MPS is used to construct the effective Hamiltonian acting on B12. This is done by
averaging the operators acting on sites beyond index 2 in the state of sites i = 2, 3, ....
(c) The effective Hamiltonian is then used to optimize B12, minimizing the total
energy of the system. The optimized tensor is denoted as B′12. Next, a truncated
singular value decomposition is performed on B′12, retaining only the number of
singular values specified by the maximum bond dimension and truncation error
threshold. The diagonal matrix of singular values is then absorbed into the tensor
associated with the right-hand side of the bond. Finally, the updated tensors for
sites 1 and 2 are reconnected with the remaining sites, restoring the structure of
the full MPS.

4 Practical aspects of DMRG applications

Following the theoretical introduction, the aim of this section is to discuss practical
aspects of the numerical calculations. In the systems of interest (Bose-Hubbard
model), key physical parameters include the number of lattice sitesNs, the number
of particlesN , and the coefficientsU andJ appearing in the Hamiltonian. To this list,
one can also add the maximum assumed number of atoms that can simultaneously
occupy a single lattice site (maxOcc).
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Figure 2.9: A diagrammatic illustration of the DMRG procedure is presented using
tensor network notation. Initially, (a) the matrix product state is brought into a form
that all tensors to the le� of the bond being optimized are le�-orthogonal, while
those to the right are right-orthogonal. Next, (b) the two tensors adjacent to the
targeted bond are contracted, and (c) the remaining tensors on the le� and right are
also contracted. Subsequently, (d) the energy is minimized by optimizing the bond
tensor. This is followed by (e) a truncated singular value decomposition, where the
state is compressed by retaining only the most significant singular values. Finally,
(f,g) the optimized tensor is decomposed and the state is restored to the matrix
product state form. A�er that, the procedure is repeated for the adjacent bond.

The other important numerical parameters are the initial state used to start the
entire procedure, the number of sweeps, and parameters controlling the accuracy:
Largest bond dimension in the system and the Largest accepted truncation
error. Since two latter conditions typically act in opposition, they are o�en used
separately: one must choose whether to prioritize higher accuracy by adapting
the size of the computational basis to the problem (by fixing maximal allowed
truncation error), or to focus on computational resources, potentially accepting
reduced precision (by defining maximal bond dimension). It is worth noting that
in large-scale simulations, these constraints are usually varied throughout the
process. Initially, a lower precision is o�en acceptable in order to quickly perform
a rough optimization of the in initial state, while later the basis size is increased to
achieve the desired level of accuracy.

In Fig. 2.10, I present an example illustrating a simple ground state computation
process, initiated with all particles occupying the firstN sites. As can be seen there,
the figure consists of three panels: (a), where maxDim = 5; (b), where maxDim = 10;
and (c), where maxDim = ∞, what implies that in the latter case the truncation error
equals zero. As can be observed, in all cases the occupation distribution reached
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a form close to the final state a�er only three sweeps. Importantly, visually all
three final states appear almost identical, which suggests that the system is well
approximated even when using a maximum bond dimension as small as maxDim = 5.

Figure 2.10: The process of obtaining the ground state of the Bose–Hubbard
model using the Density Matrix Renormalization Group algorithm is illustrated
here. Three distinct cases with different maximum bond dimensions are presented:
(a) maxDim = 5, (b) maxDim = 10, and (c) maxDim = ∞. As shown, the average
number of atoms occupying the lattice sites ⟨n̂i⟩ changes gradually and converges
to the final distribution a�er only three sweeps. Notably, even for maxDim = 5,
the differences compared to the case without any numerical restrictions are barely
noticeable. In this example, we consider a system of N = 5 bosons in a lattice with
Ns = 10 sites, where the Hamiltonian parameters are set to J = U = 1. Additionally,
the maximum on-site occupation is set to maxOcc = N, and the truncation error was
minimized as much as possible for the chosen bond dimension.

This observation finds confirmation in Fig. 2.11, which shows how the energy,
entanglement entropy, and truncation error converge over successive sweeps. What
can be seen is that both the energy and the entanglement entropy measured at
the central bond stabilize a�er approximately three sweeps. Importantly, in the
problem under consideration, the differences between the system with a maximum
bond dimension of maxDim = 10 and the one without any bond dimension restriction
are almost negligible in terms of energy and entropy. This is further supported
by the plot of the largest truncation error: for maxDim = 10, it remains below 10−5

throughout all sweeps.
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Figure 2.11: Key system parameters changes during the ground state search
via the DMRG algorithm are presented here. As shown in panel (a), the energy
converges relatively quickly for all maximum bond dimensions. In the inset, the
final energies obatined by DMRG are presented. Notably, the final energy for
maxDim = 10 is already very close to that of the unrestricted case. A similar
trend is observed in panel (b), where the entanglement entropy at the central bond
is shown. Panel (c) displays the largest truncation error occurring during each
sweep, clearly illustrating the differences in numerical precision depending on the
chosen maxDim. Finally, panel (d) shows the average CPU time required for a single
sweep, highlighting the trade-off between computational cost and precision. The
von Neumann entropy was evaluated here with the natural logarithm base.

The figure 2.11 also includes an additional panel illustrating the time required to
perform a full single sweep. While the exact values may vary depending on the
hardware used, the overall trends and relative proportions are expected to hold. As
can be observed, a�er an initial increase, where the base and entropy grows, the
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durations of individual sweeps stabilize once the system converges. The time per
sweep depends on the maximum bond dimension, although this dependence is not
linear.

To finalize the description of the basic parameters that can be varied in practical
implementations of DMRG, I present Fig. 2.12, which shows the dependence of
the energy, maximum bond dimension, and average sweep time on the maximum
occupation number. As the specific numerical data was presented here, it must be
highlighted that to perform calculations I used iTensor library [66].

Figure 2.12: Panel (a) shows the ground state energy and the largest bond dimension
obtained via the DMRG algorithm for the Bose–Hubbard Hamiltonian, computed
with varying values of the maximum on-site occupation number (maxOcc). Panel
(b) presents the corresponding average CPU time per single sweep for each case. As
observed, the energy converges rapidly, indicating that for this system, the required
maxOcc can be significantly smaller than the total number of particles. The results
correspond to a system of N = 10 bosons in a lattice with Ns = 20 sites and open
boundary conditions. The Hamiltonian parameters are set to U = J = 1.

DMRG: aspects le� untouched

As can be seen, the DMRG procedure has been discussed here only to a very limited
extent: the exploitation of conserved quantum numbers, system symmetries,
methods for optimal parameter tuning, or parallelization techniques, have been
omitted. These topics were le� out as — as mentioned earlier — there exists a
vast amount of literature, from educational resources to highly specialized studies
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[58, 59, 67, 68, 66], in which experts in the field have comprehensively addressed
these issues.

2.3 Summary

This chapter was devoted to the description of the two main numerical methods
employed in the present thesis. However, depending on the specific requirements
of individual tasks, despite the plane wave expansion and DMRG, several additional
techniques were applied. These include, in particular, imaginary time evolution,
used mostly for finding the ground states, and the time-dependent variational
principle (TDVP) [69, 70, 71], which was utilized to simulate the time evolution of
states obtained via the DMRG algorithm. As these methods played a secondary role
in this study, they are not discussed here in detail.
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Chapter 3

Super-Tonks-Girardeau effect in
models with single type of interaction
potential

The primary aim of this chapter is to establish a theoretical foundation for studies
over the super-Tonks–Girardeau (sTG) effect. The core material presented here
was developed during a research project documented in Ref. [72], conducted
under the guidance of Prof. Bruno Juliá-Díaz, Prof. Grigory E. Astrakharchik,
and Prof. Krzysztof Pawłowski, whose insights and supervision significantly
shaped the final structure and scope of the work. While this project provides the
central results discussed below, the chapter is also supplemented by an extensive
conceptual introduction to the topic. This additional content was included with
the intention of enhancing the educational value of the thesis and making the
chapter accessible as a potential entry point for researchers interested in the field
of super-Tonks–Girardeau effect.

3.1 Single atom and Dirac delta potential

The essence of sTG effect can be captured by a very simple model: a single particle
of massm in an infinitely long one-dimensional box. At the center of this box, there
is a very narrow potential, which can be approximated by a Dirac delta function. The
Hamiltonian of this model takes the form

Ĥ = − ℏ2

2m
∂2

∂x2 + gδ(x), (3.1)
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where x is the spatial position of the particle and g is the potential coefficient.

To determine the eigenstates of this system, it is convenient to divide space into two
regions: one on the le� and the other on the right of the delta potential

Ψ(x) =

ΨL(x), if x < 0

ΨR(x), if x > 0.
(3.2)

As one can see, the domains of both, the le�- and right hand side functions exclude
point with nonzero potential. It means that both satisfy the Schrödinger equation
for a free particle in a one dimensional space − ℏ2

2m
∂2

∂x2 ΨL(R)(x) = EΨL(R)(x), what
implies that

Ψ(x) =

ΨL(x) = ALe
κx +BLe

−κx, if x < 0

ΨR(x) = ARe
κx +BRe

−κx, if x > 0
(3.3)

where the exponent is directly related to the energy via the expression κ =
√

−2E.

The relations between the parameters in the wavefunctions can be determined by
analyzing the connections between the le�- and right-side solutions. First and
foremost, the wavefunction must be continuous across the entire space ΨL(0) =
ΨR(0) = Ψ(0). Additionally, one might expect the wavefunction to be smooth (expect
its first derivative to also be continuous). However, in the model investigated here
the Hamiltonian includes a Dirac delta potential and, consequently, there occurs
discontinuity in the first derivative of the wavefunctions. The relationship between
the derivatives on the le� and right side of potential can still be established by
integrating the Schrödinger equation around the point x = 0

− ℏ2

2m

∫ ϵ

−ϵ

∂2

∂x2 Ψ(x) dx + g
∫ ϵ

−ϵ
δ(x)Ψ(x) dx = E

∫ ϵ

−ϵ
Ψ(x) dx . (3.4)

For ϵ → 0 the right hand side in Eq. (3.4) vanishes, resulting in the equation that
define relations between derivatives of the functions and potential coefficient

ℏ2

2m
∂

∂x
ΨR(x)|x=0 − ℏ2

2m
∂

∂x
ΨL(x)|x=0 = gΨ(0). (3.5)

Applying these two boundary conditions to equation 3.3 yieldsAL +BL = AR +BR

κ(AR − AL +BL −BR) = 2mg
ℏ2 (AR +BR)

(3.6)
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what, a�er a simple transformation reduces toBL = ℏ2κ
mg

(AR − AL) − AL

BR = ℏ2κ
mg

(AR − AL) − AR.
(3.7)

At this point, I will introduce an additional constraint on the wavefunction. Since
the latter part of this text will focus on states that are symmetric with respect to
the delta potential, I will also here restrict the scope of study to states satisfying the
condition Ψ(x) = Ψ(−x), introducing an additional relation between the coefficients
in the wavefunction: AR = BL and AL = BR. By combining these with the two
previously stated conditions, one obtain

BR = κ− g̃

κ+ g̃
AR (3.8)

and consequently

Ψ(x) = N (e−κ|x| + κ− g̃

κ+ g̃
eκ|x|), (3.9)

where g̃ = mg
ℏ2 and N is the normalization factor.

Under these conditions, the wavefunction is found to take one of two qualitatively
distinct forms. If the energy of the system is negativeE < 0, the exponent κ is a real
and positive number. As a consequence, by investigating Eq. (3.9) one can find, that
the term proportional to eκ|x| will diverges at x → ±∞. To avoid this non-physical
situation it is necessary to ensure that coefficient scaling this exponential part
equals zero. The only one option to ensure that is to choose κ = g̃.

It has two implications: (i) states of this form can be obtained only for negative
values of the potential coefficient, i.e. for g̃ < 0; (ii) for each negative potential
coefficient, there exists a unique state characterized by the parameter κ, with the
corresponding energy equal to

E = −κ2

2 = −m2g2

2ℏ4 (3.10)

and the wavefunction given by

Ψ(x) =
√
κe−κ|x|. (3.11)

In this case, the particle is in a so-called bound state, where the probability of finding
particle at some point x decays exponentially with distance from the potential.

The second family of solutions — characterized by positive energies E ≥ 0 —
corresponds to so-called unbound states, also referred to as scattering or free ones.
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In these states, exponent κ is imaginary. Consequently, the expression multiplying
one of the exponents in Eq. (3.9) is the complex number with unitary amplitude and
can be written as

ik − g̃

ik + g̃
= e2iθ(k,g). (3.12)

where ik = κ, k ∈ Re. By substituting this formulation into equation Eq. (3.9), one
can obtain a simplified version of the unbound wavefunction

Ψ(x) = N eiθ(k,g̃) cos(k|x| + θ(k, g̃)). (3.13)

As one can see in Eq. (3.13), the probability density of finding an atom, given by
|Ψ(x)|2 = |N |2 cos2(k|x| + θ(k, g)), does not vanish with increasing distance from the
potential. Consequently, this type of wavefunction cannot be normalized. However,
despite this inconvenience, the model serves as a good approximation for certain
real-life processes and can be effectively used to illustrate the phenomena that
constitute the main subject of this work.

1 Duality of eigenstates in the infinite potential limits

Let me now discuss in more details the ground state of the aforementioned system.
Broadly speaking, four distinct cases can be distinguish (see Fig. 3.1):

(i) for negative values of potential coefficient the ground state is a bound state, with
the wavefunction given by Ψ0(x, g̃ < 0) =

√
κe−κ|x| (for brevity, the parameter g̃ was

included as an argument of the function, and an index was added to Ψ0 to indicate
that it represents the ground state);

(ii) for zero potential (g̃ = 0) in the lowest-energy state, the particle is uniformly
distributed across all space. The wavefunction is constant Ψ0(x, g̃ = 0) ∝ 1 with
corresponding energy E = 0;

(iii) for positive and finite values of g̃ > 0, the ground-state wavefunction is
symmetric and still asymptotically approaches a constant value as x → ±∞, but
it develops a cusp at x = 0. The depth of this cusp D(g̃) defined as

D(g̃) = max|Ψ(x, g̃)| − |Ψ(x = 0, g̃)|
max|Ψ(x, g̃)| = 1 − cos(θ(k, g̃)) (3.14)

increases with g̃; that is, for g̃′ > g̃, wavefunction follows the relation D(g̃′) > D(g̃);

(iv) for g̃ → ∞ the extreme case occurs. In that limit, depth of the cusp tends to
unity D(g̃ → ∞) → 1 and in the wavefunction at x = 0 there appears the so-called
node, meaning the wavefunction equals zero at the point Ψ0(0, g̃ → ∞) = 0.

38



Figure 3.1: The ground states of the Hamiltonian (3.1) corresponding to four distinct
values of the potential coefficient g̃ = (mg)/ℏ2. States corresponding to g̃ ≥ 0 were
normalized in a way to set their maximum value to unity.

The latter case will play an important role in the following analysis. Therefore, even
though this feature of the system aligns with our physical intuition, I will examine
it in a more precise way. Fundamentally, the emergence of a node is a consequence
of the boundary conditions. As shown in equation Eq. (3.5), the derivatives of the
wavefunction are proportional to the expression g̃Ψ(x = 0). This implies that any
nonzero value of Ψ(x = 0) would result in the derivatives of the wavefunction on
both sides becoming infinite. For wavefunctions expressed as plane waves, this
would correspond to infinite energy, which is clearly unphysical. Therefore, the
only way to avoid this divergence is to require that for infinitely repulsive potentials
Ψ(x = 0, g̃ → ∞) = 0.

