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Abstract

Since the birth of quantum mechanics, the macroscopic world has not been consistently

explained along with the microscopic world, despite our belief that microscopic objects

are fundamental ingredients of the macroscopic world. In recent years, it has been one of

the most popular views on a mechanism behind the quantum-to-classical transition that

such apparent distinction between the macroscopic and microscopic worlds comes from a

collective effect known as decoherence due to a large number of uncontrolled degrees of

freedom.

This thesis examines an advanced decoherence mechanism in two simple but important

theoretical models of open quantum systems: a harmonic oscillator interacting with either a

collection of harmonic oscillators, called quantum Brownian motion (QBM) model, or spins,

called a boson-spin model. Our interest is to find signatures of an emergent classicality

through environmental interactions in the systems as proposed by the quantum Darwinism

idea. More concretely, we look for “objectivity” emerging from quantum states, based on

further development of quantum Darwinism, called spectrum broadcast structures (SBS).

These are specific multipartite quantum state structures, encoding an operational notion

of objectivity.

In quantum Darwinism, the process of classicalization through environmental interac-

tions is parallel to the information transfer from a central system to the environment. We

quantify this information transfer by the distinguishability for the quantum states of the

environment. Due to such dualism, our focus in the dynamics are on the situation where

the state of a central oscillator is close to a classical state and not much influenced by

the environmental interactions, which is not the one usually adopted in open systems the-

ory, e.g. in the master equation approaches such as the Born-Markov approximation. We

choose realistic initial conditions of the environment such as the thermal state. In order to

identify objectivity in the structure of a quantum state, we analyze the decoherence fac-

tor and the generalized overlap, which measure decoherence and the environmental state

distinguishability, respectively.
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We obtain two different length scales associated with decoherence and distinguishability

for both systems. This may come as a surprise because the decoherence scale is usually

treated as the classicalization scale. The consequences in both systems for objectivity are

the following: i) the bigger the number of environmental subsystems are taken into account,

the better objectivity occurs, ii) the decoherence factor and the generalized overlap form a

complementary relation and iii) distinguishability is more difficult to obtain than decoher-

ence. Especially, in the boson-spin model, we find that the initial momentum contribution

of a central oscillator and a spin self-Hamiltonian play a crucial role in objectivity. We

have also found an interesting application of the Floquet theory in this model.

Finally, we study objectivity from a quantum-information point of view. Working in

the boson-spin model, we treat the information transfer to the environment as a quan-

tum channel. We analyze the Holevo quantity, which describes the maximum information

transfer into a spin environment. This provides an interesting example of application for

the continuous variable version of the Holevo theorem to open quantum systems and the

quantum-to-classical transition.



Streszczenie

Od narodzin mechaniki kwantowej, powiązanie świata makroskopowego z mikroskopowym

wciąż nie zostało konsekwentnie wyjaśnione, pomimo naszego przekonania, że obiekty

mikroskopowe są fundamentalnymi składnikami świata makroskopowego. W ostatnich

latach popularny pogląd na mechanizm stojący za przejściem od kwantowo-klasycznym

jest taki, że rozróżnienie między tymi światami wynika z efektu zbiorowego, znanego jako

dekoherencja i spowodowanego oddziaływaniem z dużą liczbą niekontrolowanych stopni

swobody.

Niniejsza praca doktorska bada zaawansowane mechanizmy dekoherencji w dwóch prostych,

ale ważnych teoretycznych modelach otwartych układów kwantowych: oscylatora har-

monicznego oddziałującego ze otoczeniem oscylatorowym, nazywanego modelem kwan-

towego ruchu Browna (QBM), albo z otoczeniem spinowym, nazywanego modelem bozon-

spin. Celem pracy jest zbadanie śladów klasyczności, pojawiających się pod wpływem

oddziaływania z otoczeniem, tak jak zaproponowano to w programie kwantowego dar-

winizmu. Bardziej konkretnie, szukamy „obiektywności” wyłaniającej się ze stanów kwan-

towych, opierając się na rozwinięciu idei kwantowego darwinizmu, zwanym strukturami

rozgłoszeniowymi (SBS). Są to specyficzne wielocząstkowe struktury stanów kwantowych,

które kodują operacyjne pojęcie obiektywności.

W kwantowym darwinizmie, proces uklasycznienia poprzez oddziaływanie z otocze-

niem przebiega dzięki przekazywaniu informacji z układu do otoczenia. Z tego powodu

przy badaniu dynamiki skupiamy się na sytuacji, w której stan centralnego oscylatora jest

bliski stanowi klasycznemu i nie jest zbytnio zaburzany przez oddziaływanie z otoczeniem.

Nie jest to typowym podejściem w teorii układów otwartych, np. tych opartych na rów-

naniu master i przybliżeniu Born-Markov. Wybieramy realistyczne warunki początkowe

otoczenia, takie jak stan termiczny. Do opisania przekazu informacji używamy rozróż-

nialności stanów kwantowych otoczenia. Nieco dokładniej mówiąc, aby zidentyfikować

obiektywność w strukturze stanu kwantowego, wyprowadzamy i badamy współczynniki
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dekoherencji oraz uogólnione nakładanie się stanów (ang. generalized state overlap), które

mierzą odpowiednio dekoherencję i stopień rozróżnialności stanów otoczenia.

Jednym z wyników pracy są uzyskane dwie różne skale długości związane z dekoherencją

i rozróżnialnością w obu modelach. Może to wydać się zaskakujące, ponieważ zwyczajowo

skala dekoherencji jest traktowana jako skala uklasycznienia. Konsekwencje dla obiekty-

wności są następujące: i) im większa liczba podsystemów otoczenia jest branych pod uwagę,

tym lepsza obiektywność, ii) czynniki dekoherencji i uogólnione nakładanie się spełniają

relację typu komplementarności, iii) rozróżnialność jest trudniejsza do uzyskania niż deko-

herencja. W szczególności w modelu bozon-spin początkowy pęd centralnego oscylatora

oraz ewolucja swobodna spinów otoczenia odgrywają kluczową rolę w obiektywności. Przy

okazji tego modelu, znaleźliśmy również interesujące zastosowanie teorii Floquet-a.

Na koniec badamy obiektywność z punktu widzenia procesów informacji kwantowej.

Pracując w modelu bozon-spin, traktujemy przekaz informacji do otoczenia jako kanał

kwantowy. Analizujemy wielkość Holevo, która opisuje maksymalny możliwy transfer

informacji do środowiska spinowego, rozumiany jako górne ograniczenie na pojemność

odpowiedniego kanału kwantowego. Stanowi to interesujący przykład zastosowania wersji

twierdzenia Holevo dla zmiennych ciągłych do otwartych układów kwantowych i przejścia

kwantowego-klasycznego.
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Chapter 1

Introduction and preliminary

notations

Quantum mechanics is a general framework to describe both microscopic and macro-

scopic worlds. Thus, the principles of quantum mechanics do not distinguish these two

scales. However, they separate a measurement process, which is associated with a macro-

scopic device, out of the rest, without explaining any physical detail on it. This apparent

inconsistency, i.e. the separation between the two scales in general, has still remained

largely unresolved and is known as the quantum-to-classical transition problem. The rea-

son that a full and satisfactory solution to the problem has been unknown for more than a

century might be that in practice, solving such a problem could have been regarded as just

for theoretical completeness without affecting the rest of physics. Nevertheless, this issue

cannot stay completely isolated when it extends to explain the absence of macroscopic

quantum mechanical effects such as the incompatibility and the superposition principle

and so on.

This dissertation aims at answering how far the present quantum mechanics can fill the

gap between the theory and our perceived nature by investigating simple but important

models of open quantum systems, allowing us to ultimately find whether any missing

parts in quantum mechanics could exist. “Quantum Darwinism” [1] is a mechanism within

quantum mechanics, currently being one of the most popular mechanisms to explain the

inconsistency gap between microscopic and macroscopic worlds and hence ultimately a

measurement process using environmental effects. The dissertation is based on its further

development, called “spectrum broadcast structures” (SBS) [2, 3, 4]. In this introduction

we present relevant concepts to understand the subsequent main articles.

1
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1.1 Classical world from quantum mechanics

In our daily views on the world, all we see outside seem to exist independent of our

observation. To any extent, our observations should disturb the already existing reality,

but our disturbance always seems to be well controlled and minimized as much as we wish,

so as to extract precise information representing the truly existing reality. However, our

observations on the microscopic world reveal that such a picture is completely different from

the actual nature and should be replaced by a new law, “quantum mechanics”, disallowing

us to minimize our disturbance at will. If our daily view is believed to be composed of

microscopic worlds, we should accept that the pictures of the daily perceived world, a so-

called “classical world” are collective effects with the underlying law, “quantum mechanics”.

Despite this significant difference between two worlds, it has not been fully shown since the

birth of quantum mechanics how our daily world can be derived within quantum mechanics.

It sounds absurd that a new fundamental theory has not been able to find its own way

to explain phenomena well explained by the old one. However, this uneasy circumstance

does not necessarily means that quantum mechanics needs to be modified, unless either

any discrepancy between predictions from the theory and experimental results are found

or any logical contradiction is pinpointed out.

The difficulty of this problem may not come from the problem itself but rather from

the fact that we have not been able to define the problem rigorously. The principles of

quantum mechanics do not discriminate, e.g. between light and massive objects, so we

expect to equally see microscopic phenomena for massive objects in our daily life, for

instance a superposition state of macroscopic objects. However, such phenomena have not

been observed yet in the macroscopic world.

Similarly, the principles of quantum mechanics do not include the measurement into

dynamics, which is performed by interaction with a macroscopic object, i.e. a macroscopic

device. This separation is inconsistent but it is not certain whether it is not possible that

quantum mechanics is able to fill the gap between measurement and the rest or we have

not yet found a way to construct suitable quantum mechanical models. This unexplained

gap culminates and is specified in a so-called “measurement problem” stating that if all the

quantum mechanical processes are explained by a quantum mechanical unitary evolution,

measurement processes should be a unitary process, which, however, neither singles out

one out of all possible outcomes in a quantum state nor describes the disappearance of

quantum coherences.
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At present it would be the first necessary task to investigate how far quantum mechanics

can reduce the gap between a unitary evolution and a measurement.

1.2 Role of the environment in quantum mechanics

New nature in the microscopic scale described by quantum mechanics should be ex-

tended to the macroscopic scale and show that classical physics is an approximation of

quantum physics. Therefore, we expect that all the quantum mechanical phenomena ob-

served in the microscopic world should appear in the macroscopic world.

The laws of nature have developed based on our intuition formed by our daily experi-

ences that the properties of physical systems are locally identified on fundamental physical

objects in space and time. Such concept is further generalized to one that the fundamen-

tal laws of physics should exist independent of a size of a system and hence concentrated

at a point in space and time. If such local fundamental laws and at the same time the

microscopic world both represents our true nature, it is quite difficult to explain the dis-

appearance of quantum properties in the macroscopic world. Rather, it is plausible to

consider that our local image of the macroscopic world is emergent as collective phenom-

ena. This idea considers environment not just a simple disturbance but a crucial ingredient

to make local phenomena appear.

It turns out that the environment interacting with a quantum system plays a significant

role removing quantum coherences towards a particular basis, so-called “pointer states” of a

quantum system [5, 6]. This process is called “decoherence” [7, 8]. Its further developments

called quantum Darwinism [1] and spectrum broadcast structures (SBS) [2, 3, 4] are more

advanced mechanisms that aim to describe the emergent objectivity of the macroscopic

world.

1.3 Decoherence

Decoherence [7, 8] is a process due to interactions between a central system and the

environment, which alone damps quantum coherences in the reduced state ρS of the central

system and selects a particular basis. It manifests vanishing of the “coherent” (superposi-

tion) parts, i.e. off-diagonal elements, so the most classical density matrix [9, 10] is in a
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diagonal form, i.e. a statistical mixture of orthonormal states {|i⟩⟨i|} with some probabil-

ities pi,

ρS =
∑

i

pi|i⟩⟨i|. (1.1)

Here {|i⟩} is called a pointer basis [5, 6], which, if exists, is uniquely determined by the

Hamiltonian of the system. If the diagonalization (1.1) happens in the evolution, it is at

least a partial explanation of classicalization within quantum mechanics. Decoherence can-

not happen in a unitary evolution and needs a non-unitary process of averaging or ignoring

some degrees of freedom, called a “partial trace”. Also, in most cases, the diagonalization

(1.1) happens asymptotically in time.

It is in general a difficult problem to derive conditions for decoherence and pointer states

for a given general Hamiltonian. But it can be illustrated on an important example of the

following Hamiltonian:

H = A⊗
N∑

k

gkB
(k), (1.2)

where gk is a coupling constant, an operator A is an observable in the Hilbert space

for a central system and an operator B(k) is an observable in the Hilbert space for the

environment which we assume to be compounded, with a short notation B(k) = I1 ⊗ · · · ⊗
B(k)⊗· · ·⊗IN . The Hamiltonian (1.2) is called a bi-linear interaction between an operator A

for a central system S and B(k) for the kth environment Ek, where interactions among B(k)

are not considered. Such interaction Hamiltonians are popular in open quantum models.

We also use the conventional assumption that an initial density matrix is a product state:

ρS:E(0) = ρS(0)⊗
N⊗

k

ρk(0). (1.3)

We expand the initial states ρS(0) and ρk(0) with the eigenbasis of A and B(k),

ρS(0) =
∑

a,a′
ca,a′ |a⟩⟨a′|, ρk(0) =

∑

bk,b
′
k

γbk,b′k |bk⟩⟨b
′
k|, (1.4)



Chapter 1. Introduction and preliminary notations 5

where A|a⟩ = a|a⟩ and B(k)|bk⟩ = bk|bk⟩. The Hamiltonian (1.2) allows us to conveniently

factor out the unitary evolution operator US:E(t) into each systems as

US:E(t) = e−iHt =
∑

a

|a⟩⟨a| ⊗
N⊗

k

Uk(a), (1.5)

where the unitary evolution operator for the environment Ek Uk(a)

Uk(a) ≡ e−itagkB
(k)
. (1.6)

Here we note that for readers the unit ℏ = 1 is assumed in this thesis without mentioning.

The final state ρS:E(t) is obtained by a unitary evolution:

ρS:E(t) = US:E(t)ρS:E(0)U
†
S:E(t)

=
∑

a,a′
ca,a′ |a⟩⟨a′| ⊗

N⊗

k

∑

bk,b
′
k

γ
(k)
bk,bk

Uk(a)|bk⟩⟨b′k|U †
k(a

′)

=
∑

a,a′
ca,a′ |a⟩⟨a′| ⊗

N⊗

k

∑

bk,b
′
k

γ
(k)
bk,bk

e−itgk(abk−a′b′k)|bk⟩⟨b′k|. (1.7)

A reduced state for a central system S, ρS(t), is obtained by tracing out environmental

degrees freedom of {Ek}:

ρS(t) =
∑

a,a′
ca,a′ |a⟩⟨a′|

N∏

k

∑

bk,b
′
k

γ
(k)
bk,bk

e−itgk(abk−a′b′k)TrB(|bk⟩⟨b′k|)

=
∑

a,a′

N∏

k

∑

bk

ca,a′γ
(k)
bk,bk

e−itgk(a−a′)bk |a⟩⟨a′|

=




N∏

k

∑

bk

γ
(k)
bk,bk


∑

a

ca,a|a⟩⟨a|+
∑

a̸=a′

N∏

k

∑

bk

ca,a′γ
(k)
bk,bk

e−itgk(a−a′)bk |a⟩⟨a′|

=
∑

a

ca,a|a⟩⟨a|+
∑

a̸=a′
ca,a′Γa̸=a′(t)|a⟩⟨a′|, (1.8)

where the normalization condition Trρk(0) =
∑

bk
γ
(k)
bk,bk

= 1 has been used. Here we have

introduced a measure of decoherence, called the “decoherence factor”, Γa̸=a′ :

Γa̸=a′(t) ≡
N∏

k

∑

bk

γ
(k)
bk,bk

e−itgk(a−a′)bk . (1.9)
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In general, the condition for vanishing Γa̸=a′(t) depends on several factors, including the

initial distribution γ(k)bk,bk
but apart from particular distributions of γ(k)bk,bk

, if a large number

of environmental degrees of freedom traced out, i.e. N → ∞ and t→ ∞, then one usually

expects:

|Γa̸=a′(t)| → 0. (1.10)

This shows that the basis |a⟩, which is the eigenbasis of A, is selected to be a pointer

basis by the interaction due to the decoherence. In general, due to the existence of a

self-Hamiltonian, it is difficult to find a pointer basis [5, 6].