What is particularly important is that the ground-state eigenfunction of the system
in the limit g̃ → ∞ is also the first symmetric excited eigenstate Ψ1S(x) of the
Hamiltonian with g̃ → −∞! Mathematically, this can be simply proven using the
same approach as for the g̃ → ∞ case. However, to gain a deeper understanding
of this crucial phenomenon, it can be helpful to examine the physical properties of
some excited states in more details.

To do so, let us repeat the analysis performed for the ground state, this time applied
to the first symmetric excited eigenstate Ψ1S(x, g̃) (see Fig. 3.1):
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(i) for a system without a potential barrier (g̃ = 0), this wavefunction is smooth (as
potential coefficient is zero, there is no discontinuance in the first derivative) and
maintains two nodes;

(ii) when the potential coefficient is positive (g̃ > 0), a cusp appears at x = 0, similar
to that observed in the ground state;

(iii) As g̃ → ∞, this excited-state wavefunction also tends to zero at the origin
Ψ1S(0, g̃ → ∞) → 0 (in a system there are three nodes).

Figure 3.2: First symmetric excited eigenstates of Hamiltonian Eq. (3.1)
for (a) negative (attractive) and (b) positive (repulsive) potential coefficients.
Wavefunctions were normalized in a way to set their maximum value to unity.

The behavior becomes even more interesting for negative values of g̃. As mentioned
earlier, for any g̃ < 0, there can be only one bound eigenstate — namely, the ground
state. This implies that all excited states for g̃ < 0 must be scattering states. When
applying the boundary conditions (as discussed in the previous section), one finds
that the excited eigenfunctions exhibit a peak at x = 0.

Moreover, this peak becomes sharper for increasingly negative values of potential
coefficient. This result in the probability density near of the point x = 0 being...
lower for more attractive potentials |Ψ1S(x = 0, g̃′)|2 < |Ψ1S(x = 0, g̃)|2 for g̃′ < g̃.
Consequently, in the limit g̃ → −∞, the excited-state wavefunction converges to
the same form as the ground state wavefunction Ψ1S(x, g̃ → −∞) → Ψ0(x, g̃ → ∞).
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This counterintuitive feature of a system invites us to perform a simple thought
experiment. Imagine an experimental setup consisting of an extremely long
one-dimensional tube containing a single atom. Inside the tube, there is a narrow
potential barrier, whose amplitude g̃ can be precisely controlled (see Fig. 3.3(a)).

Now, suppose we prepare the system with a very strong barrier, i.e. g̃ → ∞, and the
atom occupying the ground state. Starting from this point, if we gradually decrease
the potential parameter down to g̃ → −∞, we would observe that the atom becomes
increasingly localized around the potential, as it is expected for a bound ground
state.

However, if we instead abruptly switch the potential from g̃ → ∞ to g̃ → −∞ (this
process is called as a quench), the system does not have time to adjust. In this
case, the atom “jumps“ into the excited state Ψ1S(x, g̃ → −∞), which, remarkably, is
structurally identical to the original state. A�er that process, the system remains
stable in this excited state for a long time (see Fig. 3.3(b)). What is particularly
important is that this feature generalizes to higher excited states as well. Using
the same reasoning, one can find that Ψ1S(x, g̃ → ∞) = Ψ2S(x, g̃ → −∞), Ψ2S(x, g̃ →
∞) = Ψ3S(x, g̃ → −∞) and generally ΨNS(x, g̃ → ∞) = Ψ(N+1)S(x, g̃ → −∞).

2 Periodic boundary conditions

Phenomena discussed in the previous sections are not limited to systems with an
infinite spatial domain. Qualitatively, the same features also arise in a system
where an atom is confined within a finite box of length L (x ∈ (−L/2, L/2])
with periodic boundary conditions. This setup offers several advantages over the
infinite-space case. For instance, unbound states in system with finite length
remain normalizable. Consequently, from this point onward I will focus primarily
on this kind of systems.

With regard to the wavefunctions, the periodicity of the system imposes two
additional boundary conditions that constrain their behavior at the edges of the
box. Specifically, the wavefunction must be continuous and smooth at x = ±L/2Ψ(−1

2L) = Ψ(1
2L)

∂
∂x

Ψ(x)|x=−L/2 = ∂
∂x

Ψ(x)|x=L/2.
(3.15)

Applying these constraints to the general formula for the wavefunction given by
equation Eq. (3.9), one can find that the first condition is always satisfied, as we have
restricted ourselves to symmetric functions. The second condition, however, has a
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Figure 3.3: Schematic representation of (a) the experimental setup discussed in
Sec. 1; (b) the changes occurring in the gas during two types of processes discussed
there. In the case of an adiabatic transition, the wavefunction follows the ground
state, gradually evolving toward the bound state. In contrast, an abrupt quench
of the interaction strength preserves the structure of the initial state, effectively
mapping it directly onto the first excited state of the post-quench Hamiltonian.

significant impact on the wavefunction. The derivative of the wavefunction is of the
form of

∂

∂x
Ψ(x) = − x

|x|
κ

(
e−κ|x| − ℏ2κ− gm

ℏ2κ+ gm
eκ|x|

)
(3.16)

and, a�er substituting it into Eq. (3.15), determines the allowed values for the
parameter κ (where κ =

√
−2E)

κ− g̃

κ+ g̃
= e−κL (3.17)

This expression can be used to simplify the notation used in Eq. (3.9). A�er
substituting the equality from Eq. (3.17) into the general formula given by Eq. (3.9)

42



one obtain

Ψ(x) = N (e−κ|x| + eκ(|x|−L)) (3.18)

The remaining properties of the wavefunctions do not change significantly. The
states can still be classified into two qualitatively distinct families: bound states
with negative energies and unbound states with positive energies. However, in
contrast to the case of an infinite line, there are some important differences.

Let us begin with the self-bound states. As before, the exponent κ is a positive
real number. This leads to the exponential term eκ|x| in the wavefunction given by
equation Eq. (3.18), which grows rapidly with the distance from x = 0. In the infinite
system, this divergence had to be avoided by eliminating the growing exponential
through an appropriate choice of κ. In the finite system, however, this is no longer
an issue. The space is limited, so both growing and decaying exponentials can be
included, resulting in a wavefunction of the form

Ψ(x) = N e−κL/2(e−(κ(|x|−L/2)) + eκ(|x|−L/2)) = N ′ cosh
(
κ
(
|x| − L

2
))

(3.19)

As the coefficient κ is real, equation Eq. (3.17) has only one solution what determines
that there is only one bound state for every negative value of potential coefficient g.

In the second family of states, corresponding to non-negative energies, exponent is
imaginary κ = ik. The wavefunctions are given as

Ψ(x) = N cos(k(|x| − L/2)). (3.20)

This time, the wavefunction can be normalized. As the relation occurs∫ L

0
cos2(k(|x| − L/2))dx = L

2

(
1 + sin(kL)

kL

)
(3.21)

the normalization factor is given by

N =
(
L

2 + sin(kL)
2k

)−1/2

. (3.22)

It must be highlighted that additional boundary conditions clearly define the
allowed values of the coefficient k Eq. (3.23)

Lk = −g̃ cot(Lk/2). (3.23)

As can be seen from equation Eq. (3.23), for any value of the potential coefficient
g̃, there are infinitely many roots. The structure of the equation — one can think
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Figure 3.4: Graphical representation of Eq. (3.23), defining allowed values of
momenta in the system with a single Dirac delta potential. The blue line depicts the
le�-hand side of the equation, while the red curves represent the right-hand side.
As shown, the intersection points determining the allowed momentum values shi�
with changing g. Due to the periodicity of the right-hand side, there are infinitely
many solutions: in each interval kn ∈

[
2π
L
n, 2π

L
(n+ 1)

)
, exactly one solution exists.

The spectrum of allowed momenta is symmetric under momentum inversion.

of it as searching for the crossing points between a straight line and the cotangent
function (see Fig. 3.4) — allows to conclude that there will be exactly one root in each
interval defined as kn ∈ [2π

L
n, 2π

L
(n+1)). Consequently, for every value of the potential

parameter g̃, there are infinitely many eigen-energies; however, their distribution
is no longer continuous. The differences between adjacent energy levels are finite.
For instance, in the case of a system with g̃ = 0, the allowed energies are given by
E0 = 0, E1 = 4π2ℏ2

mL2 , E2 = 16π2ℏ2

mL2 , ..., with the general form En = 4π2ℏ2n2

mL2 where n is an
integer number.

3 Pumping procedure

The exact relations between potential coefficient and energy introduced in previous
section allow to examine the aforementioned phenomenon from a different
perspective. Let us consider the energy spectrum shown in Fig. 3.5. As seen there,
for each value of g̃, there are many possible energy levels. However, the spectrum is
organized into distinct branches.
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Figure 3.5: Energy spectrum of a single atom within a 1D periodic box. The distinct
energy branches are visible.

The existence of these branches plays the important role in our investigations.
Within each branch, for any two values g̃ ̸= g̃′, as g̃′ → g̃, the corresponding energies
and eigenstates converge (E(g̃′) → E(g̃) and Ψ(g̃′, x) → Ψ(g̃, x)) (intuitively, this can
be understood in the sense that the branches remain “continuous“ for interaction
strengths ranging from g = −∞ to g = ∞). This implies that it is possible to
adiabatically evolve between any two eigenstates belonging to the same energy
branch by gradual change the potential coefficient.

For instance, the ground state corresponding to the system without any potential
Ψ0(x, g̃ = 0) is connected through a continuous branch to the ground state of the
system with an infinitely repulsive barrier Ψ0(x, g̃ → ∞). It means that by gradually
increasing potential strength from g̃ = 0 to g̃ → ∞, one can adiabatically transform
the former state into the latter one. Similarly, the first excited eigenstate of the
system at g̃ → −∞ is connected to the first excited state at g̃ = 0. Therefore,
a smooth transformation of g̃ enables an adiabatic transition between these two
states (Ψ1S(x, g̃ → −∞) and Ψ1S(x, g̃ = 0)) as well.

Moreover, by inspecting the structure of the eigenfunctions and allowed momenta
in the limits g̃ → ±∞ it becomes evident that the ground state of the system at g̃ →
∞ corresponds to the first excited eigenstate of the system at g̃ → −∞. Likewise,
the first excited state at g̃ → ∞ corresponds to the second excited eigenstate at

45



g̃ → −∞, and so forth



Ψ0(x, g → ∞) = Ψ1(x, g → −∞)

Ψ1(x, g → ∞) = Ψ2(x, g → −∞)

...

Ψn(x, g → ∞) = Ψn+1(x, g → −∞).

(3.24)

This observation implies that, by combining adiabatic evolution with sudden
quenches of the interaction parameter, it is possible to transfer between any two
eigenstates from any branches (for example, from ψ0(g̃ = 0) to ψ1(g̃ = 0)). This
non-typical procedure — combining adiabatic and quench dynamics resulting in an
overall increase in the system’s energy will be refereed to as the pumping procedure.
The schematic representation of that process is presented in Fig. 3.6.

Figure 3.6: Schematic presentation of the pumping procedure.

4 Apparent hyper-repulsiveness of post-quench states

In this section, I would like to introduce in more detail one of the widely discussed
phenomena related to the states that appear during the pumping process. Namely,
the states arising immediately a�er a quench from g̃ → ∞ to g̃ → −∞ exhibit
behavior typical for state where the potential appears “more repulsive“ than it was
for g̃ → ∞.
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To illustrate what the “repulsiveness“ means, let me first examine the ground state
of the system. Its energy grows as the potential coefficient increases (for g̃′ > g̃ →
E(g̃′) > E(g̃)), while the probability of finding particle near (in the distance no
larger than some small length 0 < d ≪ L) the location of the delta potential P (d, g̃)
decreases (see le� side of Fig. 3.7)

P (d, g̃) =
∫ d

−d
|Ψ(x, g̃)|2dx = |N |2 sin(kL) − sin(kL+ 2dk) + 2dk

2k . (3.25)

This behavior aligns with naive expectations: stronger repulsion leads to higher
energy and particle avoidance of the space near the potential. However, this
intuition appears to break down when considering excited states for finite but
strongly negative values of g̃. Specifically, we find that despite quenching into a
regime with an attractive potential, the energy continues to increase, and, at the
same time, the probability of finding the atom near the delta potential continues to
decrease (see the right hand side of Fig. 3.7).

Figure 3.7: The energy (blue line) and the probability of finding an atom in the
vicinity of the delta potential (red line, Eq. (3.25)), are plotted over the course of the
first cycle of pumping. In the initial phase of the process, for positive g̃, an increase
in the interaction strength is accompanied by a rising energy and a decreasing
probability of finding the atom near the potential P (d) (here I present probability
of finding particle in the range |x| ≤ (d = 0.05L); for definition see Eq. (3.25)).
Surprisingly, the quench does not disrupt this trend. A�er the quench — when
a strong but attractive potential is applied — the growing potential results in a
continued increase in energy and a further decrease in the probability of finding
the atom near the potential.
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This phenomenon in closely related to the subject of several studies in the past [73,
25, 36, 26]. Researchers found there that for excited states with strong but finite
repulsive potentials the system behaves similarly to the ground state of a system
with a potential in the form of an infinite rectangular barrier (see Fig. 3.8)

VRB(x) =

∞, |x| < d

0 elsewhere.
(3.26)

In the case of periodic systems this model can be considered as the single particle
in a infinite rectangular quantum well of width L− 2d, where the eigenstates are of
the form of

ΨRB(x) =


√

2
L−2d

cos
(

π
L−2d

(L
2 − |x|)

)
, if |x| > d

0 elsewhere
(3.27)

and the energy ERB = π2ℏ2

2mL2 .

Figure 3.8: Infinite rectangular barrier and the corresponding ground state (blue
line) in the 1D system with PBC of the lengthL. The groundstate is given by Eq. (3.27).

To understand the rudiment of the similarities between these two models it is
beneficial to analyze the structure of the wavefunction of a model with delta
potential in three cases: (i) the ground state for strong but finite g̃, (ii) the case
of infinitely strong repulsion, and (iii) the first excited state obtained through
topological pumping immediately a�er a quench.

From a mathematical standpoint, there are qualitative differences between these
states and the infinite rectangular barrier. However, quantitatively, the differences
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with the state a�er quench are not significant. For states belonging to the first
excited branch, the wavefunction develops two nodes near x = 0. As long as g̃L <

−10, the probability of finding the atom between these nodes is extremely small (see
Fig. 3.7). This behavior is reminiscent of the infinite rectangular barrier, where the
probability of finding the particle inside the barrier is zero and the wavefunction
vanishes (has two nodes) at the barrier edges.

This observed similarity can be more rigorously confirmed by computing the fidelity
(i.e. the squared overlap) between the state of interest and the ground state of the
rectangular barrier, with the barrier width chosen to match the distance between
the nodes

F =
∣∣∣∣∣
∫ L

0
Ψ∗RB(x)Ψ(x) dx

∣∣∣∣∣
2

(3.28)

As shown in Fig. 3.9, for large and negative potential coefficient, the fidelity is high,
indicating that the two states are indeed closely related. However, for intermediate
values of g̃, where the probability of finding the atom between the nodes increases,
this correspondence breaks down. An analogous behavior can also be observed
for higher excited states, where similar node structures and effective barrier-like
behavior emerge under strong repulsive interactions.

3.2 Few-body systems

The general statements made in the previous section can be extended to more
complex systems, in which, instead of a single particle in an external potential,
we consider a few-body system of bosons interacting via contact two-body
interactions. In this section, I argue that the phenomena discussed earlier can also
be observed in such models.