1.4 Pointer state

In the last section 1.3, we have just showed that it is the significant feature of deco-

herence that given the Hamiltonian for a joint system, it can determine a particular basis

in which a reduced state of a central system is diagonalized. This basis state is called a

“pointer basis” [5, 6]. The pointer basis is chosen by the dynamical stability condition [6].

Theses are the states least affected by the open evolution. For example, ideal pointers for

H = X ⊗A+ I⊗HE are obtained by expanding the operator X in its eigenbasis {|x⟩},

H = X ⊗A+ I⊗HE

=
∑

x

|x⟩⟨x| ⊗Hx, (1.11)

where the effective Hamiltonian for environment Hx = xA +HE . Using (1.11) a unitary

evolution operator US:E(t) is expressed in the similar form as before in (1.5):

US:E(t) = e−iHt =
∑

x

|x⟩⟨x| ⊗ e−iHxt. (1.12)

We can now easily see that the eigenbasis |x⟩ is dynamically stable, i.e.

[|x⟩⟨x|, H] = 0. (1.13)

This is the physical condition that defines (ideal) pointer states [6]. The unitary operator

US:E(t) in (1.12) is the same form as (1.5) in the last section 1.3. For more general evolu-

tions, when ideal pointer states are not available, there is a method called the predictability

sieve [11] but we will not study it here.
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Here we would just like to make a comment that for a general Hamiltonian as time

goes on a pointer basis will get deviated from ideal pointers {|x⟩} as the eigenbasis of X

in (1.11). We consider the unitary evolution only up to the first order in the interaction

picture. We will show that the pointer states in the interaction picture are approximately

given by the eigenbasis of
∫ t
0 dt

′XI(t
′), where XI(t) ≡ eiHStXe−iHSt. It means that in the

Schrödinger picture it is not the eigenbasis of X but for a short time it. For a more general

Hamiltonian

H = HS ⊗ IE + IS ⊗HE +X ⊗A, (1.14)

it is non-trivial to define a pointer basis from the given Hamiltonian due to the non-

commutativity of operators in the Hamiltonian. But we can sketch how an approximate

pointer state appears. As we have just shown in the ideal pointer basis, we write H in

(1.14) in the interaction picture as HI(t) = eiHS⊗IEtHe−iHS⊗IEt given by

HI(t) = XI(t)⊗A+ I⊗HE , (1.15)

where

XI(t) = eiHStXe−iHSt. (1.16)

Here, even if the eigenbasis for XI(t) for a fixed t is found, it is not a pointer basis since due

to the non-commutativity [HI(t1), HI(t2)] ̸= 0 for t1 ̸= t2, in general, a unitary evolution

UI(t) is given by the Dyson series:

UI(t) = 1− i

∫ t

0
dt1HI(t1) + (−i)2

∫ t

0
dt1

∫ t1

0
dt2HI(t1)HI(t2) + · · · . (1.17)

Up to the first order, we approximately express UI(t) as UI(t) ≈ e−i
∫
dt′HI(t

′). Using (1.15),

∫ t

0
dt′HI(t

′) = X̃I(t)⊗A+ I⊗HEt

=
∑

x̃I(t)

|x̃I(t)⟩⟨x̃I(t)| ⊗Hx̃I(t), (1.18)

where

Hx̃I(t) ≡ x̃I(t)A+ tHE , (1.19)
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X̃I(t) ≡
∫ t
0 dt

′XI(t
′) and X̃I(t) has been expanded in its eigenbasis |x̃I(t)⟩ satisfying

X̃I(t)|x̃I(t)⟩ = x̃I(t)|x̃I(t)⟩. (1.20)

The unitary evolution operator in the interaction picture UI,S:E(t) is approximately ex-

pressed in the same form as (1.5):

UI,S:E(t) ≈ e−i
∫
dt′HI(t

′) =
∑

x̃I(t)

|x̃I(t)⟩⟨x̃I(t)| ⊗ e−iHx̃I (t) . (1.21)

Following the same procedure to express the reduced state ρS(t) in (1.8), we expect to have

a similar form of the decoherence factor in (1.9). Considering the eigenbasis {|Ex̃I ,t⟩} of

Hx̃I(t) in (1.19)

Hx̃I(t)|Ex̃I ,t⟩ = Ex̃I ,t|Ex̃I ,t⟩ (1.22)

and expanding an initial state of environment ρE(0) in {|Ex̃I ,t⟩},

ρE(0) =
∑

Ex̃I ,t
,E′

x̃I ,t

γEx̃I ,t
,E′

x̃I ,t
|Ex̃I ,t⟩⟨E′

x̃I ,t
|, (1.23)

similarly to (1.9) we can write the decoherence factor Γx̃I(t) ̸=x̃′
I(t)

(t) at fixed t ,

Γx̃I(t) ̸=x̃′
I(t)

(t) =
∑

Ex̃I ,t

γEx̃I ,t
,Ex̃I ,t

e−i(x̃I(t)−x̃′
I(t))Ex̃I ,t . (1.24)

From (1.19) and (1.22), Ex̃I ,t is expected to get large as t → ∞. Thus, in the same

argument as in (1.9) and (1.10), Γx̃I(t) ̸=x̃′
I(t)

(t) can tend to vanish for large environments,

lim
t→∞

|Γx̃I(t)̸=x̃′
I(t)

(t)| → 0. (1.25)

Returning to the Schrödinger picture, the pointer basis |x(t)⟩S would be approximately

|x(t)⟩S ≈ e−iHSt|x̃I(t)⟩. (1.26)

This shows that in this approximation, a pointer basis for a general Hamiltonian (1.14) is

deviated from the eigenbasis for the operator X. We will further elaborate this argument

with an example, the boson-spin model, where a central system is a harmonic oscillator in

section 2.4.1 in the next chapter. For a harmonic oscillator, XI(t) is known and the basis

|x̃(t)⟩I is effectively just a position basis |x⟩ for a short time.



Chapter 1. Introduction and preliminary notations 9

In next section 1.5 we introduce the concept of “objectivity” before we are going to

discuss a mechanism to make the classical world emerge.

1.5 Objectivity

It is our aim to derive our classical view emerging from quantum mechanics. In order

to achieve the “classical world”, it is necessary to satisfy one important concept, called

“objectivity” [12]. Although a quantum state which is a statistical ensemble of orthogonal

states in a density matrix description is regarded as the most classical, in addition, classical

nature also requires the preservation of physical information under repetitive mea-

surements, i.e. “consensus information”. The objectivity concept can be understood

analogously to a familiar fundamental concept in physics, the “invariance of physics” based

on the philosophy that physics should be described by observer-independent quantities.

The difference is that “objectivity” is the preservation of information under different

and repetitive measurements while the “invariance of physics” means the existence of in-

variant quantities preserved under symmetry transformations over observers in different

states.

The objectivity is defined below [12] as a major concept in quantum Darwinism.

“...an objective property of the system of interest is (i) simultaneously accessible to many

observers (ii) who are able to find out what it is without prior knowledge and (iii) who can

arrive at a consensus about it without prior agreement.”

More specifically, objectivity in a quantum state requires a statistical ensemble of or-

thogonal states and extra systems to have a large number of degrees of freedom interacting

with a central system, called “environment”. The former condition is based on the distin-

guishability in quantum mechanics that only orthogonal states can be perfectly distinguish-

able and stored into another system in a unitary evolution [13]. In quantum Darwinism,

interactions for a system with environment select a particular basis for the reduced state of

the remaining systems after tracing out the unobserved part of environment, throughout

a decoherence process. Decoherence can lead to the orthogonal distribution not only on a

central system but also on environmental side since information of a central system stored

in environment needs to be distinguished due to measurement on environment. In addi-

tion, a large number of degrees of freedom in environment are required to store the same

copies of the information about a central system and preserve the information in repetitive

measurements.
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1.6 Quantum Darwinism

Quantum Darwinism [1] is a mechanism that tries to explain how objectivity emerges

and is maintained in quantum mechanics without modifying quantum mechanics. Using

decoherence as a basic tool [14], it achieves two aspects required for classicality, a unitary

evolution leads to i) a pointer basis: the natural selection of a particular state and ii)

information proliferation: many copies of the same information about which pointer

state the state of a central system is distributed in, to be embedded into environment.

The proposed condition for quantum Darwinism [1] is formulated in terms of the quantum

Figure 1.1: Mutual Information I(S : oE) vs the fraction f for a remaining environ-
ment over the total number of environmental systems. HS = S(ρS) is the von Neumann
entropy [10] for the central system. δ is called information deficit [15]. The red line rep-
resents a typical behaviour of the mutual information of a system-environment composite
system through a decoherence process while the green line represents the quantum mutual
information based on randomly chosen pure state of environment [15] (this plot is brought

from [15]).

mutual information I(S : oE) between a central system S and the observed environment

oE, which measures the common information between S and oE after the unobserved

environment uE traced out:

I(S : oE) = S(ρS) + S(ρoE)− S(ρS:oE), (1.27)
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where S(ρS), S(ρoE) and S(ρS:oE) are the von Neumann entropy for the reduced states

ρS , ρoE and the joint state ρS:oE , respectively. The condition reads:

I(S : oE) = S(ρS) for all oE. (1.28)

When this condition is satisfied, it leads to a characteristic behaviour of the so-called partial

information plot. Figure 1.1 shows that as the observed environmental fraction f increases

the mutual information is saturated to the entropy of a central system S(ρS) and in prin-

ciple could reach twice as much as S(ρS) [15]. Note that a decoherence process requires

Figure 1.2: Extracting information about a system is done by measuring environmental
fraction having the information transferred from a system.

a “partial tracing” which averages out the “unobserved” part of environment. As a central

system and the environment interact, in general they get entangled with each other and

after the unobserved environment traced out, a central system together with the rest envi-

ronment, i.e. the “observed” environment, gets statistically mixed. The remaining system

is a joint system of a central system and the observed environment. Quantum Darwinism

interprets that the information of a central system is transferred into the environment.

The same copies of information for a system are distributed to each of environmental sys-

tems. In this sense, in quantum Darwinism, the classicalization and information transfer

simultaneously occur.



Chapter 1. Introduction and preliminary notations 12

Our intuition often identifies a local physical state itself with information. This equiv-

alence is unambiguous in classical physics. For instance, in the light postulate in special

relativity, the “speed of light” should imply more precisely the speed of information carried

by light. The statement assumes that physical reality can be identified with information.

However, quantum Darwinism tells us that information is not perceived directly from a

system of interest but rather relative statistical relations between environmental states

which encodes the information of a system.

Classicality can be more specifically expressed by the objectivity concept [12]. Apparent

physical reality perceived by observers should be universal and preserved over observers.

In order to achieve objectivity in the quantum world, the environment requires a large

number of degrees of freedom to destroy quantum coherences and stores a large number

of the same copies of information. Each of our observations consumes the corresponding

portion of environment (Figure 1.2 sketches the process of observation in quantum Darwin-

ism). Thus, in quantum mechanics, information is not a quantum state itself but prevails

throughout environment as a statistical mixture between quantum states. The environ-

ment in quantum Darwinism plays a crucial role forming redundant information of a system

for the objective world. We introduce a more specific version of quantum Darwinism, the

spectrum broadcast structure (SBS) [2, 3, 4] in section 1.7.

1.7 Spectrum broadcast structures(SBS)

It would be our ultimate goal to describe our classical view in quantum mechanical

language. What is the best known quantum state based on quantum Darwinism corre-

sponding to the classical world? What would be necessary conditions to specify objective

quantum states in quantum Darwinism point of view?

We introduced the concept of objectivity in section 1.5. It is expressed into two famil-

iar concepts for the notion of objectivity i) non-disturbance due to measurement and

ii) measurement agreement over observers. The perfect non-disturbance of a given

quantum state against measurement is obviously not possible due to the principle of the

quantum measurement postulate unless the given state is the eigenstate of a measurement

operator. Nevertheless, we can shift the non-disturbance concept for quantum states to

information point of view, seeking for whether the same information of a state is accessible

to many different observers.



Chapter 1. Introduction and preliminary notations 13

This has lead to the formulation of spectrum broadcast structures (SBS) [2, 3, 4], which

aim to explain quantum Darwinism at the level of quantum states. SBS is formed if after

the unobserved environmental degrees of freedom traced out, the state of the central system

S and observed environments labeled by k, ρS:oE , approaches a mixture:

ρS:oE =
∑

i

pi|i⟩S⟨i| ⊗
⊗

k

ρki, (1.29)

where ρki is the kth environmental state associated with a basis state |i⟩S for a central

system. We further specify the internal structure in ρS:oE in (1.29). The basis |i⟩ is the

pointer basis. Taking measurement on any environmental fraction ρki and estimating the

probability pi by repetitive measurements, we will make ρki collapse. If we wish to preserve

the same distinguishability as in a central state
∑

i pi|i⟩⟨i|, all ρki must follow the same

orthogonality condition:

ρkiρkj = 0, (i ̸= j). (1.30)

In order to store the same information about a central system into the environment, it is

not necessary how ρki is internally structured as long as the orthogonality condition (1.30)

is fulfilled. When (1.29) and (1.30) are satisfied, they define the SBS state [2, 3, 4]:

ρSBS =
∑

i

pi|i⟩S⟨i| ⊗
⊗

k

ρki, (1.31)

where ρkiρkj = 0, (i ̸= j). One can show that for the SBS state, the quantum Darwinism

condition is satisfied:

I(ρS:oE) = S(ρS), (1.32)

where ρS =
∑

i pi|i⟩⟨i|, I(ρS:oE) is the quantum mutual information for a joint system of a

central system S and the observed environment oE and S(ρS) is the von Neumann entropy

of the reduced state ρS . However, the converse is not true in general [16]. In this sense,

SBS is a stronger form of quantum Darwinism.

Now we show how the SBS state encodes objectivity. The SBS state has the following

properties. Define the projectors Πk
i :

Πk
i ≡ orthogonal projection on supp ρk, (1.33)
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where the environmental index k runs as k = 1, · · ·N and the central system index i is

associated with a basis state |i⟩. In particular, we have

Πk
j ρkΠ

k
j = δijρk (1.34)

or equivalently:

Πk
iΠ

k
j = δijΠ

k
i (1.35)

by the orthogonality condition in (1.30). Thus, the sets {Πk
i } define the von Neumann

measurements in each sub-environment Ek. The environmental observers will use those

measurements to get the information about the state of the central system, that is index

i (the observer measuring the central system directly will use |i⟩⟨i|). Let any group of

the observers measure independently their respective parts of the environment, say labeled

by k1, k2, · · · . Consider the probability of obtaining the results i1, i2, · · · , P (i1, i2, · · · ) on

ρSBS in (1.31):

P (i1, i2, · · · ) = Tr[(Πk1
i1

⊗ · · · )ρSBS(Π
k1
i1

⊗ · · · )]
=
∑

i

piTr(Πk1
i1

⊗ · · · )|i⟩⟨i| ⊗
⊗

k

ρki(Π
k1
i1

⊗ · · · )

=
∑

i

piTr(Πk1
i1
ρk1i)(Π

k2
i2
ρk2i) · · ·Tr[|i⟩⟨i| ⊗

⊗

k ̸=k1,k2,···
ρki]

=
∑

i

piδii1δii2 · · · =
{
pi for i1 = i2 = · · · = i

0 otherwise
, (1.36)

where (1.34) and (1.35) have been used. Thus, this relation (1.36) implies the probability

of independent observations vanishes unless it gives the same result. This is the agreement

- all measure the same index i. As a remark, in the above derivation one can also include

a ‘superobserver’ directly measuring the central system in the basis |i⟩. The conclusion

remains the same - the only possible event is when all the observers obtain the same

outcome. Moreover, for each observer this index i is distributed with the same probability

pi. Indeed, the state seen by each observer reads:

ρEk
≡ TrSE\Ek

[ρSBS ] =
∑

i

piρki. (1.37)
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Let us look at the averaged post-measurement state (=unread measurement). From the

first principles:

ρ′ =
∑

i1,i2,···
P (i1, i2, · · · )

(Πk1
i1

⊗ · · · )ρSBS(Π
k1
i1

⊗ · · · )
Tr[(Πk1

i1
⊗ · · · )ρSBS(Π

k1
i1

⊗ · · · )]

=
∑

i1,i2,···
pi
(Πk1

i1
⊗ · · · )ρSBS(Π

k1
i1

⊗ · · · )
pi

=
∑

ij

pj |j⟩⟨j| ⊗Πk1
i ρk1jΠ

k1
i ⊗Πk2

i ρk2jΠ
k2
i · · · ⊗

⊗

k ̸=k1,k2,···
ρkj (1.38)

=
∑

ij

pj |j⟩⟨j| ⊗ δijρk1i ⊗ δijρk2j · · · ⊗
⊗

k ̸=k1,k2,···
ρkj

=
∑

i

pi|i⟩⟨i| ⊗
⊗

k

ρki,

where the definition ρSBS (1.31), the result P (i1, i2, · · · ) (1.36), and the measurement

property (1.34) have been used. Thus, the measurements defined by (1.33), and only

those, do not disturb the state (1.31) on average. This shows an operational notion of

agreement: only i = i1 = i2 · · · cases contribute to the final state. The notion of non-

disturbance is encoded in the statistical sense as the averaged state after measurement

is unchanged. From (1.30) and (1.31), we see that SBS is characterized by two distinct

conditions: decoherence needed to reach the form (1.31) and the perfect distinguishability

which is equivalent to (1.30).

In the following section, two characterizing functions are introduced for decoherence and

distinguishability, i.e. the “decoherence factor” and the “generalized overlap” [17], called

the “objectivity markers” [18].

1.8 Objectivity measures

SBS requires decoherence and distinguishability in a quantum state, characterized by

two quantities, the decoherence factor and the generalized overlap, which we call the “ob-

jectivity markers” [18]. It can be shown when they vanish, a quantum state is approaching

SBS [19]. Vanishing objectivity markers depend on values of parameters in the given model,

initial conditions of a central system and environment and the number of environments.

Usually, the number of environments is the most essential condition. We will derive them

below. This thesis is especially interested in the case that a central system is not much
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influenced by environment and hence the evolution is approximately separable:

US:E(t) ≈
∑

X

US(t)|X⟩⟨X| ⊗ UE(X, t). (1.39)

For simplicity, we assume that an initial state of a central system and environment is a

separable state as

ρS:E(0) = [ρS(0)⊗ ρoE(0)]⊗ ρuE(0). (1.40)

Furthermore, assuming that interaction between environmental systems is ignored so that

each of environmental systems evolves separately, the final state for a central system S in

basis |X⟩ and the observed environment in oE space can be written in a simple form:

ρS:E(t) =
∑

X,X′
US(t)|X⟩⟨X|ρS(0)|X ′⟩⟨X ′|U †

S(t)

⊗ UoE(X, t)ρoE(0)U
†
oE(X

′, t)⊗ UuE(X, t)ρuE(0)U
†
uE(X

′, t). (1.41)

The reduced state for the joint system of a central system S and the observed environment

oE is expressed as

ρS:oE(t) =
∑

X,X′
US(t)|X⟩⟨X|ρS(0)|X ′⟩⟨X ′|U †

S(t)

⊗ UoE(X, t)ρoE(0)U
†
oE(X, t)Tr[UuE(X, t)ρuE(0)U

†
uE(X, t)]. (1.42)

The decoherence factor is defined by coefficients of off-diagonal elements in system space

for the remaining state, for X ̸= X ′,

ΓX,X′ ≡ Tr[UuE(X, t)ρuE(0)U
†
uE(X

′, t)], (X ̸= X ′)

=
∏

k∈uE
Tr[U (k)

uE (X, t)ρ
(k)
uE(0)U

(k)†
uE (X ′, t)] (1.43)

=
∏

k

Γ
(k)
X,X′ ,

where

Γ
(k)
X,X′ ≡ Tr[U (k)

uE (X, t)ρ
(k)
uE(0)U

(k)†
uE (X ′, t)], (X ̸= X ′). (1.44)

It is worthwhile to notice that if the decoherence factor vanishes, the reduced density

matrix after the unobserved environment uE in (1.42) traced out is diagonalized in the
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basis US(t)|X⟩:

ρS:oE(t) =
∑

X

US(t)|X⟩⟨X|U †
S(t)⊗ UoE(X, t)ρoE(0)U

†
oE(X, t). (1.45)

We define the generalized overlap or fidelity [17] for the environmental states:

B(ρ, ρ′) ≡
(

Tr
√√

ρρ′
√
ρ

)2

, (1.46)

where

ρ = UoE(X, t)ρoE(0)U
†
oE(X, t),

ρ′ = UoE(X
′, t)ρoE(0)U

†
oE(X

′, t). (1.47)

1.8.1 Finite vs infinite systems

So far we implicitly treated systems having finite degrees of freedom. For finite systems,

the decoherence factor is well defined. However, for systems having infinite degrees of

freedom, there is a problem to define the decoherence factor due to undefined normalized

quantum states for continuous spectrum observables. This is illustrated by a system with

the Hamiltonian H = X ⊗∑k Bk, where X has an infinite continuous spectrum:

ρS:oE(t) = TruEρS:E(t)

=

∫
dxdyρ(x, y)Γt(y − x)|x⟩⟨y| ⊗

⊗

k∈oE
Uk,xρkU

†
k,y, (1.48)

where Uk,x = e−itxBk and the decoherence factor Γt(y − x):

Γt(y − x) =
∏

k∈uE
Tr(Uk,xρkU

†
k,y)

=
∏

k∈uE
Tr[ρkeit(y−x)Bk ]. (1.49)

For finite systems it is known that the decoherence factor Γa,a′ is

0 ≤ Γa,a′ ≤ 1. (1.50)

However, in (1.48) for the perfect decoherence, Γt(y − x) should be Γt(y − x) = δ(y − x),

which needs to be infinite at x = y but in (1.49) at x = y Γt(y − x) = 1. This implies
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that for infinite dimensional systems we can expect only approximate decoherence and

distinguishability, formulated through the decoherence and distinguishability length scales.



Chapter 2

Description of the articles

The purpose of this chapter is to provide preliminary information helpful to understand

technical parts in the main articles attached in chapter 3. This chapter contains more

specific technical descriptions from the main articles than the previous introductory chapter

1.

2.1 Quantum Brownian motion (QBM)

In the models studied in this thesis, a harmonic oscillator is chosen as the central system

and either harmonic oscillators or spins are considered as the environment. The first model

we studied is a quantum Brownian motion (QBM) model. QBM is a composite system of

a central harmonic oscillator and a collection of harmonic oscillators as the environment.

Linear QBM models with a bi-linear interaction in a position have been extensively studied

[20, 21, 22, 23, 24]. The typical Hamiltonian for a linear QBM is given by

H = H = HS +
∑

i

H
(i)
E +

∑

i

H
(i)
int, (2.1)

where

HS =
P 2

2M
+

1

2
MΩ2X2,

H
(i)
E =

p2i
2mi

+
1

2
miω

2
i x

2
i , (2.2)

H
(i)
int = CixiX,

19
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M and Ω are a mass and an angular frequency of a central harmonic oscillator, mi and ωi are

a mass and an angular frequency of the ith environmental harmonic oscillator, respectively

and Ci is a bi-linear interaction coupling between a central harmonic oscillator and the

ith environmental oscillator. The choice of Hint =
∑

iCixiX is physically motivated by

the fact that our classical world appears to take a position as a pointer state. The goal of

studying this popular model was to study the formulation of SBS and information transfer

to the environment, generalizing earlier works [24, 25, 26].

2.2 Regimes of interest

Although the exact solution for the QBM dynamics can be obtained (it is a quadratic

Hamiltonian), it is usually of little use. QBM is approached on appropriate approximation

schemes for one’s own purpose. We are mainly interested in finding the state of a central

system being decohered and in parallel the state of the environment encoding information

about the central system, based on the quantum Darwinism scenario. In this case, the

Born-Markov approximation commonly used for solving the master equation for a state of

a central system only [8], where the state of the environment remains approximately the

same, is not appropriate to our interest. On the other hand, we look for the time regime

where the state of a central system remains as it is after the quantum-classical transition.

2.2.1 Recoilless limit and classical trajectories

Our regimes of interest can be physically interpreted as follows. As we see in our daily

life, macroscopic objects need to be decohered from their quantum superposition states

and hence to be classical due to some underlying mechanism. Then it would be a right

question of our interest to ask whether such classical states would be decohered further

or return to superposition states. After such a quantum-classical transition, we assume

that the state of a central system won’t be significantly changed by interaction. For such a

regime, the appropriate limit is the Born-Oppenheimer approximation [27], where a central

system remains unchanged while environment is changed according to it. It is also called

the “recoilless limit”.

Unlike in the previous works [24, 25, 26] which relied on the Born-Oppenheimer type

of an ansatz, here we approach the recoilless limit using the path intergrals. This is

motivated by the situation that the central oscillator is expected to follow approximately

a classical trajectory. The path integral kernel K(X,X0;x, x0), a matrix element for a
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unitary operator, i.e. ⟨X,x|US:E(t)|X0, x0⟩, approximated by the dominance of classical

paths, is factored out into the state of an intact central system from the environment and

the dynamical state of the environment driven by classical paths,

K(X,X0;x, x0) ≡ ⟨X,x|US:E(t)|X0, x0⟩

=

∫
DX

∫
DxeiSsys+iSenv+iSint (2.3)

≈ Dt(X0, X)eiSsys[Xcl(t)]

∫
DxeiSenv [x(t)]+iSint[Xcl(t),x(t)],

where Ssys and Senv are actions for a central system and the environment, respectively, Sint
is the action for interactions and Xcl(t) is an unperturbed classical trajectory of a harmonic

oscillator. HereDt(X0, X) is called the van Vleck determinant [28], a quantum contribution

of a central system alone. The above was obtained using the no-recoil condition:

Ck

MΩ2
≪ 1. (2.4)

2.2.2 Effective dynamics for the environment

From the path integral representation (2.3) the effective evolution of the environment

Ueff(t) is driven by a time-dependent Hamiltonian:

i
∂Ueff(t)

∂t
= (Henv +Hint[Xcl(t)])Ueff(t), (2.5)

where Henv and Hint[Xcl] are given in (2.2). This equation can be solved giving in the

interaction picture [29]:

Uk
t = eiζk(t)D

(
−i Ck√

2mkωk

∫ t

0
dτeiωkτXcl(τ)

)
, (2.6)

where ζk(t) is some phase, which is irrelevant to the objective measures and the displace-

ment operator D(α) ≡ eαa
†−α∗a. This leads to the approximate partially traced state

[29]:

⟨X ′|ρS:oE(t)|X⟩ ≈
∫ ∫

dX0dX
′
0⟨X ′

0|ρS(0)|X0⟩KSC
t (X,X0)K

SC
t (X ′, X ′

0)

× F [Xcl(t), X
′
cl(t)]U

k
t [Xcl]ρk(0)U

k
t [X

′
cl], (2.7)
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where KSC
t (X ′, X ′

0) is the path integral kernel for an unperturbed harmonic oscillator and

the influence functional F [Xcl(t), X
′
cl(t)] is given by

F [Xcl(t), X
′
cl(t)] =

∏

k∈uE
Tr(Uk

t [X
′
cl]U

k
t [Xcl]ρk(0)]). (2.8)

2.3 Length scales

From the point of view of information transfer, the objectivization process can be con-

ceptually divided into two parts. One is a selection process of a pointer basis via deco-

herence and the other is how environmental states become distinguishable. The former

is measured by the decoherence factor (or the influence functional) and the latter by the

generalized overlap. The decoherence factor measures how quantum coherences in the state

of the central system are distributed, relative to some particular scale. Information about

a central system is obtained via interactions with the environment after the environment

absorbs the information from a central system during decoherence. Therefore, the deco-

herence scale is relevant to capability of measuring a central system from environment.

The generalized overlap measures the distiguishability of environmental quantum states

having information about a central system from a final measuring device. Therefore, it

indicates a capability for observers to distinguish quantum states. As we find out, this

distinguishability has its own scale.

For a position observable, the distinguishability due to decoherence is measured rela-

tively to the “decoherence length”, λdec. The decoherence length for QBM is found to be

identical to the well-known thermal de Broglie wavelength λdB. It is a celebrated result

[30]:

λdec = λdB =
ℏ√

2MkBT
. (2.9)

On the other hand, the distinguishability in environment has another length scale, called

the “distiguishability length” [29], λdist, which is the main result of the work:

λdist =

√
2kBT

MΛ2
, (2.10)

where Λ is a cut-off frequency in the Lorentz-Drude spectral density [31]. It is important

to notice the relation between λdec and λdist, called a “complementary relation”, which was
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also discovered in [29]

λdecλdist =
ℏ
MΛ

. (2.11)

This relation implies that in the studied regime of QBM, there exists some type of the

relation between “information gain and disturbance”. The former is described by distin-

guishability while the latter by decoherence.

2.4 Boson-spin model

Motivated by QBM, keeping a harmonic oscillator as a central system, here we consider

especially environments having finite degrees of freedom, i.e. 1
2 -spins. This model is called

the boson-spin model. Due to finite degrees of freedom in spins, it is expected that in-

formation about a harmonic oscillator, which has infinite degrees of freedom, can be only

partially encoded into the spin environment. The Hamiltonian

H = HS +
∑

i

H
(i)
E +

∑

i

H
(i)
int, (2.12)

consists of

HS =
P 2

2M
+

1

2
MΩ2X2,

H
(i)
E = −∆i

2
σ(i)x , (2.13)

H
(i)
int = giX ⊗ σ(i)z ,

where gi and ∆i are the ith spin-environmental coupling and the ith spin self-energy (or

often called the tunnelling matrix element). Assuming that a central harmonic oscillator

already turned to be classical and here introducing the ansatz applied for QBM [24]:

US:E(t) =

∫
dX0e

−iHSt|X0⟩⟨X0| ⊗ Ueff(X(t;X0)), (2.14)

we apply the same ansatz for the boson-spin model. Note that the use of the path integrals

for spins is possible but could be problematic and will be studied elsewhere. Instead, we

use the Born-Oppenheimer approximation [27]. The dynamics of the spin environment is
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described by:

i
∂Ueff(t)

∂t
= (Henv +Hint[Xcl(t)])Ueff(t)

=
∑

i

[
−∆i

2
σ(i)x + giX(t;X0)σ

(i)
z

]
Ueff(t), (2.15)

where Xcl(t) = X(t;X0) is chosen with an initial phase ϕ to be

X(t;X0) = X0 cos(Ωt+ ϕ). (2.16)

2.4.1 Effective description: operator representation

In this section, for a heuristic purpose, using the operator representation we illustrate

that our effective description motivated by the path integrals makes sense. We will show

that for infinitesimal time a unitary evolution for a harmonic oscillator-environment joint

system is in the same form as our ansatz (2.14).