1 Two particles

To begin with, let me focus on a system of two indistinguishable bosons of
mass m, confined in a one-dimensional trap of length L with periodic boundary
conditions. The particles interact via a contact (delta-function) potential, meaning
the interaction potential is nonzero only when the two point-like particles occupy
the same position in space. The Hamiltonian describing this system is given by
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Figure 3.9: A comparison between the first excited state emerging during the
pumping process and the ground state of a system with an infinite rectangular
barrier, where the width of the barrier is equal to the distance between the nodes
of the wavefunction Ψ(x). Panel (a) presents the squared overlap between these
two states, illustrating their degree of similarity. In panel (b), the wavefunctions
corresponding to two different values of the potential strength are shown,
demonstrating how these functions converge as the attraction becomes stronger.
It can be observed that for g̃ = −10L (solid lines), the fidelity approaches unity
and the corresponding wavefunctions are nearly indistinguishable. In contrast, for
g̃ = −L, where the fidelity is significantly lower, notable differences between the
wavefunctions become apparent.

Eq. (3.29)

Ĥ = − ℏ2

2m
∂2

∂x2
1

− ℏ2

2m
∂2

∂x2
2

+ gδ(x1 − x2), (3.29)

where g, referred to as the coupling constant, characterizes the interaction
strength. It is worth noting that since our study is related to the field of ultra-cold
gases, the parameter g is closely associated to the scattering length. Additionally,
from this point on, to simplify the notation, I define the space in which atoms can
be such that x1, x2 ∈ [0, L).

The eigenstates of the Hamiltonian (3.29) are generally functions of two spatial
coordinates, namely ĤΨ(x1, x2) = EΨ(x1, x2). We investigate the system of two
bosons, so consequently the wavefunction must be symmetric according to the
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exchange of the particles Ψ(x1, x2) = Ψ(x2, x1) and, due to periodic boundary
conditions, must fulfill the condition that Ψ(x1 + L, x2) = Ψ(x1, x2 + L) = Ψ(x1, x2).

Center of mass separation

Fortunately, to find the exact form of wavefunction it is not nessesary to solve the
full two-dimensional differential equation. By introducing new coordinates: the
center-of-mass position X = x1+x2

2 and the relative distance between particles
x = x2 − x1, and substituting them into Eq. (3.29), the Hamiltonian separates into
two independent parts, each acting on a different Hilbert space

Ĥ = ĤX + Ĥx, (3.30)

where

ĤX = − ℏ2

4m
∂2

∂X2 , and Ĥx = −ℏ2

m
∂2

∂x2 + gδ(x) (3.31)

operate on the center-of-mass and relative coordinates, respectively. This allows us
to write the full eigenfunction in a product form

Ψ(x1, x2) = Φ
(x1 + x2

2
)
φ(x2 − x2) = Φ(X)φ(x), (3.32)

where ĤXΦ(X) = EXΦ(X), Ĥxφ(x) = Exφ(x) and the total energy equals E = EX +
Ex. In this model, the center-of-mass wavefunctions are a plane waves of the form

Φn(X) = 1√
L
ei 2πn

L
X (3.33)

with corresponding energies given by EX,n = 4π2ℏ2n2

mL2 , where n is the integer number
enumerating the state. Since we are primarily interested in ultracold systems, we
typically focus on cases where the center of mass occupies the lowest orbital (i.e.
n = 0), yielding zero center-of-mass energy.

Relative wavefunction

The relative wavefunction φ(x) is more involved. Fortunately, the Hamiltonian
governing it is identical in form to the one discussed above (see Sec. 3.1), where a
single atom in a box of the length L with a delta potential was considered. The only
noteworthy difference here is that although the length of the box is the same L, the
relative position between atoms can take values in the range x ∈ (−L,L]. Negative
values correspond to situations where x2 < x1, while positive values represent the
opposite case.
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Based on previously established results, one can find that this system also supports
two families of eigenstates: one corresponding to negative energies Ex and the
other to positive energies. However, the interpretation of these states differs
slightly in the two-particle context.

For negative energies, the wavefunction φ(x) decays exponentially (or more
precisely, takes the form of a hyperbolic cosine, which still implies localization)
with respect to the relative coordinate x. This decay, however, does not indicate
localization of the individual atoms themselves. Although the particles remain close
to each other, the center-of-mass wavefunction is completely delocalized. As a
result, the system behaves as a self-bound pair that can exist anywhere within the
available space. The one-dimensional gas density, defined as the average number of
atoms per unit length is therefore uniform ρ(x) = N

L
, and the probability of finding

a particle is equal throughout the system.

Figure 3.10: Second-order correlation functions for three distinct eigenstates of
a system consisting of N = 2 atoms interacting via contact interactions in a
periodic box. As shown, the correlation functions differentiate between self-bound
states (red curve) and non-self-bound (scattering) states (blue curves). Notably,
the excited eigenstates exhibit nodes in their wavefunctions, which manifest as
zeros in the second-order correlation functions. According to the definition of the
second-order correlation function, this indicates that in the excited states, the
probability of simultaneously finding one atom at position x and the other at a
separation corresponding to a node is exactly zero. Here, ρ = N/L and g̃ = (gm)/ℏ2
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For unbound (positive-energy) states, the situation is qualitatively similar: although
the gas density remains uniform, the internal structure of the system is nontrivial.

Distinction between self-bound and scattering states becomes apparent when
examining the second-order correlation function, which can be interpreted as a
conditional probability of finding one particle at position x, given that the other is
at x′ (see Fig. 3.10). In the case of two atomic system this function is defined as a
squared relative wavefunction

G2(x1, x2) = |Ψ(x1, x2)|2 = |φ(x1 − x2)|2. (3.34)

Pumping procedure

Despite the differences between this model and the system with a single atom
discussed in Sec. 3.1, the present system also supports a form of pumping. The
energy spectrum (see Fig. 3.11) closely resembles that of the single-atom case.
In particular, for a fixed center-of-mass orbital, the energy spectrum exhibits
clearly visible branches, which are similar to those observed in the aforementioned
one-body system.

By combining it with the following sequence of equalities between certain
wavefunctions 

Φ0(X)φ0(x, g̃ → ∞) = Φ0(X)φ1(x, g̃ → −∞),

Φ0(X)φ1(x, g̃ → ∞) = Φ0(X)φ2(x, g̃ → −∞),
...

Φ0(X)φn(x, g̃ → ∞) = Φ0(X)φn+1(x, g̃ → −∞)

(3.35)

it become evident that implementation of a pumping procedure should be feasible
also in that setup.

2 Three particles

Up to this point, the process of pumping and the properties of the states involved
have appeared elegant and straightforward. However, we have yet to explain what
actually is Tonks–Girardeau gas that appears in the title of this thesis. In this
section, I aim to increase the complexity of the models under consideration and
finally address this gap. Naturally, this added complexity will also introduce some
complications to the simple picture of pumping process presented so far.
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Figure 3.11: The energy spectrum of a system composed ofN = 2 atoms interacting
via contact interactions in a periodic boundary condition box is shown as a function
of the interaction strength. The spectrum closely resembles that of a single-particle
system; however, a key distinction is the ability to shi� the entire spectrum upward
by introducing a nonzero total momentum K ̸= 0. Here, ET G = π2ℏ2N(N2−1)

6mL2 and
g̃ = mg

ℏ2 .

The first noteworthy difference between the many-body systems and a single atom
with the external potential appears for N = 3 indistinguishable bosons (in the
model with N = 2 a�er separating center of mass motion, the general picture was
identical to the predictions made for a single atom). The Hamiltonian of a system of
interest is given by

Ĥ = − ℏ2

2m

N=3∑
j=1

∂2

∂x2
j

+ g
N=3∑

1≤i<j

δ(xi − xj), (3.36)

where m is the mass of a single particle and g is the coupling constant. As before,
positive values of g correspond to repulsive interactions, while negative to attractive
ones.

The model we have chosen — namely, bosons interacting via a Dirac delta
potential in a box with PBC — offers a significant advantage: it allows for a
relatively straightforward determination of the eigenenergies and eigenfunctions
Ψ(x1, x2, x3). To achieve this, it is convenient to employ the so-called Bethe Ansatz.
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3 Bethe Ansatz

To introduce the basic idea behind the Bethe Ansatz, it is important to realize that
the particles described by Hamiltonian (3.36) behave as free ones for the majority
of the space. They only “feel each other“ when two of them collide. This implies
that one can divide the coordinate space into sectors where no two particles occupy
the same position. Namely, if we restrict the analysis to regions where the particle
positions are ordered (e.g. x1 < x2 < x3), the wavefunction in each such sector
satisfies the free Schrödinger equation. The interactions are then encoded in the
boundary conditions at the hyperplanes where two particles coincide (i.e. xi = xj),
imposed by the contact (delta) interaction.

Due to the absence of interactions within individual sectors, the corresponding
wavefunction in each sector takes the form of a Bethe wavefunction

Ψ(x1, x2, x3) =
∑
P

A(P )ei(λP 1x1+λP 2x2+λP 3x3), (3.37)

where summation runs over all possible permutations P of a set of N = 3 integers.

In that formulation, the problem reduces to determining the allowed values of
rapidities λj and the corresponding amplitudes A(P ). There are several methods
for achieving this. Here, I will present one approach, which is closely related to the
method introduced in the case of a single atom interacting with a delta potential.

Rapidites

To understand the structure of eigenstates in that model, one must consider the
implications of periodic boundary conditions. For a system of three particles, the
many-body wavefunction satisfies

Ψ(x1 + L, x2, x3) = Ψ(x1, x2 + L, x3) = Ψ(x1, x2, x3 + L) = Ψ(x1, x2, x3), (3.38)

reflecting the translational invariance of the system. Substituting the Bethe Ansatz
wavefunction given in Eq. (3.37) into this condition leads to the appearance of global
phase factors

Ψ(x1, x2, x3) =
∑
P

A(P )ei(λP 1x1+λP 2x2+λP 3x3)

= Ψ(x1 + L, x2, x3) = eiλP 1L
∑
P

A(P )ei(λP 1x1+λP 2x2+λP 3x3),
(3.39)

where eiλP 1L does not have to be equal to unity, since the rapidities λj are not
restricted to be integer multiples of 2π

L
.
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This additional phase can be simply interpreted: when a particle with Lieb’s
quasi-momentum λj completes a full loop around the ring, it accumulates a phase
eiλjL. However, due to the presence of interactions, the particle traversing trough
system scatters off other particles. Each scattering event introduces a two-body
phase shi� governed by the S-matrix

S(λj, λl) = λj − λl − ig̃

λj − λl + ig̃
. (3.40)

In a full loop, each particle scatters with every other particles (once passing each
one), leading to a total accumulated phase

N∏
l=1, l ̸=j

S(λj, λl) =
N∏

l=1, l ̸=j

(
λj − λl − ig̃

λj − λl + ig̃

)
. (3.41)

This phase must match the global phase eiλjL imposed by periodicity, leading to the
set of so-called Bethe equations

eiλjL =
N∏

l=1, l ̸=j

S(λj, λl), for j = 1, . . . , N. (3.42)

Explicitly, for the three-particle case, this gives
eiλ1L = S(λ2, λ1)S(λ3, λ1),

eiλ2L = S(λ1, λ2)S(λ3, λ2),

eiλ3L = S(λ1, λ3)S(λ2, λ3).

(3.43)

Logarithmic formulation of the Bethe equations

In the form presented in Eq. (3.43), the equations are relatively complex and
challenging to solve numerically. To simplify their numerical treatment, it is
convenient to rewrite them in terms of the scattering phase shi� θ(k), defined as

S(λj, λl) = eiθ(λj−λl), θ(λj − λl) = −2 arctan
(
λj − λl

g̃

)
. (3.44)

Substituting into Eq. (3.42) and taking the logarithm yields

λjL = 2πIj −
N∑

l=1
θ(λj − λl), (3.45)

where Ij are known as Bethe quantum numbers, which takes a form of an array of
distinct integers (or half-integers for even N ) that characterize the solution.
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For brevity, I will present the set of Bethe equations relevant for determining the
rapidities associated with the ground state in the regime of repulsive interactions.
In the three-particle case, the ground state corresponds to the Bethe numbers I =
{−1, 0, 1}, leading to the following system of equations

Lλ1 = −2π − 2 arctan
(

λ1−λ2
g̃

)
− 2 arctan

(
λ1−λ3

g̃

)
,

Lλ2 = 2 arctan
(

λ2−λ1
g̃

)
− 2 arctan

(
λ2−λ3

g̃

)
,

Lλ3 = 2π + 2 arctan
(

λ3−λ1
g̃

)
+ 2 arctan

(
λ3−λ2

g̃

)
.

(3.46)

It is straightforward to verify that in this case, the symmetry of the system ensures
k2 = 0, and the remaining rapidities satisfy k3 = −k1. Solving this system yields
the rapidities for the ground state, which can then be used to construct the full
wavefunction and determine physical observables such as energy and momentum.

Amplitudes A(P)

When rapidities are known, let us focus on the amplitudesA(P ). To determine these
coefficients, it is crucial to recognize that the exchange of any two particle indices
is equivalent to the scattering of one particle off another. Consequently, there arise
relation

A(..., k, j, ...) = S(λj, λk)A(..., j, k, ...). (3.47)

This approach alone does not allow for the direct determination of the values of
all coefficients A(P ), but it can be used to derive relations between the amplitudes
corresponding to different permutations. For example, in the case ofN = 3 bosons,
utilizing that relation leads to

A(213) = S(λ2, λ1)A(123)

A(132) = S(λ3, λ2)A(123)

A(231) = S(λ3, λ1)S(λ2, λ1)A(123)

A(312) = S(λ3, λ1)S(λ3, λ2)A(123)

A(321) = S(λ3, λ2)S(λ3, λ1)S(λ2, λ1)A(123).

(3.48)

The value of the final coefficient can be determined by applying normalization to the
function. Subsequently, the resulting expression for the coefficients can be derived
in the following form

A(P ) =
∏

1≤i<j≤N

(
1 + ig̃

λP i − λP j

)
. (3.49)
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Wavefunction representation in the full spatial domain

The final step — while not strictly necessary, but convenient for latter part of the
work — is to generalize Eq. (3.37) so that it applies not only to a single segment but
to the entire configuration space. A�er performing the appropriate algebra, one can
derive that

Ψ(x1, x2, x3) = N
∑
P

∏
k>l

(
1 − ig̃ sign(xk − xl)

λP k − λP l

)
ei(λP 1x1+λP 2x2+λP 3x3). (3.50)

4 Tonks-Girardeau states

Let me now discuss in more detail the properties of the states derived in the previous
section. This time, I will omit the relatively trivial cases of non-interacting atoms
and finite values of repulsive forces. The focus here will be on the case where g̃ → ∞.
In that regime, one observes that for every state, the rapidities approach

λj
g→∞−−−→ 2π

L
Ij, (3.51)

what are the allowed values of momenta of a single atoms confined in a PBC box of
the length L. Subsequently, wavefunction reduces to

Ψ(x1, x2, x3)
g→∞−−−→

g→∞−−−→ N i
∑
P

(
g̃3 sign(x2 − x1) sign(x3 − x1) sign(x3 − x2)

(λP 2 − λP 1)(λP 3 − λP 1)(λP 3 − λP 2)

)
ei 2π

L
(I1xP 1+I2xP 2+I3xP 3)

(3.52)

and, a�er all

lim
g→∞

Ψλ(x) = 1√
N !LN

∑
P

sign
(
P
)

exp
(

i
N∑

m=1
xm

2π
L IPm

)∏
k>l

(−isign(xk − xl)) . (3.53)

The last term appearing in the wavefunction is independent of the permutation and,
as such, can be factored out of the summation

lim
g→∞

Ψλ(x) =
(∏

k>l

(−isign(xk − xl))
)

· 1√
N !LN

∑
P

sign
(
P
)

exp
(

i
N∑

m=1
xm

2π
L IPm

)
. (3.54)

Noninteracting fermions

The function Eq. (3.54) shares several similarities with the eigenstates of a system
of free fermions. Specifically, free fermions, due to the Pauli exclusion principle,
cannot occupy the same single-particle orbitals. Consequently, in the ground
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state of noninteracting atoms, they occupy the N lowest-lying single-particle
orbitals, characterized by the lowest energy. Moreover, their wavefunction must be
antisymmetric, which makes it convenient to express it as

ΨF (x1, x2, x3) = N

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) φ1(x3)
φ2(x1) φ2(x2) φ2(x3)
φ3(x1) φ3(x2) φ3(x3)

∣∣∣∣∣∣∣∣∣ (3.55)

what in the more compact form can be written as

ΨF (x1, x2, x3) = N
∑
P

sign
(
P
)

exp
(

i
N∑

m=1
xmλPm

)
(3.56)

where λj = 2πj
L

.