We discussed the pointer state for a general Hamiltonian in the section 1.4, where we

conveniently used the interaction picture. In the interaction picture, we can express a

general Hamiltonian H = HS ⊗ IE + IS ⊗HE +X ⊗A in (1.14) as

HI(t) = XI(t)⊗AI(t), (2.17)

where XI(t) = eiHStXe−iHSt and AI(t) = eiHEtAe−iHEt. Assuming that the initial state

of a system is a product state of a harmonic oscillator and the environment, |Φ(0)⟩ =

|ϕ(0)⟩ ⊗ |ψ(0)⟩, the state of the central system is expanded in coherent states [32], which

is regarded as the most classical pure state, where an initial state of the central harmonic

oscillator is |ϕ(0)⟩ =
∑

αCα|α⟩ and an initial state of the environment is |ψ(0)⟩. Note

that since initial states in both pictures are the same, we do not distinguish them. The

coherent state is written as |α⟩ = |⟨xα⟩, ⟨pα⟩⟩, where ⟨xα⟩ and ⟨pα⟩ are expectation values

for X and P , respectively. Using HI in (2.17), the relation XI(t) = eiHStXe−iHSt =

X cosΩt+ P
MΩ sinΩt and the property of a coherent state, X|⟨x⟩, ⟨p⟩⟩ ≈ ⟨x⟩|⟨x⟩, ⟨p⟩⟩ and
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P |⟨x⟩, ⟨p⟩⟩ ≈ ⟨p⟩|⟨x⟩, ⟨p⟩⟩, the infinitesimal evolution is written by

|Φ(δt)⟩I ≈ |Φ(0)⟩ − iδt
∑

α

Cα

[
X cosΩδt+

P

MΩ
sinΩδt

]
|α⟩ ⊗AI(δt)|ψ(0)⟩

≈ |Φ(0)⟩ − iδt
∑

α

Cα

[
⟨xα⟩ cosΩδt+

⟨pα⟩
MΩ

sinΩδt

]
|α⟩ ⊗AI(δt)|ψ(0)⟩

=
∑

α

Cα|α⟩ ⊗ [|ψ(0)⟩ − iδtX(α, δt)AI(δt)|ψ(0)⟩], (2.18)

where

X(α, δt) ≡ ⟨xα⟩ cosΩδt+
⟨pα⟩
MΩ

sinΩδt

= x̃α cos(Ωδt+ ϕα) (2.19)

with

x̃α ≡
√
⟨xα⟩2 +

⟨pα⟩2
M2Ω2

, tanϕα ≡ ⟨pα⟩
⟨xα⟩MΩ

. (2.20)

In (2.20), for a smaller amplitude, i.e. ⟨pα⟩/MΩ ∼ ⟨xα⟩ ≪ 1, x̃α ≈ ⟨xα⟩. A coherent

state |α⟩ can be expanded by |X0⟩ as |α⟩ =
∫
dX0|X0⟩⟨X0|α⟩ and ⟨X0|α⟩ is the Gaussian,

dominant around a peak X0 ≈ x̃α. (2.18) is expressed as

|Φ(δt)⟩I ≈
∫
dX0CX0 |X0⟩ ⊗ [1− iδtX0 cos(Ωδt+ ϕX0)AI(δt)]|ψ(0)⟩, (2.21)

where CX0 ≡ ∑αCα⟨X0|α⟩ and ϕα has been replaced by the corresponding approximate

ϕX0 . In general, ϕX0 differs for different X0 but for simplicity we have fixed ϕX0 = ϕ.

(2.21) is re-written with Heff:

|Φ(δt)⟩I ≈
∫
dX0CX0 |X0⟩ ⊗ e−iHeffδt|ϕ(0)⟩I , (2.22)

where

Heff(δt) ≡ X0 cos(Ωδt+ ϕ)AI(δt). (2.23)

Returning to the Schrödinger picture, the effective state at δt has been derived:

|Φ(δt)⟩ ≈
∫
dX0CX0e

−iHSδt|X0⟩ ⊗ e−iHeffδt|ϕ(0)⟩

= US:E(δt)|Ψ(0)⟩, (2.24)
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where

US:E(δt) = e−iHSδt ⊗ e−iHeffδt (2.25)

=

∫
dX0e

−iHSδt|X0⟩⟨X0| ⊗ e−iHeffδt. (2.26)

This is the same form as the ansatz (2.14). If decoherence happens, comparing (2.25) with

the approximate unitary evolution operator (1.21) in the interaction picture, the pointer

state in the Schrödinger picture will be

|pointer state⟩ = e−iHSδt|X0⟩. (2.27)

For the limit we used, ⟨pα⟩/MΩ ≪ 1 and t = δt the basis {|X0⟩} is the same as the basis

{|x̃I(t)⟩} in (1.20). Thus, the pointer basis (2.27) is the same as the approximate pointer

state (1.26).

The overall unitary transformation e−iHSδt in (2.27) indicates the pointer basis is time-

dependent. We have just shown how the effective description can appears in a short time

approximation.

We found that it would be quite non-trivial to precisely identify whether decoherence

happens and hence in which basis objective quantum structures are formed. In the next

section 2.5 we will introduce a systematic way to express approximate solutions of a unitary

evolution operator and the objectivity markers.

2.5 Floquet theory

In this thesis the effective Hamiltonians for the environment resulting from the Born-

Oppenheimer approximation [27] inherit the same periodicity from a central harmonic

oscillator. In such a case, the Floquet theory [33, 34, 35] allows us to expand a unitary

evolution operator in a more systematical manner along with the high frequency expan-

sion [35]. Especially, it splits the evolution of the boson-spin model into two different

characteristic frequencies.

The Floquet theorem states that if a time- dependent HamiltonianH(t) has a periodicity

with a period T = 2π/Ω, the corresponding unitary evolution operator can be written as

a product of periodic unitary operators driven by a periodic time-dependent Hamiltonian
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K(t) with the same period T = 2π/Ω and a non-periodic unitary operator by a time-

independent Hamiltonian HF :

U(t, t0) = e−iK(t)e−i(t−t0)HF eiK(t0), (2.28)

where t0 is an initial time. Typically K(t) is characterized by a micro-motion, which

oscillates with high frequency Ω while HF is responsible for a global behaviours with lower

frequency which appears as a combination of parameters in H(t).

Along with the Floquet theorem, one can expand those unitary operators assuming the

frequency of a central system is a high frequency compared to other parameters, called

the high-frequency expansion [35]. The high-frequency expansion is close to the Taylor

expansion but not exactly. There is no known general convergence proof but the truncation

of the series is justified for a sufficiently weak coupling. The advantage of the high-frequency

expansion is that the weak coupling is systematically controlled. The periodic Hamiltonian

H(t) is written as

H(t) = H0 + V (t) (2.29)

The periodic time-dependent part V (t) can be written with the Fourier modes as

V (t) =
∞∑

j=1

(V (j)eijΩt + V (−j)e−ijΩt). (2.30)

The Hamiltonians HF and K(t) can be expanded by 1/Ω [35],

HF = H0 +
1

Ω

∞∑

j=1

1

j
[V (j), V (−j)]

+
1

2Ω2

∞∑

j=1

1

j2
([[V (j), H0], V

(−j)] + H.c.) + · · · , (2.31)

and

K(t) =
1

iΩ

∞∑

j

1

j
(V (j)eijΩt − V (−j)e−ijΩt)

+
1

iΩ2

∞∑

j

1

j2
([V (j), H0]e

ijΩt − H.c.) + · · · . (2.32)

Note that in (2.32) the high frequency expansion looks similar to the Taylor expansion

around 1/Ω but different since the expansion coefficients are a function of Ω.



Chapter 2. Description of the articles 28

2.5.1 Objectivity measures and emergent scale

In the analysis of our objectivity measures, the decoherence factor and the the gen-

eralized overlap explicitly show two different scales due to two different frequencies with

the help of the Floquet theory with the high frequency expansion. The decoherence fac-

tor |Γ1
X0,X′

0
|2 and the generalized overlap B1

X0,X′
0

for a single spin environment [18] are

expanded with the weak coupling condition ξ = gX0/Ω ≪ 1 with ϕ = 0 in (2.16) as

|Γ1
X0,X′

0
|2 =

[
1− sin2[∆̃(ξ2 − ξ′2)τ ]

cosh2(β∆/2)

]
cos2[δξ sin τ ] (2.33)

and

B1
X0,X′

0
= 1− E(β)2 sin2[δξ sin τ ], (2.34)

where δξ = g(X0 − X ′
0)/Ω, τ ≡ Ωt and ∆̃ ≡ ∆/2Ω. As seen in the above expressions

(2.33) and (2.34), sin τ corresponds to a micro-motion while sin2[∆̃(ξ2− ξ′2)τ ] in |Γ1
X0,X′

0
|2

to a large profile behaviour with ∆̃ ≪ 1. In this approximate expansion the generalized

overlap B1
X0,X′

0
does not show extra scale. The importance of the large scale behaviour

for the objectivity in the central system becomes more clear when environment has a large

number of degrees of freedom in. As new environmental systems are added, they can bring

different frequencies and break the original periodicity. This causes destructive interference,

leading to a decay as time goes large. The generalized overlap B1
X0,X′

0
having no separate

frequency in (2.34) does not decay. However, we found that a phase in a classical trajectory

of the central oscillator in (2.16) in the effective Hamiltonian for the environment is another

source breaking the original periodicity [18]. We will further discuss objectivity conditions

in the next section 2.5.2.

2.5.2 Objectivity conditions

There are many factors affecting the objectivity in the boson-spin model. The initial

state of the environment, which we choose as the thermal state, can be controlled by

temperature. On the other hand, the strengths of couplings are another. Especially, it is

important to emphasize the existence of factors breaking a periodicity in the objectivity.

If a periodicity appearing in the objectivity measures is the only periodicity, objectivity

cannot be achieved. There are two possible ways to break a periodicity. One is that

different environments have different frequencies. The other is that from the initial state of
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a central harmonic oscillator, initial phases will change phases in dynamics of environment.

Finally, the sizes of the observed and unobserved environments play a crucial role. In [18]

we performed averaging over the functions and presented a detailed analysis of when SBS

can and cannot be approached.

2.6 Holevo quantity and objectivity

The concepts of information are quite different according to which view of the world we

take. In an ontological view of the world, information is identified with a physical reality

but in a statistical point of view, information is identified by how many possible states

are available and how evenly they are distributed. Mostly information is referred to the

latter view due to the present philosophy based on quantum mechanics. For the latter case,

when a physical state is completely determined, it is said that there is no information in

the physical state. However, when possible statistical distinct states are evenly distributed,

the information is maximal. This measure of information is known as entropy.

It is important to quantify how much information in a statistical point of view can

be transferred from one system to another. In this sense the von Neumann entropy is

commonly used to count the information in quantum systems. In practice, it is particularly

interesting to see how much information between two systems is in common. The quantum

mutual information I(X : Y ) between two systems X and Y , is defined as difference

between the information of the joint system, S(ρX:Y ) and the sum of the information for

X and Y , S(ρX) + S(ρY ),

I(X : Y ) = S(ρX) + S(ρY )− S(ρX:Y ), (2.35)

where S(ρX) and S(ρY ) are the von Neumann entropies for reduced density matrices,

ρX and ρY for X and Y , respectively and S(ρX:Y ) is the von Neumann entropy for the

(X,Y ) joint system. In reality, quite frequently classical information X is prepared into a

quantum state ρX with a probability pX from a classical system X to Y . In this quantum

communication setting, the bound for the mutual information χ(ρ) is called the Holevo

quantity [36, 37],

I(X : Y ) ≤ χ(ρ)

≡ S

(∑

X

pXρX

)
−
∑

X

pXS(ρX). (2.36)
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In [38] we apply this channel view of the objectivization process to the results of [18]. This

view was initiated in the works [39, 40, 41, 42, 43, 44, 45]. We apply it to a statistical state

as seen by a single spin in the environment:

ρ(1)(t) = TrSE\E1
ρS:E(t)

=

∫
dX0p(X0)ρ

(1)(X0), (2.37)

where p(X0) ≡ ⟨X0|ρS(0)|X0⟩ is the probability distribution of the initial position and

ρ(1)(X0) ≡ U1(X0, t)ρ
(1)
E (0)U †

1(X0, t). (2.38)

We find that the Holevo bound can be surprisingly larger even for a single spin. The

analysis for many spins would be also interesting but it is a technical challenge and we

leave it for the future.

As seen in previous sections, the objectivization process is classified into two processes

decoherence and distinguishability through interactions. The classicalization process is

in parallel with information transfer in quantum Darwinism. Here since decoherence is

assumed, only distinguishability is relevant to information transfer.
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Collections of articles

This chapter consists of three sections based on three articles. Each section is composed

of three subsections of summary, work contribution and the attached publication.

3.1 Complementarity between decoherence and information

retrieval from the environment

3.1.1 Summary

In history of physics, a measurement process has been regarded as the abstract concept

or an isolated point-like event. Although due to its extremely short time scale its detail

seems to be completely hidden, fortunately or not, its internal mechanism seems to be

completely separated from the rest of the world within current available scale. “To obtain

information” from a quantum system through a measurement device or our senses, means

to us that its quantum state at the measurement stage needs be in a particular form to be

best mapped into our daily picture, which allows us to depict an image about the world.

Therefore, to reduce a quantum state to such a state, say a classical state, is equivalent to

obtain “information”, i.e., the reduction (or evolution) from a quantum state to a classical

state is physically parallel to information transfer to a measurement device or any other

systems, called environment. When a quantum state evolves to an ideal state to give a

“perfect” classical picture, here we will call such a quantum state an “objective state”[1].

The main purpose of this article is to point out two distinct notions in accessing the

information about a system of interest. After a system is first decohered by interaction with

31
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environment, in an observer’s point of view, the available information remains at best the

ensemble of quantum states in statistical distribution. Then, when we take a measurement

on the environment, not a system directly, it is required to distinguish between possible

different quantum states in the distribution. The first process is called decoherence and

the second, distinguishability. These two notions tell us how much “objectivity” [1] a final

system has. Here we show that limitations in accessible information are expressed by two

distinct associated length scales. The model of our interest is a coupled system of a central

harmonic oscillator and a collection of harmonic oscillators with a bi-linear interaction,

called quantum Brownian motion (QBM) [20].

In this work we compute and analyze two objectivity measures for QBM, the influence

functional [20] (or the decoherence factor in general) and the generalized overlap for deco-

herence and distinguishability, respectively. Since we are interested in the recoilless limit

and the systems have continuous degrees of freedom, this approximation may be more

suitably represented in the path integral method.

Since the analytical solutions for the system are way to complicated to express in terms

of our common basis, we adopt several approximation schemes relevant to our interest.

First, we are interested in the moment that a central oscillator gets stabilized to be a

classical state and is governed approximately only by its own dynamics without being

mechanically influenced by the environment, by the so-called recoilless approximation.

Then, it is a suitable question whether a system in such an approximate classical state

would evolve further to a more classical state. Technically, this postulate allows us to factor

out the unitary evolution for the environmental oscillators from the total unitary evolution.

Second, the environmental oscillators also weakly interact relative to energy of a central

harmonic oscillator so that the higher order interactions are ignored in order to avoid the

technical complications. Third, the initial state for the environmental harmonic oscillators

are considered the thermal state. Fourth, we take a certain spectral density assigning

how the interaction couplings between a central harmonic oscillator and environmental

harmonic oscillators are distributed with respect to environmental frequencies. We choose

the “Lorentz-Drude form” [31]. This distribution is motivated by the physical argument

that for a large frequency it decays to zero and needs a cut-off frequency. Fifth, in order

to obtain typical length scales for decoherence and distinguishability, we choose the energy

hierarchy among temperature T , the cut-off energy Λ and an angular frequency of a central

harmonic oscillator Ω, kBT ≫ ℏΛ ≫ ℏΩ, known as the Caldeira-Leggett limit [46].

The decoherence length is given by the “thermal de Broglie wavelength”, λ2dB = ℏ2/2MkBT
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and obtained from an exponential decay width in the influential functional of a path dif-

ference in a central oscillator. It turns out that the generalized overlap also appears in an

exponential decay form of the path difference with the width, λ2dist = 2kBT/MΛ2. It can be

noticeable that λdist ≫ λdB and they form the complementarity relation λdistλdB = ℏ/MΛ.

This consequence is physically interpreted as although a quantum state of a system appears

to be decohered enough to be classicalized above a certain distance, the information in the

environment for the a system always become less clear encoded in the environment.

3.1.2 Work contribution

Upon starting my PhD, I joined the project initially set by Prof. Jarosław Korbicz some

years ago in order to compute the objectivity markers in the path integral formulation. My

contribution to this article is following:

1. Computing the action for a coupled harmonic oscillators to derive the influence func-

tional and the generalized overlap.

2. Working on a caustic problem in the path integral and the reduced density matrix

for the environment.

3. Computing the density matrix expressions, fermionic Matsubara representations in

Appendix A, B and C.

4. Expressing the higher order corrections for the environmental reduced density matrix

to (B23) in terms of known statistical variables.

5. Helping in deriving and interpreting the distinguishability length, which is the main

result.

6. Helping in preparing the manuscript.
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I. INTRODUCTION

One of the perpetual questions is if what we perceive is
really “out there?” While the ontology of quantum mechanics
is still a matter of a debate (see, e.g., [1–3]), it is nowa-
days commonly accepted following the seminal works of Zeh
[4] and Zurek [5,6] that interactions with the environment
and the resulting decoherence processes lead to an effective
emergence of classical properties, like position [7–9]. It is
then usually argued, using idealized pure-state environments,
that the decoherence efficiency corresponds directly to the
amount of information recorded by the environment (see, e.g.,
[9]). The more the environment learns about the system, the
stronger it decoheres it. On the other hand, we perceive the
outer world by observing the environment and the information
content of the latter determines what we see.

Here we show that there is a gap between the two: What
the environment learns about the system, as determined by
the decohering power, and what can be extracted from it via
measurements. Some part of information stays bounded. We
show it for physically most relevant thermal environments
in the Caldeira-Leggett regime [10], which is the universal
choice for high-temperature environments, ubiquitous in real-
life situations. One of the most emblematic results of the entire
decoherence theory states that spatial coherences decay on
the lengthscale given by the thermal de Broglie wavelength
λdB and on the timescale tdec ∼ γ −1(λdB/d )2, where d is a
separation and γ −1 is related to the relaxation time [10–12].
We complement this celebrated result by analyzing informa-
tion extractable from the environment as quantified by the

*jkorbicz@cft.edu.pl

state distinguishability [13]. We show that it is governed by
a new lengthscale, which we call the distinguishability length,
larger than the decoherence length. Thus the resolution with
which the system’s position can be readoff from the environ-
ment is worse than the decoherence resolution; see Fig. 1. A
part of the information gained by the environment during the

FIG. 1. The environment decoheres the central system at a
lengthscale λdec (equal to the thermal de Broglie wavelength λdB in
the studied example) as a result of dynamical buildup of correlations
and information leakage into the environment. However, not all of
that information is accessible, the retrieval is limited by its own
resolution, the distinguishability length λdist. Since λdist � λdec, part
of the information stays bounded in the environment. Decoherence
and distinguishability are complementary to each other as reflected
by information gain versus disturbance type of a relation: λdistλdec =
const. The accompanying timescales satisfy tdist/tdec ∼ (λdist/λdec)2,
so that reaching a given information retrieval resolution takes a much
longer time than reaching the same decoherence resolution.

2469-9926/2024/109(3)/032221(11) 032221-1 ©2024 American Physical Society
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decoherence is bounded in it in the thermal noise, similarly to,
e.g., the bounding a part of thermodynamic energy as thermal
energy, unavailable for work, or to bounding quantum entan-
glement [14]. We obtain the corresponding distinguishability
timescale and introduce a new integral kernel, quantum Fisher
information (QFI) kernel, similar to the well-known noise and
dissipation kernels [7–9] and governing the distinguishability
process. The discovery of this phenomenon was possible due
to the paradigm change in studies of open quantum systems
initiated by quantum Darwinism [15–20] and spectrum broad-
cast structures (SBS) [21–25] programs. They recognize the
environment as a carrier of useful information about the sys-
tem, rather than just the source of noise and dissipation, and
study its information content in the context of the quantum-
to-classical transition. The existence of the gap can be, in
principle, deduced from the existing literature on quantum
Darwinism, e.g., [20], and the corresponding timescale sep-
aration was shown in, e.g., [26]. However, those studies were
performed in finite-dimensional settings. Here we study a con-
tinous variable system, which called for new methods. Some
hints on the effect were also obtained in earlier studies of SBS,
especially in the quantum Brownian motion (QBM) model
[23], where state distinguishability and its temperature depen-
dence was analyzed, but the limited, numerical character of
the studies did not reveal the existence of the distinguishability
length and the gap to the decoherence lengthscale. Our results,
apart from showing intrinsic limitations of indirect observa-
tions, also characterize decoherence, which has become one of
the key paradigms of modern quantum science [27–33], from
a little studied perspective of the “receiver’s end.” Last but not
least, we uncover an interesting new feature of the venerable
Caldeira-Leggett model

Although there exist powerful methods of analysis of
quantum open systems, such as the Bloch-Redfield [34,35]
or Davies-Gorini-Kossakowski-Lindblad-Sudarshan [36–38]
equations, they describe the evolution of the central system
alone, neglecting the environment completely. This will not
tell us anything about the information acquired by the en-
vironment and we instead derive an approximate solution
method focusing on the evolution of the environment. To
this end, we divide the environment into two parts, one de-
noted Euno is assumed to be unobserved and hence traced
over, while the remaining part, denoted Eobs is assumed to be
under observation by an external observer. Our main object
of study will be the so-called partially traced state, obtained
by tracing out only the unobserved part of the environment
[21–23,25]

�S:Eobs = TrEuno�S:E , (1)

Here S : Eobs denotes that the resulting state is a joint state of
the system S and the observed part of the environment Eobs. As
the first approximation, it is enough to consider the recoiless
limit, where the central system S influences the environment E
but is massive enough not to feel the recoil. It is a version of
the Born-Oppenheimer approximation and the opposite, and
less studied, limit to the commonly used Born-Markov ap-
proximation [7–9], where the influence S → E is completely
cut out and is thus useless for our purposes.

II. HYBRID QUANTUM-CLASSICAL DYNAMICS
IN THE RECOILLESS LIMIT

We follow the treatment of Feynman and Vernon [39] using
path integrals. The full system-environment propagator reads

Kt (X, X0; x, x0) =
∫

x(0) = x0

x(t ) = x

Dx(t )
∫

X (0) = X0
X (t ) = X

DX (t )

× exp
i

h̄
{Ssys[X (t )] + Senv[x(t )]

+ Sint[X (t ), x(t )]}, (2)

where Ssys, Senv, Sint are the actions of the system, envi-
ronment, and interaction, respectively; X (t ) is the system
trajectory with the initial condition X (0) = X0, similarly x(t )
is the environment trajectory with x(0) = x0. For a massive
enough central system we may neglect the recoil of the
environment∣∣∣∣ δSsys

δX (t )
[X (t )]

∣∣∣∣�
∣∣∣∣ δSint

δX (t )
[X (t ), x(t )]

∣∣∣∣. (3)

and expand the parts containing X (t ) around a classical tra-
jectory Xcl(t ; X0) (in what follows we drop the dependence
on the initial position X0, it will be self-understood), which
satisfies the unperturbed equation δSsys/δX (t )[X (t )] ≈ 0. The
standard Gaussian integration around Xcl (t ) gives [40]

Kt ≈ e
i
h̄ Ssys[Xcl (t )]

∫
Dx(t )e

i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )]

× Dt [X0, X ; x(t )], (4)

where Dt [X0, X ; x(t )] is the van Vleck determinant [41] for
Ssys + Sint. It depends on x(t ) through δ2Sint/δX (t )δX (t ′).
This is a quantum leftover of the E → S back-reaction, which
we also neglect, assuming∣∣∣∣ δ2Ssys

δX (t )δX (t ′)
[Xcl(t )]

∣∣∣∣�
∣∣∣∣ δ2Sint

δX (t )δX (t ′)
[Xcl (t ), x(t )]

∣∣∣∣, (5)

which, e.g., holds trivially for linearly coupled systems, when
δ2Sint/δX (t )δX (t ′) = 0. Then Dt [X0, X ; x(t )] reduces to the
van Vleck propagator for S alone, Dt (X0, X ) and can be pulled
out of the integral in (4)

Kt ≈ e
i
h̄ Ssys[Xcl (t )]Dt (X0, X )

∫
Dx(t )e

i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )],

(6)

where the first two terms define the semi-classical propagator
for the central system K sc

t (X, X0) ≡ e
i
h̄ Ssys[Xcl (t )]Dt (X0, X ). The

remaining path integral can be represented using the standard
operator formalism∫

Dx(t )e
i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )] ≡ 〈x|Ût [Xcl]|x0〉, (7)

where Ût [Xcl] is the effective unitary evolution of the environ-
ment with Xcl(t ) acting as a classical force

ih̄
dÛt

dt
= (Ĥenv + Ĥint[Xcl(t )])Ût , (8)

where Ĥenv, Ĥint are the Hamiltonians corresponding to the
actions Senv, Sint, respectively. In what follows we use hats to
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denote operators. Thus from (4), (5), (7), and (8) we obtain
the propagator in the recoilless limit

Kt (X, X0; x, x0) ≈ K sc
t (X, X0)〈x|Ût [Xcl]|x0〉. (9)

Assuming a product initial state �(0) = �0S ⊗ �0E , we can use
(9) to construct the approximate solution for the full system-
environment state �S:E . We obtain it in the form of partial
matrix elements between the position states of the central
system

〈X ′|�S:E (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t

× (X ′, X ′
0)Ût [Xcl]�0EÛt [X

′
cl]

†. (10)

We next specify to the most common situation when the
environment is composed out of a number of subenvironments
or modes, denoted Ek , e.g., a collection of harmonic oscilla-
tors. Furthermore, we assume there are not direct interactions
between the parts of the environment, only the central inter-
actions so that Ĥenv =∑k Ĥk and Ĥint =∑k Ĥ k

int, where k
labels the subenvironments, Ĥk , Ĥk

int are the self-energy and
interaction Hamiltonians of the kth subenvironment, respec-
tively. It is immediate to see that, due to that, the effective
evolution of the environment has a product structure Ût [Xcl] =⊗

k Û k
t [Xcl], where each Û k

t [Xcl] satisfies the corresponding
equation (8). Substituting it into (10) and tracing out suben-
vironments assumed to be unobserved, Euno, we obtain the
desired solution for the partially traced state (1)

〈X ′|�S:Eobs (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t

× (X ′, X ′
0)F [Xcl(t ), X ′

cl(t )]⊗
k∈Eobs

Û k
t [Xcl]�0kÛ

k
t [X ′

cl]
†. (11)

Here we assume the usual product initial state �0E =⊗k �0k ,
where �0k is the initial state of the kth subenvironment. More-
over, Xcl(0) = X0, Xcl(t ) = X , X ′

cl(0) = X ′
0, X ′

cl(t ) = X ′ and

F [Xcl(t ), X ′
cl(t )] ≡

∏
k∈Euno

Tr
(
Û k

t [X ′
cl]

†Û k
t [Xcl]�0k

)
(12)

is the influence functional [39,40]. This is a general, hy-
brid solution with effectively classical central system, driving
quantum environment. The, admittedly coarse, approximation
(11) is enough for our purposes.

In what follows we will specify to one of the paradigmatic
models of open quantum systems, linear quantum Brownian
motion model (see, e.g., [42–44]), as an example. It is de-
scribed by Lagrangeans: Lsys = 1/2(MẊ 2 − M�2X 2), Lenv =∑

k 1/2(mkẋ2
k − mkω

2
k x2

k ), Lint = −X
∑

k Ckxk , and the corre-
sponding actions. It is easy to see that the no-recoil condition
(3) will be satisfied when

Ck

M�2

 1, (13)

so that Xcl(τ ) are the ordinary oscillator trajectories and the
condition (5) is trivial due to the linearity in X of the interac-
tion term.

The influence functional for QBM was first calculated in
[39] for the physically most relevant situation of the thermal

environments and has the well-known form [7,8,10,39]

F [Xcl(t ), X ′
cl(t )]

= exp

{
− 1

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )ν(τ − τ ′)	(τ ′)

}
(14)

× exp

{
− i

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )η(τ − τ ′)X̄cl(τ

′)
}
,

(15)

where 	(τ ) ≡ Xcl(τ ) − X ′
cl(τ ) is the trajectory difference,

X̄cl(τ ) ≡ (1/2)(Xcl(τ ) + X ′
cl(τ )) is the trajectory average, and

ν(τ ), η(τ ) are the noise and dissipation kernels, respectively
[7–10,39],

ν(τ ) ≡
∫

dωJuno(ω)cth

(
h̄ωβ

2

)
cos ωτ, (16)

η(τ ) ≡
∫

dωJuno(ω) sin ωτ, (17)

with β = 1/(kBT ) denoting the inverse temperature and
Juno(ω) ≡∑k∈Euno

C2
k /(2mkωk )δ(ω − ωk ) is the spectral den-

sity of the unobserved part of the environment. The modulus
of F [Xcl(t ), X ′

cl(t )] controls the decoherence process.

III. DISTINGUISHABILITY OF LOCAL STATES
AND QUANTUM FISHER INFORMATION KERNEL

To understand what information about S is available lo-
cally in the the environment, we need the local states of each
subenvironment Ek , as these are the states that fully determine
the results of local measurements for each of the observers.
�k (t ) = TrE1...�Ek ...TrS�S:Eobs . The detailed calculation, relying
on (13), is presented in Appendix B. The result is �k (t ) ≈∫

dX0 p(X0)�k
t [X 0

cl], and similarly for the entire observed frac-
tion of the environment Eobs:

�Eobs (t ) ≈
∫

dX0 p(X0)
⊗

k∈Eobs

�k
t

[
X 0

cl

]
, (18)

where

�k
t [Xcl] ≡ Û k

t [Xcl]�0kÛ
k
t [Xcl]

†, (19)

are conditional states of Ek , p(X0) ≡ 〈X0|�0S|X0〉, and X 0
cl

is the classical trajectory with the endpoint 0: X 0
cl(0) =

X0, X 0
cl(t ) = 0. In the case of linear QBM, the evolution

law (8), satisfied by Û k
t [Xcl], describes a harmonic oscillator

forced along the classical trajectory Xcl. It has a well-known
solution, which in the interaction picture reads (we present it
in Appendix C for completeness)

Û k
t [Xcl] = eiζk (t )D̂

(
− iCk√

2h̄mkωk

∫ t

0
dτeiωkτ Xcl(τ )

)
, (20)

where ζk (t ) is an irrelevant phase factor and D̂(α) ≡
exp(αâ† − α∗â) is the standard optical displacement opera-
tor. The local states of Ek are mixtures of oscillator states
(19), forced along X 0

cl. They are parametrized by the cen-
tral system’s initial position X0 (cf. [23]), spread with the
probability p(X0).
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The information content of the fragment Ek is determined
by the distinguishability of the local states �k

t [Xcl] for different
trajectories. We will consider a general Xcl(τ ), which can later
be specified to X 0

cl(τ ). Among the available distinguishability
measures [13], a particularly convenient one is the generalized
overlap B(�, σ ) ≡ Tr

√√
�σ

√
�. It provides both lower and

upper bounds for such operational quantities as the probability
of error and to the quantum Chernoff information [45] and
is a good compromise between computability and a clear
operational meaning. We define the generalized overlap for
the conditional states of the kth environment

Bk[	, t] ≡ B
(
�k

t [Xcl], �
k
t [X ′

cl]
)

(21)

[from the definition and (19) and (20), B depends only on the
difference of trajectories 	]. For thermal �0k , the overlap (21)

was found in [23] (see Appendix C)

Bk[	, t] = exp

{
− C2

k

4h̄mkωk
th

(
h̄ωkβ

2

)∣∣∣∣
∫ t

0
dτeiωkτ	(τ )

∣∣∣∣
2
}

.