By comparing it with the wavefunction of infinitely strongly repulsive bosons one
can simply realize that the structure of these states is similar, namely

Ψλ(x1, x2, x3) = S(x1, x2, x3)Ψλ,F (x1, x2, x3) (3.57)

where S(x) = ∏
k>l (−isign(xk − xl)) or, as it is more commonly referred to, the

ground state of infinitely repulsive bosons —known as the famous Tonks-Girardeau
state — is of the form

ΨT G(x1, x2, x3) = |ΨGS,F (x1, x2, x3)|. (3.58)

Tonks-Girardeu state properties

This similarity has significant implications. In particular, since the rapidites
of bosons in the Tonks-Girardeau state are identical to the momenta of free
fermions, the energies of these states equal, namely ETG = EGS,F . Moreover,
similarities also arise in the case of certain correlation functions. Specifically,
in the correlations depending only on the module of wavefunction |Ψ(x)|, like
second-order correlations, there exists an exact mapping (see Fig. 3.12)

GT G,2(x, x′) = GF,2(x, x′). (3.59)

The existence of this simple relation is extremely useful in computing correlations
for systems with large numbers of atoms.

Noteworthy, it was not possible to introduce this relation and the term
Tonks-Girardeau state earlier. Although we investigated a system with N = 2
atoms, no such simple mapping exists. Due to the periodicity of the boundary
conditions, only states with an odd number of particles exhibit exact mapping
between fermionic and bosonic wavefunctions [74].
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Figure 3.12: Comparison of the first- and second-order correlation functions of a
system consisting ofN = 3 infinitely repulsive bosons and noninteracting fermions.

5 Fully and partially self-bound states

In the previous sections, we focused primarily on systems with repulsive (i.e.
positive) interatomic potentials, where particles remained unbound. We now turn
to the regime of attractive interactions, g̃ < 0, which gives rise to qualitatively
distinct behavior. In particular, the system supports the formation of self-bound
many-body states.

Returning to Eq. (3.42), one observe that for g̃ < 0, the rapidities are no longer
restricted to be real-valued; they can acquire complex components. The emergence
of complex rapidities signals the formation of bound clusters within the system,
i.e. many-body states whose wavefunctions decay exponentially with the relative
distance between particles, analogous to single-particle bound states discussed
earlier. Below I classify the eigenstates into three main categories, providing
illustrative examples of each:

(i) Despite the attractive interaction, even in that regime there exist eigenstates
where all rapidities remain real. These states, referred to as not-self-bound (NSB),
do not form clusters and resemble their counterparts in the repulsive regime.
Remarkably, for a given set of Bethe quantum numbers, the number of NSB states
remains unchanged as the sign of g̃ is reversed. These states can be obtained by
solving the Bethe equations as in the repulsive case.
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(ii) In contrast, fully self-bound states are those in which all particles form a
single bound cluster. The most prominent example is the McGuire soliton [16],
which constitutes the ground state of the system in the attractive regime. For a
three-particle system, the corresponding rapidities take the form

λ1 = K − ig,

λ2 = K,

λ3 = K + ig,

(3.60)

where K denotes the total center-of-mass momentum. The associated
eigenfunction exhibits exponential decay in the relative coordinates. The energy of
this state is given by EMG = ℏ2

2m
K2 − g2m

24ℏ2N(N2 − 1), representing the lowest-energy
configuration for g < 0.

(iii) A third class of eigenstates — partially self-bound (PSB) states — arises when
only a subset of the particles form a bound cluster, while the remaining particles are
effectively unbound. For instance, in a three-body system, two particles may form a
bound pair while the third remains delocalized. The corresponding rapidities take
a mixed form, for example such as

λ1 = k/2 − ig/2,

λ2 = k/2 + ig/2,

λ3 = q,

(3.61)

where λ1 and λ2 form a bound pair and λ3 corresponds to the "free" particle.
The analytical characterization of such states is significantly more involved and
generally requires numerical methods.

These states are particularly problematic from the perspective of pumping
procedure, and they likely prevent the implementation of reverse processes of
re-pumping. Their energies are equal to E = ℏ2

2m
(λ2

1 + λ2
2 + λ2

3) = ℏ
m

k2+2q2−g2

4 and
can become degenerate with, and even cross, those of the NSB states, as illustrated
in Fig. 3.13.

While such crossings do not affect significantly the pumping process from
a theoretical standpoint, they introduce instabilities in realistic experimental
settings. These instabilities can lead to the collapse of an initially prepared NSB
state due to the spontaneous formation of partially self-bound configurations.

Historically, this instability was a key reason why the possibility of implementing
a pumping cycle remained unrecognized for many years. Early studies on
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super-Tonks–Girardeau states, both numerical [17] and experimental [36], reported
a rapid collapse of the super-Tonks-Girardeau state in the regime of the
intermediately attractive interactions, reinforcing the belief that such pumping
procedures were infeasible.

A major breakthrough occurred with the use of dysprosium atoms [43], which
interact not only via contact interactions but also via weak, nonlocal dipolar forces.
These dipolar interactions introduce a weak effective long-range repulsion into the
system, which helps stabilize the dynamics and enables the successful execution
of several pumping cycles in the laboratory. However, the precise theoretical
understanding of how this additional repulsion modifies the system’s behavior
remains an open question and requires further investigation.

Figure 3.13: The energy spectrum of a system consisting of N = 3 bosons
interacting via contact interactions. A detailed analysis reveals three distinct
types of eigenstates: (i) non-self-bound states, (ii) partially bound states where
two particles form a bound pair, and (iii) fully self-bound states where all three
particles are mutually bound. Blue dots represent the energies obtained via exact
diagonalization (see Sec. 2.1) with a momentum cutoff set to kmax = 200, while red
lines indicate the energies of the non-self-bound states computed using the Bethe
Ansatz.
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3.3 Lieb-Liniger model

In this section, I will extend scope of studies from few- to many-body systems. I
focus on a system consisting of N indistinguishable bosons of mass m confined in
a one-dimensional box of length L with periodic boundary conditions. As in the
previous sections, the particles interact via short-range forces modeled by a Dirac
delta potential. This system, known as the Lieb-Liniger model [13, 14], has been
the subject of extensive study and is one of the few quantum many-body systems
considered exactly solvable. From a physical perspective, the Hamiltonian of this
model is given by

Ĥ = − ℏ2

2m

N∑
j=1

∂2

∂x2
j

+ g
N∑

j<j′
δ(xj − xj′), (3.62)

where g is the coupling constant. Using the Bethe Ansatz (discussed earlier in Sec. 3),
it is possible to show that all non-self-bound (NSB) eigenstates of this Hamiltonian
are of the form of[75, 76]

Ψλ(x) = Aλ

∑
P

exp
(
i

N∑
m=1

xmλP m

)∏
k>l

(
1 − ig̃sign(xk − xl)

λP k − λP l

)
, (3.63)

with normalization factor given by

Aλ =
∏

k>l(λk − λl)√
N ! det(Mλ)∏k>l((λk − λl)2 + g̃2)

(3.64)

where elements of the matrix M are defined as

[Mλ]kl = δkl

(
L+

N∑
m=1

2g̃
g̃2 + (λk − λm)2

)
− 2g̃
g̃2 + (λk − λl)2 (3.65)

with corresponding energies E and total momenta P given as

Eλ = ℏ2

2m

N∑
i=1

λ2
j and Pλ = ℏ

N∑
j=1

λj. (3.66)

The properties of these states depend on a set ofN parameters {λi}, known as Lieb’s
quasimomenta or rapidities. A significant advantage of LL model is that these values
can be relatively easily computed by solving a set of nonlinear equations, where j−th
rapidity is given by Eq. (3.67)

Lλj = 2πIj − 2
N∑

i=1
arctan

(
λj − λi

g̃

)
. (3.67)
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As one can see, the Lieb’s quasimomenta depend not only on the length of the
system and the interaction strength, but also on a set ofN Bethe quantum numbers,
denoted {Ii}. For systems with an even (odd) number of particles, these Bethe
numbers form a set of distinct integers (half-integers). Crucially, for any given set
of Bethe numbers I, there exists a unique set of rapidities λ, and consequently a
unique eigenstate of the system. This means that the Bethe numbers can be used
to unambiguously label the eigenstates of the Hamiltonian (3.62).

The notation involving Bethe numbers is convenient also for a different reason. In
particular, the distribution of these numbers determines the total momentum of
the system. As can be shown,

P = ℏ
∑

j

λN
j=1 = 2πℏ

L

N∑
j=1

Ij − 2ℏ
L

N∑
i,j=1

arctan
(
λj − λi

g̃

)
. (3.68)

As the arc tangent function is antisymmetric, the last term in Eq. (3.68) vanishes
and the total momentum is proportional to the sum of Bethe numbers

P = 2πℏ
L

N∑
j=1

Ij. (3.69)

This implies that, since we are primarily interested in states with total momentum
equal to zero P = 0, we can restrict our analysis to those states for which the sum
of the Bethe numbers is zero.

1 Pumping procedure in LL model

Utilizing the exact expressions for the energies and wavefunctions introduced
above, it is possible to demonstrate that the pumping procedure can also be applied
in this setup. To illustrate this, let us begin by examining the energy spectrum of a
system withN = 5 atoms. As shown in Fig. 3.14, for every set of Bethe numbers, there
exist two energy branches: one corresponding to positive and the other to negative
values of the coupling constant. It can be simply proven that adiabatic evolution
between any two states belonging to the same branch is possible by continuously
varying the coupling constant.

Moreover, an sTG quench allows for the transformation of a state obtained in the
g̃ → ∞ limit into a state characterized by the same set of Bethe numbers in the
g̃ → −∞ regime. To demonstrate this, let us examine the behavior of the rapidities
in these two limits. As seen in equation Eq. (3.67), the coupling constant appears
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Figure 3.14: Energies of two distinct eigenstates of the Lieb-Liniger Hamiltonian
with N = 5 particles as a functions of the coupling constant g̃. For both sets of
Bethe quantum numbers, the energy spectra exhibit two disconnected branches
corresponding to attractive (g̃ < 0) and repulsive (g̃ > 0) interactions. Notably, in
the limit |g̃| → ∞, the energies of the le� and right branches converge to the same
value. Here, ETG = π2ℏ2N(N2−1)

6mL2 .

only in the denominator of the arctangent function. Substituting large values of
g̃ → ±∞ causes these terms to vanish, regardless of the sign of the interaction. As
a result, the Lieb’s quasimomenta and energy remain effectively unchanged across
the quench, namely

λj
g̃→±∞−−−−→ 2π

L
Ij. (3.70)

Since the rapidities are identical in both cases, the corresponding wavefunctions
are also the same. Referring to Eq. (3.63), we can see that in the limit of strong
interactions, the wavefunction simplifies to

Ψλ(x) g̃→±∞−−−−→ g̃
N(N−1)

2 N
∑
P

exp
(
i

N∑
m=1

xmλP m

)∏
k>l

(
−isign(xk − xl)

λP k − λP l

)
. (3.71)

Changing the sign of the interaction affects only the overall sign of the
wavefunction, without altering its internal structure. Combining this observation
with the possibility of adiabatic evolving between states within the same energy
branch, it becomes clear that one can transform a state at one interaction strength
into another — via the pumping protocol — as long as both states are labeled by the
same set of Bethe numbers.
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To continue that analysis let us examine the lower part of the spectrum, which
includes non-self-bound states of a system with N = 5 atoms (see Fig. 3.15(a)).
As shown, the energy spectrum is composed of multiple branches. Fortunately,
some of these branches are connected at the point where g = 0 (see Fig. 3.15(b)).
In the case investigated here, the branch connected to the ground state (labeled
by I0 = {−2,−1, 0, 1, 2}) is indexed by I1 = {−6,−3, 0, 3, 6}. Then, that branch is
connected to the higher one indexed by I2 = {−10,−5, 0, 5, 10}, et cetera.

Figure 3.15: (a) Lowest energy levels of the non-self-bound states in the Lieb-Liniger
model forN = 5 bosons. As observed, several energy branches are connected at the
point g = 0, corresponding to the non-interacting limit. (b) A detailed view of the
energy branches connected to the ground state, highlighting their evolution with
interaction strength.

A clear pattern emerges here. As observed, the ground state — characterized by an
uniform and symmetric distribution of Bethe numbers with a spacing of d = In+1 −
In = 1 — is connected to a state with the same uniform and symmetric structure but
with a spacing of d = 3. This state, in turn, connects to another wavefunction where
the Bethe numbers are again uniformly and symmetrically distributed, but with an
increment of d = 5.

As can be proven, this observation is correct, and the pattern can be generalized to
systems with any number of atoms and for higher branches. To demonstrate this, let
us take a closer look at the energy of states corresponding to uniformly distributed
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Bethe numbers of the form I = {0,±d,±2d, ...,±(N − 1)d/2}. The rapidities in this
case are given by

Lλj
g̃→0−−→ 2πIj − π

N∑
i=1

sign
(
g(λj − λi)

)
. (3.72)

This equation can be simplified by realizing that j-th element of the set equals Ij =
−(N−2j−1)d/2 and that the summation results in

∑N
i=1 sign

(
g̃(λj−λi)

)
= sign(g̃)(N−

2j + 1). Substituting these equalities into Eq. (3.72) one obtain

Lλj
g̃→0−
−−−→ −π(N − 2j + 1)(d+ 1) + 2πd

Lλj
g̃→0+
−−−→ −π(N − 2j + 1)(d− 1) + 2πd.

(3.73)

As can be seen, in the limit of vanishing interactions (g̃ → 0), the rapidities in
the branch where the spacing between neighboring numbers in the set {Ij} is
Ij+1 − Ij = d are equal to those in the branch {I ′j}, where the differences are given
by I ′j+1 − I ′j = d + 2. It means that the branch corresponding to the ground state of
atoms in the regime of positive coupling constants, characterized by Bethe numbers
with an increment of d = 1, has the same rapidity distribution for g̃ → 0+ as the
distribution in the branch with d = 3. This branch will then connect to the branch
with a spacing of d = 5. As the energy of the system is proportional to the sum of the
squared rapidites, so the equality of their distribution explains observed in Fig. 3.15
similarities in the energy.

Noteworthy, not only energies of these states converges at g̃ → 0. The analogous
convergence can be observed in the wavefunctions. By incorporating Lieb’s
quasimomenta found in Eq. (3.73) to the general formula Eq. (3.63), one can simply
prove that at this point wavefunctions labelled by appropriate sets of Bethe numbers
are identical



ΨI={0,±1,±2,...}(x, g̃ → 0−) = ΨI′={0,±3,±6,...}(x, g̃ → 0+)

ΨI={0,±3,±6,...}(x, g̃ → 0−) = ΨI′={0,±5,±10,...}(x, g̃ → 0+)

...

ΨI={0,±d,±2d,...}(x, g̃ → 0−) = ΨI′={0,±(d+2),±2(d+2),...}(x, g̃ → 0+).