(22)

A single environmental mode typically carries a vanishingly
small amount of useful information. To decrease the discrimi-
nation error, it is beneficial to combine the modes into groups,
called macrofractions [21], scaling with the total number of
observed modes. In our case, we consider the entire observed
environment Eobs. Since there are no direct interactions in the
environment, the conditional states of the observed fraction
are products, cf. (18): �obs

t [Xcl] ≡⊗k∈Eobs
�k

t [Xcl]. The gener-
alized overlap factorizes w.r.t. the tensor product, so there is
no quantum metrological advantage here [46], but still there
is a classical one [21]

Bobs[	, t] ≡ B
(
�obs

t [Xcl ], �
obs
t [X ′

cl]
) =

∏
k∈Eobs

Bk[	, t]

= exp

⎧⎨
⎩−

∑
k∈Eobs

C2
k

4h̄mkωk
th

(
h̄ωkβ

2

)∣∣∣∣
∫ t

0
dτeiωkτ	(τ )

∣∣∣∣
2
⎫⎬
⎭

≡ exp

{
−1

h̄

∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′)

}
, (23)

where, in the last step, we passed to the continuum limit and
introduced a new kernel

φ(τ ) ≡
∫ ∞

0
dωJobs(ω)th

(
h̄ωβ

2

)
cos ωτ, (24)

called the quantum Fisher information kernel. Here Jobs(ω) ≡∑
k∈Eobs

C2
k /(2mkωk )δ(ω − ωk ) is the spectral density cor-

responding to the observed environment. Note that, quite
surprisingly, the QFI kernel and the overlap (23) have an
almost identical structure to the noise kernel (16) and the real
part of the influence functional [7,8,10,39], the only differ-
ence being in the reversed temperature dependence [23,47].
It can be intuitively understood by recalling that here the
higher the temperature the more efficient the decoherence but
also the more noisy the environment. The name QFI kernel
comes from the observation that the QFI of the X0 phase
imprinting: �k (X ) ≡ e−i/h̄X0Ckx̂k �0kei/h̄X0Ckx̂k is proportional to
the integrand of (24) (see, e.g., [48]).

We want a fair comparison of the decohering power and
the information content of the observed environment, so we
assume equal spectral densities for the unobserved and the
observed fractions Jobs = Juno ≡ J (ω) and choose it to be in
the Lorenz-Drude form [7–9]

J (ω) = 2Mγ

π
ω

�2

�2 + ω2
, (25)

where � is the cutoff frequency and γ is the effective coupling
strength.

IV. INFORMATION GAP

For our demonstration it is enough to use the highly popu-
lar Caldeira-Leggett limit [9,10], kBT/h̄ � � � �, which is
the high-temperature, hight-cutoff limit. The behavior of the
influence functional in this limit is emblematic to the entire
decoherence theory and can be obtained, e.g.. by approxi-
mating cthx ≈ x−1 in the noise kernel (16) and then using
�e−�τ ≈ δ(τ ) valid for τ � �−1 (or using the Matsubara
representation [49]). This leads to the celebrated result that
decoherence becomes efficient at lengths above the thermal
de Broglie wavelength λ2

dB = h̄2/2MkBT [8,10–12]

|F [Xcl(t ), X ′
cl(t )]| ≈ exp

[
− γ

λ2
dB

∫ t

0
dτ	(τ )2

]
, (26)

and for times larger than the decoherence time [12] tdec =
1/γ (λdB/d )2, where d is a given separation and γ −1 is related
to the relaxation time.

The QFI kernel can be studied in the similar way, approxi-
mating thx ≈ x in (24) and passing to a large �τ ,

φ(τ ) ≈
h̄�β
1

γ Mh̄β�2

π

∫ ∞

0
dω

ω2

ω2 + �2
cos(ωτ ) (27)

= γ Mh̄β�2

π

(∫ ∞

0
dω cos(ωτ )

−�2
∫ ∞

0
dω

cos(ωτ )

ω2 + �2

)
(28)

= γ Mh̄β

(
�2δ(τ ) − 1

2
�3e−�|τ |

)
. (29)
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We define f (τ ) ≡ �e−�τ for τ > 0 so that �3e−�(τ−τ ′ ) =
d2/dτ ′2 f (τ − τ ′). We can then calculate the integral with the
second term of (29) integrating by parts two times∫ τ

0
dτ ′�3e−�(τ−τ ′ )	(τ ′) =

∫ τ

0
dτ ′ f̈ (τ − τ ′)	(τ ′) (30)

= ḟ (0+)	(τ ) − ḟ (τ )	(0) − f (0)	̇(τ ) + f (τ )	̇(0)

(31)

+
∫ τ

0
dτ ′ f (τ − τ ′)	̈(τ ′), (32)

here the dot means d/dτ ′, so that ḟ (0+) = +�2. In the large
cutoff limit it is justified to assume τ � �−1, i.e., we con-
sider a timescale much larger than the one set by the cutoff,
similarly as it is done analyzing the influence functional [10].
Then the boundary terms containing f (τ ) and ḟ (τ ) can be
neglected and moreover we can substitute f (τ ) ≈ δ(τ ) in the
last integral to obtain∫ τ

0
dτ ′�3e−�|τ−τ ′|	(τ ′) ≈

�τ�1
�2	(τ ) − �	̇(τ ) + 	̈(τ )

(33)

= �2	(τ ) − ��	

(
τ + π

2�

)
− �2	(τ ) (34)

≈
���

�2	(τ ), (35)

where we use the fact that 	(τ ) is a difference of two
oscillator trajectories, so that it satisfies 	̇(τ ) = �	(τ +
π/2�) and 	̈(τ ) = −�2	(τ ). Finally, we neglect the �

terms because � � �. More generally, 	̇(τ ), 	̈(τ ) are in-
verse proportional to the system’s evolution timescale, which
is the slowest timescale, and hence those terms can be omitted
compared to the �2 term. Using (35) and (29) we obtain
our main result: the generalized overlap between the environ-
mental macrostates. It is both remarkably simple and similar
to (26)

B[	, t] ≈ exp

[
− γ

λ2
dist

∫ t

0
dτ	(τ )2

]
. (36)

The expression (36) immediately implies that the distin-
guishability process is described by its own lengthscale, which
we call the distinguishability length

λ2
dist ≡ 2kBT

M�2
= h̄

M�

(
2kBT

h̄�

)
(37)

and happens on the associated distinguishability timescale

tdist = 1

γ

(
λdist

d

)2

. (38)

Surprisingly, (37) does not depend on h̄ in the leading or-
der. It is the lengthscale at which the energy of the “cutoff
oscillator” of mass M and frequency � equals the thermal
energy: M�2λ2

dist/2 = kBT . The cutoff dependence of (37)
can be understood recalling that the cutoff defines the shortest
lengthscale in the environment. Indeed, (37) can be expressed
as the characteristic length of the cutoff oscillator,

√
h̄/M�,

rescaled by the ratio of the thermal energy to the cutoff
energy

√
2kBT/h̄�. Of course the higher-order terms in the

th(h̄βω/2) expansion in (23) and (24) will contribute O(h̄2)
terms to (37). There is clearly a competition in (37) between
the temperature T , which degrades the discriminating abil-
ity of the environment and the cutoff frequency � which
increases it. The relative difference between the two length-
scales

λdist − λdB

λdB
≈ 2

kBT

h̄�
� 1, (39)

shows that there is a “resolution gap” between the de-
coherence and the distinguishability accuracy [50]. The
environment decoheres the system at shorter lengthscales than
those at which information can be extracted from it, i.e., a
part of the information stays bounded in the environment. The
timescales are separated even more strongly

tdist

tdec
= 4

(
kBT

h̄�

)2

, (40)

meaning the distinguishability process takes much longer time
than the decoherence for the same separation. This is in accord
with the earlier results for generic finite-dimensional systems;
see, e.g., [26]. For molecular environments � ∼ 1013 Hz and
at T ∼ 300 K, λdist/λdec ∼ 10, tdist/tdec ∼ 100, which is still
orders of magnitude shorter for macroscopic bodies than typ-
ical relaxation times [12].

As a by-product we obtain a type of information gain ver-
sus disturbance relation (see, e.g., [51]), where the disturbance
is represented by the decoherence efficiency

λdBλdist = h̄

M�
. (41)

The right-hand side does not depend on the state of the envi-
ronment (encoded in the temperature) and is the square of the
characteristic length of the cutoff oscillator. More generally,
passing to the Fourier transforms of the noise, dissipation,
and QFI kernels, denoted by the tilde, we obtain the following
relations, true for thermal environments:

φ̃(ω) = ν̃(ω)th2

(
h̄ωβ

2

)
, (42)

φ̃(ω) = iη̃(ω)th

(
h̄ωβ

2

)
. (43)

They resemble the celebrated fluctuation-dissipation relation
[43,52,53]

ν̃(ω) = iη̃(ω)cth

(
h̄ωβ

2

)
, (44)

but connect dissipation and noise to information accumulation
in the environment. These interesting relations will be inves-
tigated further elsewhere.

V. CONCLUSION

We showed here, using the celebrated model of Caldeira
and Leggett as an example, that there is an information gap
between what environment learns, decohering the system, and
what can be extracted from it via measurements, i.e., some
information stays bounded in the environment. For that, we
developed a series of rather nontrivial and nonstandard tools,
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including a path-integral recoiless limit, a hybrid quantum-
classical extended state solution (11), and quantum Fisher
information kernel. Our results uncover the existence of a
new lengthscale, determining the information content of the
environment and complementary to the celebrated thermal de
Broglie decoherence lengthscale.

The unorthodox point of view taken here, i.e., that of
the environment instead of the the central system, was moti-
vated by the modern developments of the decoherence theory
[15,17,21], explaining the apparent objectivity of the macro-
scopic world through redundantly stored information in the
environment. From this perspective, the solution (11) can

approximate an SBS state, storing an objective position of
the central system, in the semi-classical approximation. We
hypothesize that the approach to objectivity is possible only in
such a limit, when the central system is macroscopic enough,
making objectivity a macroscopic phenomenon.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE HYBRID SOLUTION

In the particular case of a linear QBM model, the hybrid SEobs solution from the main text

〈X ′|�S:Eobs (t )|X 〉 ≈
∫∫

dX0dX ′
0〈X ′

0|�0S|X0〉K sc
t (X, X0)∗K sc

t (X ′, X ′
0)F [Xcl(t ), X ′

cl(t )]
⊗

k∈Eobs

Û k
t [Xcl]�0kÛ

k
t [X ′

cl]
† (A1)

can be also obtained in the following way: Forgetting for a moment the evolution of the environment, the central system is a
forced harmonic oscillator with a well-known solution for the propagator [39]. It is determined by the action

S[x(t )] = M�

2 sin �t

[(
X 2 + X 2

0

)
cos �t − 2XX0

]+ 1

sin �t

∑
k

Ck

∫ t

0
dτ [X sin �τ + X0 sin �(t − τ )]xk (τ )

− �

sin �t

∑
k,l

CkCl

M�2

∫ t

0
dτ

∫ τ

0
dτ ′ sin �τ ′ sin �(t − τ )xk (τ )xl (τ

′). (A2)

Neglecting the last term, using the resulting action to construct the propagator for the global state, and changing to the operator
picture for the environmental degrees of freedom, we obtain the solution (11).

APPENDIX B: TRACING OVER THE CENTRAL SYSTEM

Here we calculate the trace over the central system S of the
hybrid solution (11). We first assume, for simplicity, only one
observed environment and one unobserved. Generalization to
multiple environments in both groups will be obvious and we
present it at the end. The main idea is to rewrite the trace using
the no-recoil condition

Ck

M�2

 1. (B1)

First, we take the matrix elements w.r.t. the environment and
comeback from the operator form of the environment part of
(11) to the path integral one using∫

Dx(t )e
i
h̄ Senv[x(t )]e

i
h̄ Sint[Xcl (t ),x(t )] ≡ 〈x|Ût [Xcl]|x0〉. (B2)

This gives∫
dX 〈X ; x′|�S:Eobs |X ; x〉

=
∫

dX0dX ′
0dx0dx′

0〈X ′
0|�0S|X0〉〈x′

0|�0E |x0〉 (B3)

×
∫

dXK sc
t (X, X0)∗K sc

t (X, X ′
0)F [Xcl, X ′

cl] (B4)

×
∫

DxDx′ exp
i

h̄
(Senv[x] − Senv[x′]

+ Sint[Xcl, x] − Sint[X
′
cl, x′]). (B5)

Because of the tracing, the classical trajectories have the same
endpoints Xcl(t ) = X ′

cl(t ) = X , and x(0) = x0, x(t ) = x and
similarly for x′(τ ). Let us analyze the above expression term
by term. It is well known that the semiclassical propagator
Ksc

t (X, X0) for the harmonic oscillator is equal to the full
quantum one. We thus have

K sc
t (X, X0)∗K sc

t (X, X ′
0) (B6)

= M�

2π h̄| sin �t |e
iM�

2h̄ sin �t [(X ′2
0 −X 2

0 ) cos �t+2X	X0]. (B7)

There are X -dependent and X -independent parts.
The influence functional may be written using path

integrals as [40]

F [Xcl, X ′
cl] =

∫
dỹdy0dy′

0

∫
DyDy′〈y′

0|�̃0E |y0〉

× e
i
h̄ (Senv[y]−Senv[y′]+Sint[Xcl,y]−Sint[X ′

cl,y
′]), (B8)

where �̃0E is the initial state of the unobserved part of the en-
vironment Euno, which can be different from the initial state of
the observed part Eobs, �0E in (B4). The boundary conditions
are y(0) = y0, y′(0) = y′

0, y(t ) = y′(t ) = ỹ. The generaliza-
tion to multiple unobserved environments is straightforward:
the combined influence functional will be a product over
j ∈ Euno of the terms (B8) for each mode j with �0 j initial
state, F =∏ j∈Euno

Fj

The terms of the form Senv[x] − Senv[x′], appearing both in
(B5) and (B8), do not depend on the integration variable X and
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thus can pulled in from of the integral over X . The interaction
terms Sint[Xcl, y] − Sint[X ′

cl, y′] from (B5) and (B8) will have
both X -dependent and X -independent parts. To separate them,
let us parametrize the classical trajectory Xcl satisfying the
apropriate boundary conditions Xcl(0) = X0, Xcl(t ) = X , as
below

Xcl(τ ) = X0 cos �τ

[
1 − sin �τ

sin �t

]
+ X

sin �τ

sin �t
(B9)

≡ X0a(τ ) + X
sin �τ

sin �t
. (B10)

Then it is easy to see that

Sint[Xcl, x] − Sint[X
′
cl, x′]

= −C
∫ t

0
dτa(τ )[X0x(τ ) − X ′

0x′(τ )] (B11)

− CX

sin �t

∫ t

0
dτ sin �τ [x(τ ) − x′(τ )]. (B12)

We now combine the X -dependent factors from (B5), (B7),
and (B8) and integrate them over X :

M�

2π h̄| sin �t |
∫

dX exp

{
iX

h̄ sin �t

[
M�	X0 − C

∫ t

0
dτ sin �τ

[
x(τ ) − x′(τ ) + y(τ ) − y′(τ )

]]}
(B13)

= M�

2π h̄| sin �t |
∫

dX exp

{
iXM�2

h̄ sin �t

[
	X0

�
− C

M�2

∫ t

0
dτ sin �τ

[
x(τ ) − x′(τ ) + y(τ ) − y′(τ )

]]}
(B14)

≈ M�

2π h̄| sin �t |
∫

dX exp

(
iXM�	X0

h̄ sin �t

)
= δ(	X0),

(B15)

where, in the crucial step, we used the recoilless condition (13) and neglected the action integral. We can now comeback to the
main integral (B4) and (B5). The delta function (B15) forces the trajectories Xcl(τ ) and X ′

cl(τ ) to be equal as it forces X0 = X ′
0

(the endpoints are the same in this calculation as we are calculating the trace over X ). This immediately forces the influence
functional (B8) to be equal to 1 since

F [Xcl, Xcl] = Tr(Ût [Xcl]�̃0EÛt [Xcl]
†) = 1. (B16)

The X -independent part of (B7) will be equal to 1 as well since X ′2
0 − X 2

0 = 0. We are thus left with the following integral:∫
dX 〈X ; x′|�S:Eobs |X ; x〉 =

∫
dX0 p(X0)

∫
dx0dx′

0〈x′
0|�0E |x0〉 (B17)

×
∫

DxDx′ exp
i

h̄

(
Senv[x] − Senv[x′] − C

∫ t

0
dτa(τ )[X0x(τ ) − X ′

0x′(τ )]

)
(B18)

=
∫

dX0 p(X0)
∫

dx0dx′
0〈x′

0|�0E |x0〉
∫

DxDx′e
i
h̄ (Senv[x]+Sint[X 0

cl,x]−Senv[x′]−Sint[X 0
cl,x

′]) (B19)

=
∫

dX0 p(X0)〈x′|Ut
[
X 0

cl

]
�0EUt

[
X 0

cl

]†|x〉, (B20)

where in (B19) we came back to the operator picture using
(B2) and introduce

p(X0) ≡ 〈X0|�0S|X0〉, (B21)

which is the initial distribution of the central system’s posi-
tion. Above, X 0

cl is the classical trajectory with the endpoint 0:

X 0
cl(0) = X0, X 0

cl(t ) = 0. (B22)

It appears by comparing the action integral in the exponent
of (B18) to (B10) with X = 0. Having the result (B20) for
a single degree of freedom of the observed environment, we
can now apply it to the initial task with multiple environments.
Performing the above calculations for each degree of freedom
j we finally obtain

�k (t ) = TrE1...�Ek ...