(3.74)

Adding this information to our existing knowledge, it becomes clear that the
pumping process should be feasible for a system with any number of atoms N .
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2 Changes in internal structure of the gas in the process of pumping

In this section, I will examine in greater detail the internal structural changes
of the state that occur during the pumping process. I begin by analyzing the
distribution of rapidities. Continuing with the case of N = 5 atoms, the structure
observed in the Bethe quantum numbers leads to a characteristic distribution
of Lieb’s quasi-momenta, as illustrated in Fig. 3.16(c). As shown in the figure, in

Figure 3.16: The evolution of rapidities (Lieb’s quasimomenta) in a system of N = 5
bosons interacting via a contact potential during the pumping process. Here, we
define Fermi momentum as kF = (N − 1)π/L

the ground state of a non-interacting gas (g̃ = 0, ℓ = 0), all quasi-momenta
are zero (λi = 0), reflecting a macroscopic occupation of the zero-momentum
mode. For a finite and positive interaction strength (g̃ > 0), rapidities begin
to separate. Then, as the system approaches the fermionization limit (g̃ → ∞,
ℓ = 1), it enters the Tonks-Girardeau regime, where the quasi-momenta adopt a
uniform distribution, mirroring the momentum distribution of the ground state of
non-interacting fermions.

This distribution remains unchanged during the quench; however, when the
interaction strength is tuned back from g̃ = −∞ to g̃ = 0, the quasi-momentum
distribution further broadens and ultimately, for non-interacting bosons once
again resembles distribution of non-interacting fermions, but with twice lager the
spacing. Specifically, it consists of equally spaced values with spacing increased by
a factor of ℓ = 2, i.e. 2 · (2π/L). As the system undergoes successive pumping cycles,
the quasi-momentum distribution experiences a continuous stretching.
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In conclusion, during the pumping process, the states at the special interaction
points g̃ = 0 and g̃ = ±∞ exhibit rapidity distributions that correspond to the
momentum distribution of the ground-state Fermi gas, but scaled by a factor of ℓ.

The rescaling of the quasi-momentum distribution is reflected in the structure of
the wave function of excited states. By introducing the operator Ŝ, defined as

ŜΨ(x1, . . . , xN) =
∏
i<j

sign(xj − xi) Ψ(x1, . . . , xN), (3.75)

the wave function at successive stages of the evolution, corresponding to ℓ = 0, 1, . . .,
can be expressed as follows

|..., 0, 0, N, 0, 0, ...⟩B︸ ︷︷ ︸
Ground state, ℓ=0

g→∞ // Ŝ |..., 1, 1, 1, ...⟩F︸ ︷︷ ︸
Tonks−Girardeau, ℓ=1

0←−∞←g

// |..., 1, 0︸︷︷︸
ℓ=2

, 1, 0, 1...⟩B
g→∞// Ŝ|..., 1, 0, 0︸ ︷︷ ︸

ℓ=3

, 1, 0, 0, 1...⟩F → . . .

(3.76)

where, |...⟩B(F ) is the bosonic (fermionic) Fock state, where single particle orbitals
are the plane waves.

3 Momentum distribution

Finally, having discussed the quasi-momenta, we are well-positioned to begin
the discussion of real momenta in the system. By definition, the momentum
distribution n(p) — the expected number of atoms occupying a given momentum
— can be defined as

n(p) =
∫ L

0
e−ip(x−x′)G1(x, x′)dx (3.77)

where the single-particle density matrix is given by

G1(x, x′) =
∫ L

0
Ψ∗(x′, x2, x3, ..., xN)Ψ(x, x2, x3, ..., xN)dx2...dxN . (3.78)

Calculating this function for the Lieb-Liniger model with finite interactions (g ̸=
0) is relatively complex and requires numerical attempts. However, for few-body
systems, such as model with N = 9 atoms, it is feasible. By applying the procedure
described in detail in [76], I computed the single-particle density matrices and
subsequently the momentum distributions for several characteristic points in the
pumping process. The results are presented in Fig. 3.17.
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Figure 3.17: Momentum distributions of states appearing in the process of pumping
at g̃ = 0 (le� column) and g̃ = ±∞ (right column) at the subsequent branches of the
pumping labeled with ℓ = 0, 1, 2, 3, 4, 5. Here, we considered N = 9 atoms and we
define Fermi momentum as kF = (N − 1)π/L.

What can be observed there is that at the beginning of the pumping process, in the
ground state, all atoms occupy the single-particle orbital with momentum equal
to 0. As the interaction strength increases, the momentum spectrum broadens,
eventually reaching a shape characteristic for the Tonks-Girardeau state [77, 78, 79].
Then, a�er a quench to the excited state, the momentum spectrum continues to
getting wider. However, at a certain point,N distinct peaks emerge in the spectrum,
and the momentum distribution between them begins to decay. Finally, for the
excited state of non-interacting bosons (g̃ = 0) labeled by ℓ = 2, the momentum
distribution consists ofN peaks, each corresponding to a single occupying atom. As
shown, the peaks correspond to momenta given by 0,±4π

L
,±8π

L
,±12π

L
,±16π

L
. A similar

behavior can also be observed for pumping to higher excited states, where the cycle
eventually ends with peaks corresponding to momenta 0,±8π

L
,±16π

L
,±24π

L
,±32π

L
.

As can be observed, in the non-interacting regime, the momenta of the
atoms coincide with their rapidities. This observation is indeed accurate: for
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non-interacting bosons, the rapidities directly correspond to the momenta of
individual atoms. Consequently, the pumping process effectively enables the
transformation of a system of non-interacting atoms from its ground state to a
highly excited state of an ideal Bose gas, in which the momentum distribution
resembles that of non-interacting fermions, scaled by a factor of ℓ.

It is worth of highlighting that this is not the only valid interpretation. The
excited states reached through the pumping process, which exhibit a momentum
distribution identical to a rescaled Fermi sea, can alternatively be understood as
corresponding to a Fermi sea in a system with a rescaled spatial extent. For example,
in the state labeled by ℓ = 2, the momentum modes occupied by the atoms are
precisely those that would be filled in the ground state of a non-interacting Fermi
gas confined in a periodic box of length L/2.

4 Interparticle correlations in a pumping procedure

This intuition — the effective shortening of the box — appears to be correct. To
show that, let us examine the spatial structure of the gas in more detail. Although
the system is subject to periodic boundary conditions and experiences no external
potential (despite the trapping one), the gas density remains uniform. However, the
correlations between atoms do not share this uniformity.

Starting with the previously discussed first-order correlation function — as
shown in Fig. 3.18 — we observe that as the pumping process crosses successive
characteristic points, the function appears to become narrower. While this might
sound like a colloquial and mathematically meaningless statement, it captures the
underlying fact that the decay of correlations becomes faster, and the oscillations
in the function become more frequent.

Moreover, at certain points the correlation structure becomes “self-similar“ in a
sense that the function obtained at ℓ = 2, namely G1(x, ℓ = 2), is essentially a
rescaled (twice as broad) version of the function corresponding to ℓ = 4

G1(x, ℓ = 2) = G1(2 · x, ℓ = 4). (3.79)

This observation can be readily confirmed and generalized to systems of arbitrary
size and to higher branches. In particular, it can be shown that for non-interacting
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Figure 3.18: The first and the second order correlation functions of the states
appearing in the process of pumping at γ = 0 (le� column, ℓ = 0, 2, 4) and γ = ±∞
(right column, ℓ = 1, 3, 5). Top panels: the first-order correlation g1, the bottom: g2.
Results shown for N = 9 atoms.

bosons, the OBDM takes the form

G1,even ℓ(x) = 1
L

⌊N/2⌋∑
j=−⌊N/2⌋

e
i2πjℓx

L = sin(Nπℓx/L)
L sin(πℓx/L) . (3.80)

As one can see there, rescaling of the momenta in that equation yields the same
result as scaling the spatial coordinates.

Contrary, in the regime of strongly repulsive interactions, the scaling patterns
become more subtle and harder to observe. However, the short-range behavior of
the correlation function still obeys a simple scaling property. Specifically, it can be
shown that function g1(x) = G1(x)/ρ is given byg1,even ℓ(x) = 1 − (πℓ)2(1− 1

N2 )
6 (ρx)2 +O(x4)

g1,odd ℓ(x)=1−(πℓ)2(1− 1
N2 )(ρx)2

6 +(πℓ)2(1− 1
N2 )|ρx|3

9 +O(x4).
(3.81)

As one can see, in the regime of x ≪ L the correlation decay rate scales
proportionally with the pumping level.
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Second-order correlation function

A similar type of “scaling“ behavior can also be observed in the second-order
correlation function, defined as

G2(x, x′) =
∫∫
S
dx3 . . . dxN |Ψ(x, x′, x3, x4, . . . , xN)|2, (3.82)

As shown in Fig. 3.18(c,d), the excited states exhibit “self-similar“ segments in the
correlation function. In the case of a noninteracting Bose gas, these segments are
characterized by local maxima, which can be interpreted as an enhanced probability
of finding two particles either in close proximity or at well-defined distances given
by x − x′ = nL/ℓ, where n ∈ Z. Conversely, for the case of infinitely strong
repulsion, the system exhibits local minima in the G2 function at those same
distances, indicating that it is forbidden to find two particles at the same location
or at distances x− x′ = nL/ℓ.

What is particularly interesting is that theG2 function for noninteracting bosons is
qualitatively different from that of free fermions. In the excited states of the Bose
gas, we observe significant bunching, a feature that cannot occur for free fermions.
This is especially intriguing in the context of the first-order correlation function,
which in these states closely resembles that of free fermions. This contrast can
be intuitively understood as a novel form of fermionization: for strongly repulsive
bosons in the Tonks–Girardeau regime, both the second-order correlation function
and the energy resemble those of a noninteracting Fermi gas. In contrast, here,
the excited states of the ideal Bose gas, while exhibiting first-order correlations
and energy spectra similar to the fermionic case, display fundamentally different
second-order correlations.

3.4 Summary

In this chapter, I have discussed the effects of a quench of either the potential or
the interatomic interaction strength from strongly repulsive to highly attractive
values. I have shown that, regardless of whether one considers a single atom or
a larger ensemble of ultracold particles, such a quench leads to the formation
of highly excited, stable states. When combined with adiabatic changes of the
interaction parameter, this procedure, called as pumping, enables the preparation
of strongly correlated, highly excited many-body states with nontrivial internal
structure. Notably, in the regime of non-interacting bosons, the resulting states
exhibit properties closely resembling those of free fermions confined in spatially
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Figure 3.19: Illustration of the "tower of states" emerging during cyclical changes
in the interaction parameter γ = g̃/ρ, shown as a circle on the bottom in a
stereographic representation with ±∞ being a single point. Le� panels: the
characteristic comb-like momentum distribution in the appearing excited states
of an ideal Bose gas. The colors of the helical line correspond to different pumping
cycles.

compressed traps. A simple but entirely accurate summary of these results may
be provided by a schematic illustration shown in Fig. 3.19, depicting the "tower of
states" formed during the pumping process.

Despite these findings, the completion of this study leaves me with more questions
than I had at the beginning. The interpretation of the unusual interatomic
correlations observed in the pumped states remains an open and intriguing
problem. Moreover, it is still unclear how the presence of a trapping potential affects
the nature of these states. The current work focused primarily on systems with
either periodic boundary conditions or no external confinement in one dimension.
However, the observed structural similarities to bosonic systems confined in
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hard-wall boxes [80] suggest that analogous phenomena may also emerge in such
settings.

Furthermore, experimental realizations of the pumping protocol, as described in
Refs. [43, 41, 42], indicate that similar effects may occur even in harmonic traps.
This is supported by several theoretical investigations [24, 81], which reinforce the
probability of such behavior. Nevertheless, a rigorous mathematical understanding
of this mechanism in systems with a significant number of particles is still
lacking. It remains an open question whether the behavior observed there would be
fundamentally connected to the peculiar form of “fermionization“ characteristic of
the systems analyzed in this work.
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Chapter 4

Super-Tonks-Girardeau effect in
models with two types of interactions

This chapter is dedicated to the analysis of a second nontrivial phenomenon
emerging in many-body quantum systems, closely related to the
super-Tonks-Girardeau quench — the so-called super-evaporation effect.

Before going further, I would like to highlight that most of the material presented
here was gathered as part of a project concluded in the work [82], in collaboration
with my supervisor and teammates, whose contributions greatly influenced the
final structure of the project. In this thesis, for educational purposes I added the
section explaining the rudiments of the effect described in the original work for a
single atomic case. Additionally, I have made slight adjustments to the notation,
particularly to align it with the description of the pumping procedure. However,
most of the figures and the logical structure of the text remain in the form presented
in the original article.

4.1 Single atom and three delta potential

Following a successful strategy employed previously, to lay the groundwork for this
discussion, I begin by considering a simplified model: a single particle of mass m in
an infinite one-dimensional space. In contrast to the earlier scenario discussed in
Chapter 3, this time the external potential consists of three Dirac delta functions
symmetrically distributed around the point x = 0 (see Fig. 4.1). Consequently,
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Hamiltonian of the system can be expressed as Eq. (4.1)

Ĥ = − ℏ2

2m∂2
x + gcδ(x) + gs

(
δ(x− d) + δ(x+ d)

)
, (4.1)

where d denotes the distance between the potential peaks, while the parameters
gc and gs represent the coefficients of the central and side delta potentials,
respectively. In this study, I focus on scenarios where the side potentials are weakly
attractive while the central one is strongly attractive or strongly repulsive (gs < 0
and 0 < |gs| ≪ |gc|)

Figure 4.1: Schematic presentation of a symmetric three-delta potential, where
distances between potential peaks equal d. This study focuses on configurations
where the side potential coefficients are negative (attractive potentials, red lines),
while the central potential coefficient is varied across both strongly attractive and
repulsive regimes (blue dashed and solid lines, respectively).

The functions fulfilling the Schrödinger equation ĤΨ(x) = EΨ(x) can be obtained
using an approach analogous to that employed for the single delta potential case
in Sec. 3.1. As before, we primarily focus on symmetric states satisfying Ψ(x) =
Ψ(−x) = Ψ(|x|). In the regions between the delta potentials, the wavefunction must
correspond to an eigenfunction of the free-particle Hamiltonian. Given that the
potential is nonzero only at three discrete points, it is convenient to express the
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wavefunction in the form of

Ψ(x) =

A1e
κ|x| +B1e

−κ|x|, |x| ≤ d

A2e
κ|x| +B2e

−κ|x|, |x| > d
(4.2)

where the exponent is defined as κ =
√

−2E, and without loss of generality can be
restricted to Re{κ} ≥ 0.

The effect of external delta potentials on the wavefunction can be incorporated
through modified boundary conditions imposed on the wavefunction’s derivatives
Ψ′(x) = ∂

∂x
Ψ(x) at the positions x = 0 and x = d. Together with the requirement of

wavefunction continuity, this yields the following matching conditions
Ψ(d−) = Ψ(d+)
ℏ2

2m

(
Ψ′(0+) − Ψ′(0−)

)
= gcΨ(0)

ℏ2

2m

(
Ψ′(d+) − Ψ′(d−)

)
= gsΨ(d).

(4.3)

By applying them to the general form of the function given in Eq. (4.2) one obtains
following relations

A1e
2κd +B1 = A2e

2κd +B2

ℏ2κ
m

(
A1 −B1

)
= gc

(
A1 +B1

)
ℏ2κ
2m

(
(A2 − A1)e2κd − (B2 −B1)

)
= gs

(
A2e

2κd +B2
) (4.4)

which for κ ̸= 0 and κ ̸= g̃c can be then reduced to
− g̃s

κ

(
e2κd − g̃c−κ

g̃c+κ

)
A1 − g̃c−κ

g̃c+κ
A1 = B2

− g̃c−κ
g̃c+κ

A1 = B1

g̃s

κ

(
1 − e−2κd g̃c−κ

g̃c+κ

)
A1 + A1 = A2.