∫
dX 〈X |�S:Eobs |X 〉 (B23)

≈
∫

dX0 p(X0)TrE1...�Ek ...

⊗
j∈Eobs

Û j
t

[
X 0

cl

]
�0 jÛ

j
t

[
X 0

cl

]†

=
∫

dX0 p(X0)Û k
t

[
X 0

cl

]
�0kÛ

k
t

[
X 0

cl

]†
(B24)

≡
∫

dX0 p(X0)�k
t

[
X 0

cl

]
, (B25)

where the approximation signalizes that we have used the no-
recoil condition (13) and we define

�k
t [Xcl] ≡ Û k

t [Xcl]�0kÛ
k
t [Xcl]

†. (B26)

APPENDIX C: GENERALIZED OVERLAP
FOR THERMAL QBM

For completeness’ sake, we present here the derivation
of the generalize overlap (21) from [23]. We first solve the
effective dynamics for the environmental modes, resulting
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from (8). In the case of the linear QBM considered here, the
effective Hamiltonian Ĥeff ≡ Ĥenv + Ĥint[Xcl] decomposes of
course w.r.t. the subenvironments and for the kth subeviron-
ment has a simple form

Ĥk
eff = p̂2

k

2mk
+ mkω

2
k x̂2

k

2
− CkXcl(t )x̂k, (C1)

where x̂k, p̂k are the canonical observables. This is a standard
forced harmonic oscillator. It can be solved in many ways, the
fastest being by passing to the interaction picture

Ĥk
eff(t ) = −CkXcl(t )x̂k (t ), (C2)

where x̂k (t ) = √
h̄/2mkωk (e−iωkt â + eiωkt â†

k ) with âk, â†
k be-

ing the corresponding annihilation and creation operators. Us-
ing the fact that (C2) commute for different times to a number
[Ĥk

eff(t ), Ĥk
eff(t

′)] = ic(t, t ′), one can use the Baker-Campbell-
Hausdorff formula formula to calculate the evolution via
limn→∞ (

∏n
r=1 exp[−i/h̄Ĥ k

eff(tr )	t]), 	t ≡ t/n, tr ≡ r	t :

lim
n→∞

( n∏
r=1

exp[− i

h̄
Ĥ k

eff(tr )	t]

)

= eiζ (t )exp

(
− i

h̄

∫ t

0
dτ Ĥk

eff(τ )

)
(C3)

= eiζ (t )exp

[
−i

Ck√
2h̄mkωk

(∫ t

0
dτXcl(τ )eiωkτ + c.c.

)]
,

(C4)

where ζ (t ) is some phase factor, that, as we will see below,
will be unimportant for our calculations. Defining

α(t ) ≡ − iCk√
2h̄mkωk

∫ t

0
dτXcl(τ )eiωkτ , (C5)

the exponent in (C4) becomes the standard displacement op-
erator D̂[α(t )], so that in the interactrion picture we obtain

Û k
t [Xcl ] = eiζ (t )D̂[α(t )], (C6)

which is the expression (8).
We now calculate the single system generalized overlap

(21). To simplyfy the notation, we will drop the index k in all
the objects that define (21) since the calculation is the same for
every mode. Using the definition of the generalized overlap
together with the operator identity, following from the spectral
theorem

√
UAU † = U

√
AU †, we obtain

B[	, t]

= Tr
√√

�0Ût [X ′
cl]

†Ût [Xcl]�0Ût [Xcl]†Ût [X ′
cl]

√
�0, (C7)

where we pulled the extreme left and right unitaries out of
the both square roots and used the cyclic property of the trace
to cancel them out. From (C6) we obtain that modulo phase
factors, which cancel in (C7)

Ût [X
′
cl]

†Ût [Xcl] � D̂[α(t ) − α′(t )] ≡ D̂(ηt ), (C8)

where we could use the interaction picture expression (C6)
since the free evolutions cancel and we introduced ηt ≡
α(t ) − α′(t ) for a later convenience. Next, assuming that �0

is a thermal state, we use the well-known coherent state rep-
resentation for the middle �0 under the square root in (C7)

�0 =
∫

d2γ

π n̄
e−|γ |2/n̄|γ 〉〈γ |, (C9)

where n̄ = 1/(eh̄βω − 1) is the mean excitation number at the
inverse temperature β. Denoting the Hermitian operator under
the square root in (C7) by Ât , we obtain

Ât =
∫

d2γ

π n̄
e−|γ |2/n̄√�0D̂(ηt )|γ 〉〈γ |D̂(ηt )

†√�0 (C10)

=
∫

d2γ

π n̄
e−|γ |2/n̄√�0|γ + ηt 〉〈γ + ηt |√�0. (C11)

To perform the square roots above, we now use the Fock
representation of the thermal state

�0 =
∑

n

n̄n

(n̄ + 1)n+1
|n〉〈n|, (C12)

so that

Ât =
∫

d2γ

π n̄
e− |γ |2

n̄

∑
m,n

√
n̄m+n

(n̄ + 1)m+n+2

× 〈n|γ + ηt 〉〈γ + ηt |m〉|n〉〈m| (C13)

and the scalar products above are given by the well-known
expressions of the coherent states in the Fock basis

〈n|γ + ηt 〉 = e−|γ+ηt |2/2 (γ + ηt )n

√
n!

. (C14)

The strategy is now to use this relation and rewrite each sum
in (C13) as a coherent state but with a rescaled argument,
and then try to rewrite (C13) as a single thermal state (with
a different mean excitation number than �0). To this end we
note that

e− 1
2 |γ+ηt |2

∑
n

(
n̄

n̄ + 1

) n
2 (γ + ηt )n

√
n!

|n〉 (C15)

= e− 1
2

|γ+ηt |2
n̄+1

∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉
. (C16)

Substituting this into (C13) and reordering gives

Ât = 1

n̄ + 1
e− |ηt |2

1+2n̄

∫
d2γ

π n̄
e− 1+2n̄

n̄(n̄+1) |γ+ n̄
1+2n̄ ηt |2

×
∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉〈√
n̄

n̄ + 1
(γ + ηt )

∣∣∣∣∣. (C17)

Note that since we are interested in Tr
√

Ât rather than Ât itself,
there is a freedom of rotating Ât by a unitary operator, in
particular, by a displacement. We now find such a displace-
ment as to turn (C17) into the thermal form. Comparing the
exponential under the integral in (C17) with the thermal form
(C9), we see that the argument of the subsequent coherent
states should be proportional to γ + (n̄ηt )/(1 + 2n̄). Simple
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algebra gives∣∣∣∣∣
√

n̄

n̄ + 1
(γ + ηt )

〉

� D̂

(√
n̄

n̄ + 1

n̄ + 1

1 + 2n̄
ηt

)∣∣∣∣∣
√

n̄

n̄ + 1

(
γ + n̄

1 + 2n̄
ηt

)〉
,

(C18)

where we omitted the irrelevant phase factor as we are in-
terested in the projector on the above state. Inserting the
above relation into (C17), dropping the displacements, and
changing the integration variable γ → √

n̄/(n̄ + 1)[γ + (1 +
2n̄)ηt ] gives

B[	, t] = e− 1
2

|ηt |2
1+2n̄

1√
1 + 2n̄

Tr
√

�th[n̄2/(1 + 2n̄)], (C19)

where �th(n̄) is the standard thermal state with the mean
excitation number n̄. We use the Fock expansion (C12) for
�th[n̄2/(1 + 2n̄)] and obtain

B[	, t] = e− |ηt |2
2+4n̄

1√
1 + 2n̄

(C20)

×
(

1 + n̄2

1 + 2n̄

)− 1
2 ∑

n

(
n̄2/(1 + 2n̄)

1 + n̄2/(1 + 2n̄)

) n
2

(C21)

= exp

[
−1

2
|α(t ) − α′(t )|2th

(
h̄βω

2

)]
, (C22)

where in the last step, we used the definition of ηt from
(C8) and n̄ = 1/(eh̄βω − 1). Finally, using (C5), we obtain
the desired result (22). It is interesting that the overlap factor
looks very similar to the real part of the influence functional
but with the inverse temperature dependence.

APPENDIX D: MATSUBARA REPRESENTATION
OF THE QFI KERNEL

Just like in the case of the noise kernel [7], one can derive
a formal analytic expression for the QFI kernel using the
fermionic Matsubara representation [49]

th

(
β h̄ω

2

)
= 4

β h̄ω

∞∑
n=0

1

1 + (νn/ω)2
, (D1)

with fermionic frequencies

νn = (2n + 1)π

h̄β
. (D2)

Substituting this into the QFI definition (24) and integrating
term by term, we find

φ(τ ) = 4Mγ�

h̄β

∞∑
n=0

e−�|τ | − (νn/�)e−νn|τ |

1 − (νn/�)2
, (D3)

which looks identical to the expansion of the noise kernel
ν(τ ) [7], except that, instead of the bosonic frequencies νn =
2nπ/(h̄β ), we now have the fermionic (D2). In particular,
now ν0 = π/(h̄β ) �= 0 so that νn/� � 1 for any n, including
n = 0. This complicates the analysis compared to the bosonic
case, describing the influence functional, as there is now an
interplay between �, ν0, and τ . The double integral in (23),
which we denote by �[	, t]:

�[	, t] ≡
∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′) (D4)

can be formally calculated term by term, using (D3) and an
explicit expression for the trajectories difference

	(τ ) ≡ Xcl(τ ) − X ′
cl (τ )

= 	X0
sin[�(t − τ )]

sin �t
+ 	X

sin �τ

sin �t
. (D5)

We first slightly rearrange the expression (D3)

φ(τ ) = 4Mγ

π

∞∑
n=0

1

(2n + 1)

�2

1 − (�/νn)2

×
(

e−νn|τ | − �

νn
e−�|τ |

)
. (D6)

We now calculate term by term the double integral

�[	, t] ≡
∫ t

0
dτ

∫ τ

0
dτ ′	(τ )φ(τ − τ ′)	(τ ′), (D7)

using elementary integrals and obtain

�[	, t] = 4Mγ

π

∞∑
n=0

1

(2n + 1)

1

1 − (�/νn)2

1

sin2 �t

× [�2[ct (νn) − (�/νn)ct (�)]
(
	X 2

0 + 	X 2
)

+ �2[dt (νn) − (�/νn)dt (�)]	X0	X
]
, (D8)

with the coefficient defined as

ct (νn) = 1

1 + (�/νn)2

[
t

2νn
− 1

4νn�
sin(2�t ) − sin2 �t

2ν2
n

]
+ 1

[1 + (�/νn)2]2

[
�2

ν4
n

− e−νnt

(
�

ν3
n

sin �t + �2

ν4
n

cos �t

)]
, (D9)

dt (νn) = 1

1 + (�/νn)2

[
− t

νn
cos �t + 1

�νn
sin �t

]
− 1

[1 + (�/νn)2]2

{
2
�2

ν4
n

cos �t + e−νnt

[
�2

ν4
n

+
(

�

ν2
n

cos �t + 1

νn
sin �t

)2
]}

,

(D10)
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and analogously for ct (�) and dt (�). The quantities that are small in the Caldeira-Leggett model are

�/νn 
 1, �/νn 
 1, �/� 
 1, (D11)

which can be used to simplify the above expressions.
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Generic appearance of objective results in quantum measure-
ments, Phys. Rev. A 96, 032124 (2017).

[27] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E.
Mooij, Coherent quantum dynamics of a superconducting flux
qubit, Science 299, 1869 (2003).

[28] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune,
J.-M. Raimond, and S. Haroche, Reconstruction of non-
classical cavity field states with snapshots of their decoherence,
Nature (London) 455, 510 (2008).

[29] H. Häffner, C. Roos, and R. Blatt, Quantum computing with
trapped ions, Phys. Rep. 469, 155 (2008).

[30] K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and
M. Arndt, Colloquium: Quantum interference of clusters and
molecules, Rev. Mod. Phys. 84, 157 (2012).

[31] J. Moser, A. Eichler, J. Güttinger, M. I. Dykman, and
A. Bachtold, Nanotube mechanical resonators with qual-
ity factors of up to 5 million, Nat. Nanotechnol. 9, 1007
(2014).

[32] P. Tighineanu, C. L. Dreeßen, C. Flindt, P. Lodahl, and
A. S. Sørensen, Phonon decoherence of quantum dots in
photonic structures: Broadening of the zero-phonon line and
the role of dimensionality, Phys. Rev. Lett. 120, 257401
(2018).

[33] Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor,
S. Gerlich, and M. Arndt, Quantum superposition of molecules
beyond 25 kDa, Nat. Phys. 15, 1242 (2019).

[34] A. G. Redfield, On the theory of relaxation processes, IBM J.
Res. Dev. 1, 19 (1957).

[35] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105, 1206
(1957).

[36] E. B. Davies, Markovian master equations, Commun. Math.
Phys. 39, 91 (1974).

[37] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely
positive dynamical semigroups of N-level systems, J. Math.
Phys. 17, 821 (1976).

032221-10



COMPLEMENTARITY BETWEEN DECOHERENCE AND … PHYSICAL REVIEW A 109, 032221 (2024)

[38] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[39] R. P. Feynman and F. L. Vernon, The theory of a general quan-
tum system interacting with a linear dissipative system, Ann.
Phys. (NY) 24, 118 (1963).

[40] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and
Path Integrals, International Series in Pure and Applied Physics
(McGraw-Hill, New York, 1965).

[41] L. S. Schulman, Techniques and Applications of Path Integration
(Dover, New York, 2012).

[42] P. Ullersma, An exactly solvable model for Brownian mo-
tion: I. Derivation of the Langevin equation, Physica 32, 27
(1966).