(4.5)

where g̃ = mg
ℏ2 . As can be seen from the equations, a natural length scale emerges —

the distance between potential peaks. To simplify further analysis, I will henceforth
adopt a system of units in which this characteristic unitary length is set to d = 1.

The same as in the case of a single delta potential, two types of eigenstates can
be observed here. For positive energy values, where the exponent κ is imaginary,
the probability of finding a particle does not decay to zero with distance from the
center of the box. These correspond to unbound (scattering-like) states, which are
not central to the subsequent analysis and will therefore not be discussed in detail.
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Figure 4.2: Three types of bound states that can appear in the systems with three
delta potential, discussed in Sec. 1. Panel (a) illustrates a bound state of the first
kind, corresponding to negative values of both potential coefficients g̃cd ≪ g̃sd < 0.
This state characterizes by a maximum probability density at the central potential
and an exponential decay of the wavefunction with increasing distance from the
origin. Panel (b) displays bound states of the second (blue line, g̃cd ≫ 1) and third
(red line, g̃cd ≪ 1) kinds. In these cases, the probability of finding the atom at x = 0
is significantly lower than at positions corresponding to the side potentials. The
wavefunction exhibits exponential decay for distances |x| > d. The third-kind bound
state is distinguished by the presence of two nodes in the wavefunction. The data
shown corresponds to potential parameters g̃cd = ±30 and g̃sd = −0.7. The vertical
gray lines indicates positions of the potential peaks.

1 Bound states

The study presented in this chapter is devoted primarily to the bound states, where
- as previously mentioned - the energy is negative, the parameter κ is a positive, real
number, and, consequently, to avoid divergence in the wavefunction, the coefficient
A2 in Eq. (4.5) must be set to zero. Under these assumptions, the admissible values
of κ are restricted to those that satisfy Eq. (4.6)

1 + e−2κ

(
κ− g̃c

)
(
κ+ g̃c

) = − κ

g̃s

, (4.6)
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what for the domain κ > 0 can be simplified to

e2κ = −g̃s

(κ+ g̃s)
κ− g̃c

κ+ g̃c

. (4.7)

As it was mentioned earlier, we consider systems where |g̃c| < |g̃s|. Under these
conditions three distinct types of bound states can be identified:

(i) The first of these occurs exclusively for gc < 0, and resembles the bound state
known from the single delta potential model. In that case, the probability density
of finding the particle decays approximately exponentially with the distance from
the central potential (see Fig. 4.2(a)). The energy associated with this state is highly
negative, indicating a deeply bound configuration.

(ii) The second type of bound state, which arises when the central potential is
repulsive (gc > 0), differs substantially from the first one. As shown in Fig. 4.2(b),
the wavefunction exhibits maxima at the locations of the side delta potentials. In
this configuration, the probability density at the center (x = 0) decreases as the
strength of the central repulsion increases, eventually approaching zero in the limit
Ψ(x = 0, g̃c → ∞) = 0. The energy of this state remains negative, but is significantly
higher (less negative) than that of the bound state of first kind. In that case, the
decay parameter lies within the range 0 < κ < |g̃s|.

(iii) The third type of bound state is qualitatively similar to the second one. The
key difference is that it arises for attractive central potentials (gc < 0) and is
characterized by the presence of two nodes in the wavefunction (see Fig. 4.2(b)). As
in the second case, the probability density reaches maximum near the positions of
the side delta potentials. The decay parameter κ again lies in the range 0 < κ < |gs|.

What is particularly important for further studies is that the bound states of the
second and third kind are structurally nearly identical. The key difference lies in
the values of the central potential coefficient required to support them: the second
kind emerges for highly positive values of gc, while the third kind appears only for
highly negative gc. This implies that a quench of the central potential — similar to
that discussed in Chapter 3 — could induce a transition between these two bound
states.
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2 Critical potential coefficient values

Notably, bound states of the second and third kind exist only for specific values of
the potential coefficients. To identify the parameter regions in which such states
may emerge, it is instructive to examine Eq. (4.7) in more detail.

What can be found there is that the equation is satisfied for κ = 0. However, this
value lies outside the admissible domain of the parameter κ. Furthermore, the
exponential function on the le�-hand side of the equation (e2κ) is strictly positive
and monotonically increasing with κ. The right-hand side part ( −g̃s

κ+g̃s

κ−g̃c

κ+g̃c
) within the

regime of interest, where κ < |g̃s|, this expression is also positive and diverges to
−∞ as κ → −g̃s.

Under these conditions, one can demonstrate that bound states of the second and
third kind can emerge only if the derivative of the right-hand side of Eq. (4.7) in the
limit κ → 0 is smaller than the derivative of the le�-hand side

−g̃c − 2g̃s

g̃cg̃s

< 2 (4.8)

what is fulfilled for

g̃s <
1

2 + 2
g̃c

. (4.9)

Noteworthy, the critical value of the side potential coefficient, denoted as g̃s,crit,
exhibits a slight asymmetry depending on the sign of the central potential
coefficient. This subtle difference has surprising consequences, which are
discussed in subsequent sections.

3 The missing bound state

The consequences of the differences in the critical values of g̃scrit for opposite signs
of g̃c are evident in the energy spectrum shown in Fig. 4.3(a). As can be observed, for
large values of |g̃s|, the energies of the two bound states converge. This convergence
is accompanied by a similar trend in the structure of the wavefunctions, with
the fidelity between these states approaching unity as the side potential strength
increases (see Fig. 4.3(b)). However, an important point to note is that the bound
state of the second kind appears for weaker side potentials compared to the third
kind. This observation opens up intriguing possibilities for a theoretical thought
experiment. Imagine that in the laboratory, a bound state of the second kind is
prepared. In that configuration, the repulsive and attractive components of the
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Figure 4.3: (a) Energies of the three types of bound states discussed in Sec. 1
as functions of the side potential coefficient g̃s. Three distinct regions can be
identified. In the first region (0 ≤ g̃s < g̃s, crit+), only a single bound state of
the first kind exists. In the intermediate region (g̃+

s,crit ≤ g̃s < g̃−s,crit), both first-
and second-kind bound states are supported. Finally, for stronger attraction (g̃s <

g̃−s,crit), all three types of bound states coexist. (b) Fidelity between the second-kind
bound state and the remaining bound states. The overlap between the first- and
second-kind bound states is negligible, whereas the fidelity between the second-
and third-kind bound states remains high throughout the region where both are
present.

potential balance each other, resulting in a bound state with a relatively large
spatial width. Upon abrupt reversing the central potential, the post-quench state
will become a superposition of the eigenstates of the new Hamiltonian where two
possible outcomes can arise:
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(i) if the side potential is sufficiently strong g̃s ≤ g̃+
s,crit, the superposition will contain

significant contribution from the third type of bound state. In this case, the system
will remain stable over long timescales following the quench.

(ii) conversely, if the side potential is too weak to support the third type of bound
state, the superposition will primarily consist of non-bound states, and the atom
will begin to evaporate. Notably, this eventual evaporation occurs despite the fact
that all potentials are strongly attractive a�er the quench.

4.2 Super-evaporation in discrete systems

The analog of the aforementioned phenomenon, namely the delocalization of a
single atom in a three-Dirac-delta potential, is expected to occur also in many-body
systems, where two types of interactions come into play. However, to date,
no research has been conducted for continuous-space systems. Fortunately, a
comparable effect is expected to emerge in a system of atoms confined in a
one-dimensional lattice, where the atoms possess a nonzero dipolar magnetic
moment what allow them to interact non-locally.

In such a scenario, the appearance of a dominant sinusoidal periodic potential in
the tight-binding regime forces the wavefunction to be expressed as a superposition
of Wannier functions [83, 84, 85]. Consequently, it is convenient to employ second
quantization (see Sec. 1) for describing the systems of interest, as will be done in the
following sections.

1 Model and phase diagram

In the second-quantized notation the system of interest — a model of N

bosons confined in a one-dimensional lattice interacting via both on-site and
nearest-neighbor interactions is well described by the extended Bose-Hubbard
Hamiltonian

Ĥ = −J
Nh−1∑
j=−Nh

(
b̂j b̂
†
j+1 + h.c.

)
+ U

2

Nh∑
j=−Nh

n̂j(n̂j − 1) + V
Nh−1∑
j=−Nh

n̂jn̂j+1, (4.10)

where b̂j (b̂†j) represents a bosonic annihilation (creation) operator at site j, n̂j =
b̂†j b̂j , Nh = ⌊Ns/2⌋, Ns is a number of lattice sites, J is the tunneling coefficient
between the neighboring lattice sites (J > 0),U characterizes the strength of on-site
interactions and V stands for the strength of nearest-neighbor interactions.
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It is worth emphasizing that the setup considered here is nonstandard: the number
of particles N is fixed and significantly smaller than the number of lattice sites Ns.
As a result, the phase diagram of this system does not contain the famous Mott
insulator (with exactly one atom in each lattice site [84]).

Throughout our work, we assume the nearest-neighbor forces to be weak and
attractive. Regarding on-site forces, we are interested in two limiting cases -
either strong local repulsion or strong local attraction. We first analyze the static
properties in both cases to understand later the dynamics of the system a�er a
quench in the on-site interaction strength. Note that a�er such a quench the two
interactions — the on-site and nearest-neighbor ones, are attractive.

To explicitly indicate the sign of U in the Hamiltonian Eq. (4.10) — corresponding to
either strong on-site repulsion (U ≫ J) or strong on-site attraction (U ≪ −J) — we
introduce the notationsH+ andH−, respectively. Specifically, the HamiltoniansH+

and H− share identical values of the tunneling and nearest-neighbor interaction
parameters, J and V , while their on-site interaction parameters, U , differ only in
sign.

The extended Bose-Hubbard model in the regime of strong local interactions
exhibits a rich and non-trivial ground-state phase diagram. Even in the absence
of nearest-neighbor interactions (V = 0), the ground state can realize one of three
distinct phases: (i) a bright soliton for attractive on-site interactions (U < 0), (ii) a
superfluid phase in the regime of weak repulsion (J ≫ U > 0), or (iii) a lattice analog
of the Tonks-Girardeau gas for strong repulsion (U ≫ J > 0) [86].

As shown in [87, 88, 89], the inclusion of nearest-neighbor interactions in
the extended Bose-Hubbard model with strong local interactions leads to the
emergence of novel phases, called the self-bound liquid and the self-bound Mott
insulator (bMI). In both phases, the ground-state energy per particle is lower than
that of an ideal gas, and the corresponding density profiles are localized in position
space, justifying the term self-bound. Furthermore, in both cases, the density
profile exhibits a flat-top structure (see Fig. 4.4(b,c)) , reminiscent of quantum
droplets studied extensively in the one-dimensional Bose gas [90, 91]. In the bMI
phase, in contrast to the liquid phase, each lattice site is either empty or singly
occupied, with negligible particle-number fluctuations, similar to the conventional
Mott insulator.
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Position Position

Figure 4.4: Schematic illustration of the three possible phases in the extended
Bose–Hubbard model under strong on-site repulsion and their expected
post-quench dynamics.

In this study, we focus on the regime of strong on-site interactions (|U | ≫ J, |V |)
and consider sudden quenches from H+ to H−, corresponding to a change of
the interaction sign. For V = 0, the situation is straightforward: there exists
only a single phase — a lattice equivalent of the Tonks-Girardeau state — and the
interaction quench results in standard dynamics familiar from continuous models
discussed in previous sections (see Chapter 3). In this case, the system exhibits
minimal evolution and rapidly reaches a metastable sTG state.

However, when V ̸= 0 and if the system is initially prepared close to either the TG
or bMI state, the density profile remains stable following the quench. By contrast, a
system initially prepared in the liquid phase displays a counter-intuitive behavior,
similar to the one observed for a single atom in three-delta potential: despite the
attractive character of all interactions, the liquid begins to evaporate rather than
collapsing, as might be expected naively. To investigate and understand these
phenomena, we first present analytical results for a two-particle system. Building
on this foundation, we progressively extend that analysis to systems with larger
particle numbers.

2 Two particles

For two bosons, one can find the eigenstates and eigenenergies of the eBH
Hamiltonian analytically [92, 93], which can be used to understand the rudiments
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of possible outcomes of the sTG quench. Here, we use the position representation

|Ψ⟩ =
∞∑

j,j′=−∞
Ψ(j, j′) |j, j′⟩ , (4.11)

where the summation extends over all lattice sites. We consider an infinite lattice,
which allows the decoupling of the center-of-mass motion, defined asR = (j+j′)d/2,
and the relative coordinate r = (j − j′)d, where d denotes the lattice spacing. As
a result, each eigenstate can be written as a product state of the form Ψ(j, j′) =
eiKRψK(r), with K representing the center-of-mass momentum. Substituting this
Ansatz into the Schrödinger equation, Ĥ |Ψ⟩ = EK |Ψ⟩, yields the following equation

−JK [ψK(r − d) + ψK(r + d)] + [Uδr,0 + V (δr,d + δr,−d) − EK ]ψK(r) = 0, (4.12)

where JK = 2J cos(Kd/2) and EK denotes the energy of the state. The difference
equation Eq. (4.12) can be solved analytically, yielding explicit expressions for both
scattering and self-bound states [93].

When analyzing the ground state of the system, it is sufficient to consider the case
where the center-of-mass momentum is zero. TheK = 0 spectrum is schematically
illustrated in Fig. 4.5 for both strong repulsive (a) and attractive (b) on-site
interactions. In this figure, the shaded regions represent the continuum energy of
scattering states, while the solid and dashed lines correspond to self-bound states.
To explore the parameter space of the model, we fix the on-site interaction strength
U and vary the nearest-neighbor attraction V . It can be observed that both the
number of self-bound solutions and the nature of the ground state depend on the
value of V . In general, there exist at most two bound states. Moreover, there exists
a critical value of the nearest-neighbor attraction

Vc = − 2JU
U + 4J , (4.13)

for which the energy of the second bound state drops below the continuum
spectrum of scattering states. At this point, we note that the corresponding value
of the nearest-neighbor attraction, denoted by Vc, will play a crucial role in our
subsequent analysis. In analogy to the notationH±, we introduce V ±c to distinguish
between the two critical cases. In the following subsection, we investigate the
implications of these observations for the outcome of the sTG quench. Since the
ground state for U ≫ J — which serves as the initial state for the sTG quench — can
be either a scattering state or a bound state, we divide our analysis into two parts,
revealing clearly visible differences between them.
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Super-Tonks-Girardeau quench from a scattering state

For strong on-site repulsion and sufficiently weak nearest-neighbor attraction
(specifically, 0 ≤ |V | < |V +

c |), the ground state corresponds to a scattering state
(region I in Fig. 4.5(a)). To understand the system’s behavior under a U → −U
super-Tonks–Girardeau quench, below we examine the properties of the scattering
wave functions. The two-body scattering states have the following form

ψK,k(r ̸= 0) = cos (k|r| + δK,k) (4.14a)

ψK,k(0) = cos δ(0)
K,k

cos(kd+ δK,k)
cos
(
kd+ δ

(0)
K,k

) (4.14b)

where the phase shi�s are given by

tan δK,k =
JK + V cos(kd) + 2JKV

U
cos2(kd)

V sin(kd) − 2J2
K−2JKV cos(kd)

U
sin(kd)

, (4.15)

and where

tan δ(0)
K,k = − U

2JK sin(kd) . (4.16)

The quasi-momenta k are continuous and belong to the interval [0, π/d]. The
energies of the scattering states equals EK,k = −2JK cos(kd). The solution Eq. (4.14)
remains valid for arbitrary values of the interaction parameters U , V , and the
tunneling amplitude J . In the regime of primary interest, characterized by strong
on-site interactions (|U | ≫ J, |V |), the phase shi� δK,k becomes independent of U .
Specifically, in the limit U → ±∞, the phase shi� approaches

lim
U→±∞

tan δK,k = JK + V cos(kd)
V sin(kd) , (4.17)

while the contribution from the on-site interaction satisfies

lim
U→±∞

δ
(0)
K,k = ∓π

2 . (4.18)

As a result, the scattering states for infinitely strong repulsive and attractive on-site
interactions become identical. This implies, in particular, that the ground state of
the system in the limit U → +∞ coincides with a highly excited eigenstate of the
system for U → −∞. Consequently, a�er a quench from U = +∞ to U = −∞, the
state of the system is unchanged.
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An expansion in the small parameter J/|U | indicates that the qualitative features of
the infinite-interaction limit persist for large but finite on-site interactions. In this
regime, the phase shi�s acquire corrections of order 1/|U |. Specifically, the phase
shi� becomes

δ
(0)
K,k ≈ ∓π

2 ± 2JK sin(kd)
|U |

, (4.19)

and the total phase shi� takes the form

tan δK,k ≈ JK + V cos(kd)
V sin(kd) ± 2J3

K

V 2|U |
, (4.20)

where the upper (lower) sign corresponds to positive (negative) values of U . These
expressions demonstrate that, although small on-site-interaction-dependent
corrections appear, the overall structure of the scattering states remains
approximately conserved under the transformation U → −U when |U | ≫ J, |V |.

The observed similarity between the ground state of the repulsive Hamiltonian
H+, denoted

∣∣∣H+
0

〉
and corresponding to the scattering state with k = 0, and a

particular excited state of the attractive Hamiltonian H−, is a manifestation of
the aforementioned super-Tonks-Girardeau effect. The post-quench stability arises
from the existence of an excited eigenstate of H−, which closely resembles

∣∣∣H+
0

〉
;

this state will herea�er be referred to as the superpartner. Following a sudden
quench from strong repulsive to strong attractive interactions, the initial state∣∣∣H+

0

〉
becomes an eigenstate of the new Hamiltonian H−, resulting in trivial time

evolution characterized by a global phase accumulation only.

The scattering state properties discussed above are consistent with general
expectations for systems governed by purely local interactions [94]. However,
the model considered here is more intricate due to the presence of additional
nearest-neighbor terms. This raises a more compelling question: does a
similar phenomenon persist in regimes where the nearest-neighbor attraction is
sufficiently strong for the ground state to become self-bound? In such cases, the
system transitions from a delocalized scattering regime to one characterized by
bound states, potentially altering the post-quench dynamics in a nontrivial way.

Super-Tonks-Girardeau quench from self-bound state

All two-body self-bound eigenstates of the eBH Hamiltonian with nearest-neighbor
interactions Eq. (4.10) take the form of exponentially localized wave functions [92]
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
ψK(0) = N 4αK

UαK+2(α2
K+1)

ψK(ri ̸= 0) = Nα
|i|−1
K

(4.21)

where N denotes the normalization constant of the bound-state wave function and
corresponding energies are given as

EK = −JK
1 + α2

K

αK

. (4.22)

The base of the exponential (αK) depends on the system parameters and can be
determined by substituting the Ansatz from Eq. (4.11) into the Schrödinger equation.
This procedure yields the following condition for αK

JKV α
3
K + (UV −J2

K)α2
K + JK(U+V )αK +J2

K = 0. (4.23)

The resulting eigenenergies of the self-bound states are shown as lines in
Fig. 4.5(a,b). The corresponding coefficients αK that satisfy the equation (with the
additional condition |αK | < 1, ensuring the decay of the wave function) are depicted
in Fig. 4.5(d). For simplicity, we focus on the case K = 0 and, for brevity, omit the
index K, i.e. α ≡ αK=0 in the subsequent discussion.

Upon examining Fig. 4.5(d), it becomes evident that the values of the coefficients α
form two distinct pairs of branches. The lower pair — corresponding to a strongly
localized state with energy E ≈ U — is present throughout the entire range of V ,
while the upper pair emerges for |V | ≥ |Vc|. That upper branch is of particular
interest for our studies: for repulsive on-site interactions (U > 0), it corresponds to
the ground state of the system (see Fig. 4.5(a)), whereas for attractive interactions
(U < 0), it corresponds to a certain excited state with a similar wave function, as
shown in Fig. 4.5(cIII). Crucially, the appearance of the upper pair is dependent onU ,
as

V ±c
|U |≫1

≈ −2J ± 8J2

|U |
(4.24)

and for Hamiltonians characterized by large and finite |U | differs slightly for U < 0
and U > 0, fulfilling the relation V −c < V ∞c < V +

c , where V ∞c = −2J . This distinction
implies that for V −c < V < V +

c (region II in Fig. 4.5), the ground state of H+ does
not have a superpartner among the eigenstates of H−. A superpartner appears in
region III, and its energy gradually approaches the branch of H+ states.
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Figure 4.5: The upper panels show the K = 0 energy spectrum of the eBH model
for two atoms in an infinite lattice as a function of the nearest-neighbor interaction
strength V for (a) U ≫ J and (b) U ≪ −J . The energies correspond either to the
continuum spectrum of the scattering states (the shaded bands) or to self-bound
states (solid and dashed lines). There are three relevant regions of the coupling V : in
(I), the ground state ofH+ is a scattering state, in contrast to (II) and (III), where the
ground state ofH+ is the self-bound state. The difference between (II) and (III) is that
in the latter, there exists an excited, self-bound eigenstate of H− with energy close
to the energy of a ground state of H+. The panels in the middle show three pairs
of eigenstates for three different values of nonlocal attraction V corresponding to
aforementioned regions (marked in the upper panels by cI , cII and cIII). We show the
ground states of the HamiltoniansH+ (blue lines with circles) and the eigenstates of
H− (yellow lines with triangles) with the energy closest to the energy of H+ GS. The
bottom panel (d) shows the coefficients α characterizing the two-body self-bound
eigenstates. In region II there is no self-bound eigenstate of H− (solid yellow lines
with triangles) with α similar to that of H+.
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From this simple analysis, we can identify three distinct ranges of the
nearest-neighbor interaction parameter V , each associated with different
dynamics following a super-Tonks-Girardeau quench. In regions I and III, where
the ground state

∣∣∣H+
0

〉
has a superpartner, the system will remain stable a�er

the quench. In contrast, we do not expect the same stability when the system is
initialized in the ground state from region II. Since there is no self-bound state that
would be similar to the initial one (the deeply self-bound state differs significantly)
quench there leads to the expansion of atoms that were previously bound together.
The sTG quench diagram is presented in Fig. 4.6. The existence of three regions in

Figure 4.6: Super-Tonks-Girardeau quench diagram for the two-body system. In
region I, the ground state of the system is a scattering state (Scat), which is stable
in sTG quench. Region II corresponds to self-bound states (Self-b), which expand
a�er the quench to strong attraction. Finally, in region III the self-bound ground
state survives the change of interactions and is stable a�er the quench.

the sTG quench diagram can be intuitively understood as follows. It is well known
that the sTG state exhibits stronger correlations than the Tonks-Girardeau system.
Specifically, the sTG state is characterized by a higher pressure compared to the
TG gas for the same density. In region II, the initial state for the quench, |H+

0 ⟩, is
weakly bound — its energy is slightly below that of the non-interacting system,
Efree = −4J , and the nearest-neighbor attraction just barely compensates the
local repulsion. When the system is quenched to stronger sTG correlations, the
contribution to the pressure from on-site interactions is effectively increased. In
region II, where the nearest-neighbor attraction is weak, this increase results in
the destruction of the initial bound state. However, as the attraction strength is
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increased, it becomes more difficult to disrupt the bound state, and it survives
the quench — this occurs in region III. We believe that this intuition, based on the
increase in pressure induced by the quench, also applies to larger systems, as we
will explore in the following sections.

3 Few-body systems

The effect described above is scalable and is expected to occur also in setups
consisting of more atoms. This section is devoted to presenting the effect of
super-evaporation in few-body systems. Systems consisting of more than two

Figure 4.7: Fidelity F (β) between the ground state of H+ and eigenstates of H− for
N = 3 atoms in lattice with Ns = 31 sites, with |U | = 40J . For V = 0 (scattering
state) andV = −8J (deeply self-bound state), there is a highly excited eigenstate, the
superpartner, practically equal to |H+

0 ⟩. In contrast, the ground state of H+ with an
intermediate value of V = −1.97J (weakly self-bound) is a superposition of several
states with different energies, which makes it unstable a�er the quench.

atoms are significantly more complex to analyze — wavefunctions cannot be
obtained analytically, necessitating the use of numerical methods. However,
as far as number of atoms is low, it is feasible to numerically diagonalize the
Hamiltonian given in Eq. (4.10). We use this technique here, to find the ground
state of the HamiltonianH+ and then search for eventual superpartners among the
eigenvectors of H−. To do so, we compute the fidelity between the ground state of
|H+⟩ and the eigenstates of H−

F (β) = |⟨H+
0 |H−β ⟩|2, (4.25)
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where |H−β ⟩ denotes the β-th eigenstate of H−.

The outcomes of that procedure for few distinct cases are presented in Fig. 4.7.
What can be seen there is that for fixed ratio |U |/J = 40 depending on the nonlocal
attraction coefficient V three outcomes can be obtain:

(i) for V = 0, the ground state of H+ is a scattering state. This state has a clearly
visible superpartner among the eigenstates of H−, as shown in Fig. 4.7(a). The
fidelity plot for this case reveals a distinct peak approaching unity, indicating a
strong correspondence between the two states;

(ii) for V = −1.97J , the ground state of H+ is a self-bound state that does not
possess a superpartner. As shown in Fig. 4.7(b), this state is a superposition of many
eigenstates of H−, with the highest fidelity reaching only about maxF (β) ≈ 0.5;

(iii) finally, for V = −8J the GS is the self-bound state, but it posses a superpartner,
as can be seen in Fig. 4.7(c).

A broader perspective on these results is provided in Fig. 4.8, which shows the
maximal fidelities between the ground states ofH+ and the eigenstates ofH−. Three
distinct regimes can be identified: Regime I, where the ground state is a scattering
state and possesses a superpartner; Regime II, where the ground state is self-bound
and lacks a superpartner; and Regime III, where the self-bound ground state has
a superpartner. This structure closely resembles the case of two atoms, where a
similar division into three regions was observed.

Evaporation in ab initio dynamics

The predictions based on the spectral analysis can be verified by studying the full
dynamical problem. Specifically, we prepare the ground states of the systems
discussed in the previous section, then quench the on-site interactions and
track the resulting dynamics of the density profiles and second-order correlation
functions defined as G2(j, j′) = 1

N2 ⟨b̂†j b̂
†
j′ b̂j′ b̂j⟩.

The results of such a time evolutions are presented in Fig. 4.9. As expected, the
systems corresponding to states from regions I and III remain stable a�er the
quench. This is not the case for the system with parameters from region II, where
we observe a clear expansion, both in the density profile and in the two-body
correlation function.
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Figure 4.8: Energy (red line) and maximal overlap between the ground state of
H+ and the eigenstates of H− (blue dots). For weak nonlocal attraction V , a
superpartner — an eigenstate of H− with high fidelity to the ground state of H+ —
exists. As the system approaches the point where the ground state of H+ becomes
self-bound (indicated by negative energy), the fidelity drops significantly, signaling
the absence of a superpartner. For stronger nonlocal attraction, the fidelity rises
again, which indicates the reappearance of a superpartner. The data were obtained
numerically for M = 21, N = 3, and |U | = 40J .

Remarkably, this phenomenon — the delocalization of the state despite a drastic
increase in the attractive interaction between atoms — persists also in larger
systems. In Fig. 4.10 we present time evolution of second-order correlation
functions for N = 4, 6, and 8 bosons with parameters from region II. As one
can see, observables presented there exhibit qualitatively the same behavior as
these obtained for the N = 3 case — the quenched system appears to undergo
super-evaporation.

It is worth noting that for systems with N > 3, we use DMRG [66] to determine
the corresponding ground states, and then employ TDVP to study the post-quench
dynamics (see Sec. 2.2). Although these methods are unquestionably powerful,
they did not allow us to perform calculations for larger particle numbers. In
the case analyzed here, the post-quench state is a superposition of many highly
excited eigenstates, leading to a rapid growth of entanglement entropy during the
evolution. This, in turn, results in a rapid growth of the Hilbert space required
to continue the simulation, limiting us to very limited system sizes. However, the
results presented here confirm that the phenomenon of super-evaporation should
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Figure 4.9: Density profiles (top panels) and density-density correlations (bottom
panels) as a function of time for the quenched system initiated in the ground state
ofH+. The nearest-neighbor interaction strengths are (a,d) V = 0, (b,e) V = −1.97J ,
and (c,f) V = −8J . It can be seen that for the weak (a, d) and very strong (c, f)
attraction, both the density profile and the correlations remain unchanged for a
long time. At the same timescale, the weakly bound state corresponding to V =
−1.97J fully evaporates (b, e). All figures correspond to the number of atoms N = 3
and |U | = 40J .
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occur in few-body systems and suggest that similar processes may also arise in
larger systems.

4 Perturbative analysis for macroscopic systems

In this section, we aim to describe super-TG quench in macroscopic systems, for
which the numerical methods applied to few-body systems become impractical.
In such cases, we lack access to both the many-body energy spectrum and the
exact quench dynamics. Nevertheless, we gain insight through an approximate,
perturbative description of the system, developed in a closely related context in [87]:

Since we consider a system of strongly repulsive bosons (U ≫ J), the system
governed by Hamiltonian Eq. (4.10) can be effectively mapped onto a fermionic one
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Figure 4.10: Second order correlations of a weakly self-bound ground states of H+

in a systems consist of (a) N = 4, (b) N = 6 and (c) N = 8 atoms. As for the weakly
self-bounded ground state of the three-atomic system, also here we can see a rapid
increase in the distance between the atoms a�er quenching. This observation may
be interpreted as a gradual evaporation of the self-bound state. Here |U | = 40J and
V = −1.97J . The data in this figure were obtained by using DMRG and TDVP methods
[66, 95].
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with an effective Hamiltonian Ĥeff [96]

Ĥeff = −J
Nh−1∑

j=−Nh

(
ĉ†j ĉj+1 + h.c.

)
− 4J2

U

Nh−1∑
j=−Nh

n̂jn̂j+1

+2J2

U

Nh−1∑
j=−Nh+1

(
ĉ†j−1n̂j ĉj+1+h.c.

)
+ V

Nh−1∑
j=−Nh

n̂jn̂j+1,

(4.26)

where ĉj(ĉ†j) represents a fermionic annihilation (creation) operator acting on site j
({ĉj, ĉ

†
j′} = δj,j′).

The energy of such system can be obtained perturbatively, using the ground state
of non-interacting lattice fermions as the unperturbed reference state. In the
thermodynamic limit, the ground-state energy can be estimated by evaluating the
expectation value of the effective Hamiltonian Eq. (4.26) with respect to the Fermi
gas ground state. This yields the following energy functional

E(n)/N = −2J sin(πn)
πn

− 4J2n

U

(
1 − sin(2πn)

2πn

)
+ V n

(
1 − sin2(πn)

π2n2

)
, (4.27)

wherendenotes the global density defined as average number of atoms in the lattice
sites. In considered model, this density is bounded above by one particle per lattice
site, reflecting an effective Pauli exclusion principle due to strong on-site repulsion.

A closer look at Eq. (4.27) reveals that for |U | ≫ |V |, three distinct phases emerge:
(i) a gaseous phase, (ii) a liquid, and (iii) a self-bound Mott insulator. Following
Ref. [87], these phases can be identified by analyzing the energy functional Eq. (4.27)
with respect to the density n (see Fig. 4.11). If the global minimum of the energy
occurs at vanishing density, the system resides in the gaseous phase — physically, it
is energetically favorable for the bosons to delocalize and spread over the entire
lattice. A qualitatively different situation arises when the optimal density that
minimizes the energy, nopt, approaches unit filling, i.e., nopt = 1; in this case, the
system is in the self-bound Mott insulator phase.

The third, intermediate phase — the liquid — appears within a relatively narrow
range of nearest-neighbor coupling values V , for which 0 < nopt < 1 1 . The boundary
separating the liquid and bMI phases can be obtained analytically from Eq. (4.27)
and corresponds to the critical coupling strength between adjacent lattice sites
VbMI = −2J . The full phase diagram can be found in Fig. 4.12(a).

1Notably, the emergence of liquid phase is a consequence of so-called superexchange processes,
which yield the J/U correction to the energy [87]. In the absence of this term — i.e., without this
effective additional attraction — the functional Eq. (4.27) does not support a stable liquid phase.
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Figure 4.11: The energy of the dipolar bosons in a one-dimensional lattice for distinct
values of the nearest-neighbor interactions V with a fixed on-site interaction U =
40J (solid lines) or U = −40J (dashed lines). The equilibrium phase of a system is
dependent on the optimal density, i.e., the density for which the energy reaches a
minimum. If nopt = 0 a system finds itself in the gas phase, if 0 < nopt < 1 a system is
a liquid and for nopt = 1, it matches the bMI. It is worth noting that for both U = 40J
and −40J positions on energy minimum are the same for gas and deeply self-bound
Mott insulator, but for liquid, it jumps to 0. What may be found is that this effect
occurs every time the ground state of H+ is liquid (vide Fig. 4.12).

Equation (4.27) offers a fundamental understanding of the system with U > 0
and attractive nearest-neighbor interactions (V < 0), providing a perturbative
description of the many-body ground state of H+. However, at this point we face
the second issue: how can we extend the analysis to attractive systems in our search
for superpartners? Without access to the full spectrum, it is unable to fully address
these questions — the states a�er quench correspond to highly excited eigenstates.

A partial solution to this problem lies in the observation that a potential
superpartner of the state we quench, must share a very similar structure.
Additionally, we know that the energy functional Eq. (4.27) was derived under the
assumption that the ground state structure in a system with strong repulsive U is
similar to the fermionic state. This implies that if a superpartner exists, the same
functional should provide a quantitatively accurate estimation of its energy as well.

While this method cannot capture all aspects of the system’s dynamics in every case,
it can be used as a tool to potentially exclude the possibility of the existence of a
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superpartner. Specifically, if the phase before and a�er the quench (determined
based on the optimal density nopt) is the same, it is possible that a superpartner
exists and that the system may remain stable a�er sTG quench. If the phases differ,
this serves as a strong indication that no superpartner exists. An example of such
an analysis is presented in Fig. 4.11, where we show the energies of hypothetical
superpartners obtained using this approach.

One may observe there that the optimal densities for weak (gas) and strong (bMI)
nearest-neighbor attraction are identical for both positive and negative coefficients
U . In contrast, for the intermediate value of nearest-neighbor attraction, V =
−1.9J , the optimal densities differ significantly. For U > 0, the optimal density
equals nopt ≈ 0.9, corresponding to a liquid phase, whereas for U < 0, we find
nopt = 0, which indicates a gaseous phase. This observation suggests that if
|H+

0 ⟩ exhibits gaseous or bMI-type characteristics, it may have a superpartner and
therefore remain stable a�er the quench. In contrast, the liquid phase is expected
to evaporate, what is consistent with predictions made for few-body systems.

To summarize this analysis, we present a phase diagram for the hypothetical
superpartners in Fig. 4.12(b). It is clearly visible that the entire liquid phase (and
part of the bMI phase) for U ≫ J is replaced by a gaseous phase for −U . In other
words, we expect that systems with large, negative U do not exhibits liquid-like
eigenstates – the liquid phase is expected to evaporate a�er sTG quench, contrary
to the gaseous and main part of bMI phases, which are expected to be stable (see
Fig. 4.12(c)). Notably, a strong resemblance to the two-body case is evident (see
Fig.4.6). However, the many-body case exhibits four distinct dynamical regions
instead of three. Two of these correspond to post-quench stability, while the
remaining two are associated with the evaporation of localized structures.

This distinction arises from the emergence of an additional phase in the many-body
phase diagram. While the two-body scenario requires only a classification into
bound and scattering states, the many-body system supports a richer structure,
allowing for classification into gas, liquid, and bMI phases. As the particle number
N increases and we transition from the two-body diagram (see Fig.4.6) to the
many-body case (see Fig.4.12(c)), the phase boundaries shi�, and the central region
splits into two domains — both corresponding to dynamical evaporation of initially
localized states.
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Figure 4.12: (a,b) The figures present the gas density at which the energy functional
Eq. (4.27) reaches a minimum (nopt). There are three possible states: gas (nopt = 0),
liquid (0 < nopt < 1), and a self-bound Mott insulator (nopt = 1). Note that the liquid
appears only for positive values of U (le� picture). If the sign of on-site interactions
is reversed (right image) the liquid and a part of the bMI are replaced by gas. This
leads us to the conclusion that a sudden change of parameters from U ≫ J to −U
causes the evaporation of the liquid to the gaseous state. The parameters where
phase transitions induced by sTG quench is expected are presented in panel (c).

5 Local density approximation for inhomogenous system

In this section, we continue the analysis of many-body systems based on the
perturbatively obtained energy functional Eq. (4.27). This time, however, we adopt
the local density approximation (LDA) to construct a dynamical theory. In this way,
the results presented above — with appropriate modifications — can be extended
to large but finite systems, where the density is no longer uniform. To account
for the lack of translational invariance, we introduce a position-dependent density
profile, symmetrize the nearest-neighbor interaction terms, and incorporate the
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contribution from the density envelope into the total energy. These modifications
led us to

E[c, c∗]=−J
Nh−1∑

k=−Nh

(
ckc
∗
k+1−2nk+c∗kck+1+2sin(πnk)

π

)
−

Nh∑
k=−Nh

4J2n2
k

U

(
1 − sin(2πnk)

2πnk

)

+V
Nh−1∑

k=−Nh

nknk+1

(
1 − 1

2
sin2(πnk)
π2n2

k

− 1
2

sin2(πnk+1)
π2n2

k+1

)
,

(4.28)

where ck denotes the complex density amplitude at the k-th lattice site, with the
local occupation given by nk = |ck|2.

The energy functional can be used to construct the Lagrangian of the system. From
this, employing the Euler-Lagrange formalism, one can derive the equations of
motion for the complex amplitudes cj(t), which can then be used both to find the
ground state (via imaginary time evolution) and to study the dynamical properties
of the system

i
∂

∂t
cj = ∂

∂c∗j
E[c, c∗]. (4.29)

As the result, we find that the resulting density profiles agree well with the
predictions derived from the analysis presented in the previous section (see Sec. 4).
In particular, in regimes where a uniform system is expected to exhibit a liquid
phase, the simulated finite system develops a droplet-like state characterized by
a flat-top density profile (i.e., a region of nearly constant density in the bulk, see
Fig. 4.13(c,d)). These density values closely match the predictions for a homogeneous
gas.

Furthermore, the system’s time evolution following a quench is consistent with
previous expectations. As illustrated in Fig. 4.13, where we examine two droplets
with different atom numbers, a�er a sudden change in interactions from strong
repulsion (U ≫ J) to attraction (−U ), the droplets begin to evaporate gradually,
displaying dynamics in line with the anticipated behavior.

4.3 Summary

In this chapter, I have presented one of the highly non-intuitive effects that
can emerge a�er an sTG quench in systems featuring two competing types of
interactions. As an initial example, I considered a single atom in an infinitely long,
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Figure 4.13: Dynamics of a droplet with (a, c) N = 50 and (b, d) N = 100 bosons
a�er a sTG quench from U = 40J to U = −40J with V = −1.9J . As can be seen,
a�er rapid change of interaction, droplets gradually evaporate and ends up in the
gaseous phase. The time dependence of densities is described by Eq. Eq. (4.29). The
dashed lines in lower panels indicates the optimal density nopt of a uniform system
corresponding to appropriate Hamiltonian coefficients.

one-dimensional space subject to a 3-delta potential, demonstrating that three
distinct types of bound states can arise in such a setup: one for positive and and
two for negative values of the central potential coefficients. Interestingly, the first
of these states can remain stable following a sudden quench of the central potential
to strongly negative values, depending on specific parameters. However, within a
narrow parameter regime, this state can become delocalized, despite all potentials
being strongly attractive.

A very similar phenomenon is also observed in many-body systems. Specifically, in
the case of bosons in a one-dimensional optical lattice with nonlocal interactions (as
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described by the extended Bose-Hubbard model), such a quench leads to instability
and the super-evaporation of the self-bound liquid phase.
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Chapter 5

Conclusions and outlook

The aim of this chapter is to present the large-scale outlook of the work presented
throughout the thesis and suggest relevant directions in which the work can be
extended in the future.

5.1 Conclusions

This thesis is essentially composed of two segments. The first part provided
an introduction to the super-Tonks-Girardeau effect, presented mathematical
methods that can be applied in its study, and offered arguments suggesting that
this effect occurs in one-dimensional many-body systems. Additionally, it was
shown that this effect can be applied (or, more precisely, has already been applied
in a series of experiments) to carry out the so-called pumping process, through
which highly excited states can be generated. These states, due to their particular
nature, exhibit a remarkable resistance to thermalization. This chapter presents
a theoretical explanation of this phenomenon, along with a discussion of the
intriguing properties of the excited states that can be accessed through this process.

The second part presents the results of a separate project, which aim was to
investigate the behavior of systems that, in addition to contact interactions,
also exhibit non-local interactions. These interactions can give rise to complex
self-bound states such as quantum droplets or, in optical lattices, self-bound
analogues of the Mott insulator. By employing a combination of analytical
methods, ab initio numerical simulations, and approximate descriptions of
the system in the thermodynamic limit based on perturbation theory, we
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demonstrated that in such systems, the states identified as quantum droplets do
not exhibit typical super-Tonks-Girardeau effect, still. Interestingly, following a
super-Tonks-Girardeau-like quench, these droplets do not collapse, as might be
anticipated, but instead gradually evaporate.

5.2 Outlook

This dissertation serves as a summary of the main branch of my many-year research
and, hopefully, will prove useful to those just beginning their adventure with
quantum many-body physics and to those interested in the super-Tonks-Girardeau
effect. Concerning the latter, there appears to be a wealth of open questions in this
field. The rapid development of techniques for trapping and manipulating ultracold
atomic systems, cooled to nanokelvin temperatures and composed not of millions
or thousands, but now of just hundreds or dozens of atoms in sophisticated trap
geometries, continually pushes the boundaries of technology, laying the foundation
for a novel area of applied science: atomtronics [97, 98, 99].

Concurrently, as the complexity of experimentally accessible quantum systems
increases, subtle and o�en highly counterintuitive many-body effects are becoming
of a great significance. Two examples of such phenomena — pumping and
super-evaporation — constitute the core focus of this dissertation. Their
existence presents both a technological challenge and a source of physical
intrigue. For instance, the narrow parameter window described in a context
of super-evaporation, where the ground state of a repulsive system lacks a
superpartner in the form of a corresponding sTG state, could pose a frustrating
puzzle for an unsuspecting experimentalist: for no apparent reason, the self-bound
state might sometimes evaporate and sometimes remain stable. On the other hand,
these delicate processes also open up new possibilities for controlling matter: the
pumping protocol can be applied to produce a strongly correlated ideal Bose gas —
a system with potential applications in quantum metrology.

As in other fields of science, we must acknowledge the inherent uncertainty
regarding the ultimate fruits of this research. It may lead to breakthrough
discoveries — maybe in medicine, clean energy or more powerful computational
technologies, or, perhaps. Or, it may yield no practical outcomes at all.
What remains certain, however, is that progress along this path will demand
sustained and rigorous effort, both from theoretical and experimental sides. Such
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commitment will be crucial not only to avoid unforeseen technological limitations
but also to uncover any hidden “holy grails“ that may lie ahead.

Based on my experience gained during the research presented in this thesis, I
am able to identify several topics whose further investigation could meaningfully
contribute to the broader advancement of atomtronics. For the sake of clarity, a
selection of the most significant among them is presented below:

■ In the present study, we focused on analyzing the system’s dynamics under a
symmetric interaction quench, defined as a sudden change in the interaction
strength to a value equal in magnitude but opposite in sign. However, in many
relevant contexts, it would be of significant interest to investigate the system’s
response to asymmetric quenches or quenches starting from interactions that
are not strongly repulsive. Although this direction has been partially explored
in [25], the problem remains open and important—particularly with regard to
identifying the parameter regimes in which the system retains its dynamical
stability.

■ Another promising avenue of inquiry concerns the peculiar interatomic
correlations observed in the states emerging in pumping process (see
Fig. 3.18). In contrast to standard fermionization under strong repulsive
interactions (Tonks-Girardeau states) — where particles tend to maximize
their spatial separation and coherence decays with distance — the behavior
in the fermionized regime of an ideal Bose gas is notably different.
In particular, the second-order correlation function reveals pronounced
bunching behavior, evidenced by correlation maxima, alongside a rapid decay
of first-order correlation function. Such behavior is highly counterintuitive in
a noninteracting Bose gas and encourage deeper investigation.

■ Another open question concerns the feasibility of implementing topological
pumping in systems confined by harmonic trapping potentials. Some existing
theoretical works [24, 100] and recent experimental realizations [43, 41, 42]
indicate that such pumping should indeed be achievable. However, it is
unlikely to be accompanied by the fermionization of an ideal Bose gas, as was
observed in systems with periodic boundary conditions.

■ A further line of study concerns the role of nonlocal interactions in the stability
and dynamics of pumping procedure. Experimental evidence suggests
that systems with purely short-range interactions may lack the stability
required to complete a full pumping cycle. This issue could be mitigated
by employing particles that, in addition to quenched contact interactions,
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also exhibit weak, repulsive nonlocal forces. A detailed analysis of how such
long-range interactions influence the pumping mechanism remains an open
and compelling question.

■ In the context of super-evaporation, we observe that not only the liquid phase
is susceptible to evaporation following a quench of on-site interactions. Parts
of the system that initially exhibit self-bound Mott Insulator phase may also
undergo evaporation. A detailed description of this transition could yield
valuable insights into the underlying mechanisms driving the evaporation
process.

■ Finally, the consequences of an sTG quench in systems with continuous
geometries remain largely unexplored. It would be particularly interesting
to determine whether quantum droplets in quasi-1D setups remain stable
or undergo evaporation following such a quench. Preliminary analysis
presented in Sec. 4.1 suggests that a behavior analogous to that observed in
the Bose-Hubbard model may occur in this setting as well, but a more rigorous
study is needed to confirm this.

I hope this thesis shows both the beauty and the challenges of quantum many-body
physics, and will help future researchers in their scientific pursuits.
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[88] T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, and M. Lewenstein, “Dipolar
molecules in optical lattices,” Phys. Rev. Lett., vol. 108, p. 115301, Mar 2012.

116



[89] M. Maik, P. Hauke, O. Dutta, M. Lewenstein, and J. Zakrzewski,
“Density-dependent tunneling in the extended bose–hubbard model,”
New Journal of Physics, vol. 15, p. 113041, nov 2013.

[90] R. Ołdziejewski, W. Górecki, K. Pawłowski, and K. Rzażewski, “Strongly
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