[43] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion
in a general environment: Exact master equation with nonlocal
dissipation and colored noise, Phys. Rev. D 45, 2843 (1992).
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3.2 Encoding position by spins: Objectivity in the boson-spin

model

3.2.1 Summary

Intuitively, information in classical physics can be defined as an identification with the

state of a system itself. It is localized at each spacetime point as physical reality and exists

independently of observation as physical reality itself. On the other hand, in quantum

mechanics, the information of a system needs to be realized throughout interaction and

understood as it is transferred through physical processes. In this way, it may not be

appropriate to identify information with a quantum state itself, more specifically, due to

the fact that a unitary evolution cannot copy a general state, by the well-known theorem,

called the no-cloning theorem [13, 47, 48] and a quantum measurement fundamentally

disturbs an original quantum state. In addition, it is known that only orthogonal states

can be recorded to another state in a unitary evolution. Due to such distinct quantum

properties, it is a challenge to derive a mechanism that leads to classical objectivity with its

unlimited cloning of information. One such mechanism in [1], called quantum Darwinism

and its stronger version, SBS in [2, 3, 4] were proposed.

In this article we apply the SBS analysis to the “boson-spin model”, a joint system of

a harmonic oscillator and the bi-linearly interacting spin-12 environment in the thermal

state. This model is related to so-called Dicke models [49, 50]. Here we investigate how

the objective structure of the system due to the interaction with the environment appears.

The objective structure in a quantum state is measured by the objectivity measures,

called the objectivity markers, the decoherence factor and the generalized overlap, in par-

allel with confirming how well information of a central system is transferred into environ-

ment. The boson-spin model is particular in that continuous information of a harmonic

oscillator is encoded in a finite dimensional system, the spin environment, while in the

quantum Brownian motion (QBM) model both systems have continuous degrees of free-

dom. We use the same approximation used in early studies of the QBM model [24], called

the Born-Oppenheimer approximation, i.e. that the state of a harmonic oscillator is hardly

mechanically influenced by interaction with spins. This is also called the recoilless limit of

the model.

The Born-Oppenheimer approximation simplifies the problem so that the spin environ-

ment is under a periodic effective Hamiltonian where a position operator for a harmonic
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oscillator is replaced by its classical trajectory. This periodicity allows us to use the Floquet

theory [33] and the high-frequency expansion [34, 35]. The advantage of these techniques

is to make approximations analytic and controllable in a series expansion. Similarly as

in QBM, using a weak coupling limit defined by gX0/Ω ≪ 1, where g is an interaction

coupling and a position amplitude X0 for a harmonic oscillator, the decoherence factor

and the generalized overlap are expressed approximately in an exponential decay form in

position space, which allows us to define two length scales, the decoherence length and

the distiguishability length as obtained in QBM. It also confirms that the distiguishability

length is larger than the decoherence length. It implies that to distinguish information

in different positions requires a longer distance than the distance where the decoherence

occurs.

The Floquet theory clearly shows the distinct roles of two frequencies from the harmonic

oscillator and the spin self-Hamiltonian. The periodicity in the decoherence factor and the

generalized overlap prevents them from decaying as time goes large. The period from the

self-Hamiltonian is much larger than one from a harmonic oscillator. In order to achieve

a large scale decay with the help of collective degrees of freedom, it is necessary to break

the periodicity. The existence of the spin self-Hamiltonian plays an important role in this

process.

The self-Hamiltonian dependence of the objectivity makers is related to the initial tra-

jectory of the harmonic oscillator, especially visible in distinguishability. When the am-

plitude of a harmonic oscillator is initially the maximum in the effective Hamiltonian for

spins, the generalized overlap does not depend on a spin self-coupling in the lowest order,

which disables a generalized overlap to decay in large scale even with multi-spin degrees

of freedom. However, with the initial non-maximal amplitude, the large scale frequency

due to a spin self-coupling appears in the generalized overlap. Even a small amount of

contribution of the large scale frequency breaks a periodicity in the generalized overlap

and finally leads to its decay in long time scale with a large number of spins. The decay is

maximized when the initial amplitude of a harmonic oscillator is zero.

In conclusion, in the boson-spin model, distinguishability is harder to achieve than de-

coherence due to its temperature dependence. In general, a large number of degrees of

freedom in the environment are necessary for objectivity but a spin self-Hamiltonian plays

a crucial role in its appearance in the objectivity markers, especially in the generalized over-

lap. The initial trajectory of a harmonic oscillator affects its appearance in a generalized

overlap.
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3.2.2 Work contribution

My contribution to this article is following:

1. Giving the idea and implementing the Floquet theory and the high frequency expan-

sion.

2. Performing almost all of the analytical calculations, in particular calculating all the

objectivity markers and their approximations.

3. Performing all the numerical calculations.

4. Creating large parts of the manuscript.
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We investigate quantum objectivity in the boson-spin model, where a central harmonic oscillator interacts
with a thermal bath of spin- 1

2 systems. We analyze how information about a continuous position variable can be
encoded into discrete, finite-dimensional environments. More precisely, we study conditions under which the so-
called spectrum broadcast structures can be formed in the model. These are multipartite quantum-state structures,
representing a mode-refined form of decoherence. Working in the recoil-less limit, we use the Floquet theory
to show that despite its apparent simplicity, the model has a rich structure with different regimes, depending
on the motion of the central system. In one of them, the faithful encoding of the position and hence objectivity
are impossible irrespectively of the resources used. In another, large enough collections of spins will faithfully
encode the position information. We derive the characteristic length scales, corresponding to decoherence and
precision of the encoding.

DOI: 10.1103/PhysRevA.109.052204

I. INTRODUCTION

Although quantum mechanics is believed to be the most
fundamental theory of Nature, it is mysterious and puzzling
that we still have not fully succeeded in explaining our daily
observed world by quantum mechanics. How is it possible for
all counterintuitive quantum natures like superposition, inter-
ference, disturbance, nonlocality, etc., clearly disappear in our
macroscopic world? Although many alternative approaches
compete for explaining the quantum-to-classical transition,
none of them has been agreed on so far. In this situation it
is important to restrict ourselves to the question how far the
classical-quantum discrepancy can be explained within the
current-state quantum mechanics. One of the aspects is the
problem is the objective character of the macroscopic world
as first noted by Zurek [1,2]. Objectivity may be viewed as an
observer independence bears some resemblance to the relativ-
ity theory. But due to the inevitable disturbances introduced
by observations in quantum mechanics, it is not a priori clear
how to achieve the observer independence, at least at the basic
level of measurement results.

In the history of physics, there has been an orthodox view
that the world existing outside of the system of interest plays
a role of a source of noise which can be, at least in principle,
perturbatively controlled, so when it is minimized, the “true
nature” will get more and more approachable. But quantum
mechanics changed that view: our macroscopic reality can be
considered a consequence of interaction between a system and
the rest of the world, as emphasized by the decoherence theory
[3,4]. Within this view there has been an idea developed,
called quantum Darwinism, aimed at explaining the apparent
observer independence in the macroscopic world [1,2,5,6]. It

*taehunee@cft.edu.pl
†jkorbicz@cft.edu.pl

postulates that interactions between a system and an envi-
ronment redundantly transfer the information of a system to
the environment during decoherence. The idea has opened a
new field of objectivity studies (see, e.g., [7–11] for some of
the most recent developments). Although quantum Darwinism
does not completely explain the nonunitary collapse process,
the famous measurement problem, it is still remarkable that
within quantum mechanics some form of objective classicality
can be derived.

A further development of the quantum Darwinism idea is
represented by spectrum broadcast structures (SBS) [6,12,13],
which are specific quantum-state structures, encoding an op-
erational form of objectivity. SBS are a stronger form of
quantum Darwinism in a sense that SBS formation implies
the original quantum Darwinism conditions but not vice versa
[7]. Under appropriate conditions, SBS have been shown to
form in almost all the canonical decoherence models [4], i.e.,
a collisional decoherence [12], quantum Brownian motion
(QBM) in the recoil-less limit [14,15], a spin-spin model
[16,17], and a spin-boson model [14,18]. The only one left is a
boson-spin model, which we analyze in this work. The central
system is a massive oscillator interacting with a thermal bath
of spin- 1

2 systems. We use here a recoil-less approximation,
similarly as in the QBM studies [14,15], where the harmonic
oscillator influences the spin environment, but the recoil is
suppressed. This approximation leads to the same form of
Hamiltonian as for, e.g., a two-level atom interacting with
linearly polarized light [19]. As the effective Hamiltonian for
the spin environment is time periodic, this allows us to use the
Floquet theory and the high-frequency expansion. The most
interesting question arising in this model, and absent in pre-
vious studies, is how finite-dimensional environments encode
a continuous variable (the central oscillator’s amplitude). We
show that depending on the state of motion of a central oscil-
lator there can be either only a momentary formation of SBS
states or a permanent or asymptotic one. Interestingly, this

2469-9926/2024/109(5)/052204(14) 052204-1 ©2024 American Physical Society
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behavior is opposite to the QBM model, showing once again
the stark difference between spin and oscillator environments.
We derive the length scales corresponding to decoherence and
faithful information encoding in the environment, which scale
1/

√
N , where N is the environment fraction size that is used

to store the information or decohere the system.
We will be interested in a so-called partially reduced state

ρS:oE , where a fraction of the environment, assumed unob-
served and denoted by uE , was traced out as an unavoidable
loss, but the remaining fraction, denoted by oE , is kept for
observation. The spectrum broadcast structure (SBS) or an
objective quantum state is then defined as follows [6,12]:

ρS: f E =
∑

i

pi|i〉S〈i| ⊗ ρ
E1
i ⊗ · · · ⊗ ρ

E f N

i , (1)

where

ρ
Ek
i ρ

Ek
j = 0 (2)

for i �= j, which is equivalent to the states ρ
Ek
i having orthog-

onal supports and thus being perfectly distinguishable. After
unobserved degrees of freedom traced out, the SBS structure
of a total density matrix is in an orthogonal convex combi-
nation form. The approach to the SBS structure is marked by
vanishing quantum coherence (off-diagonal elements) and a
perfect distinguishability (diagonal elements), corresponding
to a vanishing decoherence factor and a vanishing generalized
overlap (state fidelity), respectively [16]. These are the objec-
tivity markers that we will analyze in various regimes.

II. DYNAMICS OF SYSTEM

The total Hamiltonian H for a simple harmonic oscillator,
bilinearly interacting with spin- 1

2 environment [4]

H = HS +
∑

i

H (i)
E +

∑
i

H (i)
int , (3)

where

HS = P̂2

2M
+ 1

2
M�2X̂ 2,

H (i)
E = −�i

2
σ (i)

x , (4)

H (i)
int = giX̂ ⊗ σ (i)

z ,

where M and � are a mass and an angular frequency of an
oscillator, respectively, and gi and �i are a spin-environmental
coupling constant and a self-energy (also called the tunneling
matrix element) for the ith spin system, respectively. Here
only bipartite interactions H (i)

int between the ith spin and the
harmonic oscillator are considered, without mutual interac-
tions among the spins. Despite its simple form, the total
Hamiltonian (3) is difficult to solve directly. For the purpose
of our analysis it is, however, enough to use the so-called
recoil-less limit, at least as a first approximation. In this
limit, the central oscillator is assumed to be massive enough
not to feel the recoil of the environment, while each of the
environmental spins is affected by the motion of the central
oscillator, which acts as a classical force. This is an opposite
limit to the much more popular Born-Markov limit, where
it is an environment that is assumed not to be affected by

the system. The justification for such a choice comes from
the fact that we are primarily interested in an information
leakage from a system to an environment as cutting the in-
fluence of the system on the environment would also cut
the information leakage. Hence, it leads us to a study of the
opposite, recoil-less limit. It can be viewed as a version of
the Born-Oppenheimer approximation [20] and it was already
used in the objectivity studies in [14,21,22]. In the recoil-less
limit, the system S evolves unperturbed, according to its own
dynamics HS . It influences the environment via the interaction
Hamiltonian where the system’s position operator X̂ can be
approximated by the classical trajectory X (t ; X0), starting at
some initial position X (0) = X0. The resulting approximate
solution is given by the following ansatz [14]:

|�S:E 〉 =
∫

dX0φ0(X0)e−iĤSt |X0〉Ûeff(X (t ; X0))|ψ0〉. (5)

Here the h̄ = 1 convention has been used and will be applied
to the entire presentation. Ûeff(X (t ; X0)) is the evolution gen-
erated by

Heff =
∑

i

(
−�i

2
σ (i)

x + giX (t ; X0)σ (i)
z

)
, (6)

and |φ0〉 and |ψ0〉 are initial states of S and E , respectively.
Formally, (5) is generated by a controlled-unitary evolution

ÛS:E (t ) =
∫

dX0e−iĤSt |X0〉〈X0| ⊗ Ueff(X (t ; X0)), (7)

acting on the initial state |φ0〉|ψ0〉. For simplicity, we will limit
ourselves to trajectories obtained when the system is initially
in the displaced squeezed vacuum state (for a general solution
of a boson-boson model see [15]): |φ0〉 = D̂(α)Ŝ(r)|0〉, where
D̂(α) is the displacement operator and Ŝ(r) ≡ er(â2−â†2 )/2. Es-
pecially interesting is a highly momentum squeezed state due
to its large coherences in the position. Due to a position cou-
pling to a central oscillator, we expect a strong decoherence
in the position basis. We may then assume that the initial
velocity of each trajectory is zero and initial positions are
distributed according to the corresponding squeezed vacuum
wave function, so that

X (t ; X0) = X0 cos(�t ). (8)

The analysis of the high initial position squeezing, for
which we may assume X (t = 0) = 0 and take X (t ; X0) =
X0 sin(�t ), is analogous.

Assuming a fully product initial state

ρS:E (0) = ρS (0) ⊗
⊗

i

ρ
(i)
E (0), (9)

which is motivated here by the fact that we wish to study
buildup of the system-environment correlations, the full so-
lution is easily obtained from (7):

ρS:E (t ) =
∫

dX0dX ′
0ρ(X0, X ′

0)e−iHSt |X0〉〈X ′
0|eiHSt

N⊗
i=1

Ui(X0, t )ρ (i)
E (0)U †

i (X ′
0, t ), (10)
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where

ρ(X0, X ′
0) ≡ 〈X0|ρS (0)|X ′

0〉 (11)

are the initial coherences and the conditional evolutions of the
ith spin, Ui(X0, t ), are generated by

Hi = −�i

2
σ (i)

x + giX0 cos(�t )σ (i)
z . (12)

This allows us to find the effective evolution of spin states.
The above Hamiltonian is well known and describes, e.g., an
interaction of a linearly polarized light with a two-level atom
[19]. The periodicity in time allows us to use the standard
methods of the Floquet theory (see [23] for the historical work
and, e.g., [24,25] for modern expositions) to find approximate
solutions.

The Floquet theorem states that a unitary evolution for a
periodic Hamiltonian can be written as a product of a unitary
evolution driven by a periodic time-dependent Hamiltonian
K (t ) with the same period of the Hamiltonian and a unitary
evolution by a time-independent Hamiltonian HF :

U (t, t0) = e−iK (t )e−i(t−t0 )HF eiK (t0 ). (13)

HF is responsible for a slow dynamics forming an overall
profile while K (t ) for a fast dynamics forming internal profile
with the same oscillator periodicity K (t ) = K (t + T ) as the
given periodic Hamiltonian (14). The operators K (t ) and HF

can be perturbatively identified by using the high-frequency
expansion [24,25]. One Taylor expands HF in 1/� 	 1, while
K (t ) is the remaining part after HF has been taken out. In
general, convergence of the expansion is not always guaran-
teed [24,25]. By imposing conditions on the rest of parameters
with �, the convergence of the series can be controlled, as we
remark below. Fourier expanding the Hamiltonian (14),

Hi = H0 +
∞∑
j=1

(V ( j)ei j�t + V (− j)e−i j�t ), (14)

where H0 = −(�/2)σx and V (1) = V (−1) = (gX0/2)σz, the
rest being zero, one finds the high-frequency expansion of HF

and K (t ) (we omit the environment index i for simplicity):

HF = H0 + 1

�

∞∑
j=1

1

j
[V ( j),V (− j)]

+ 1

2�2

∞∑
j=1

1

j2
([[V ( j), H0],V (− j)] + H.c.) + · · · (15)

and

K (t ) = 1

i�

∞∑
j

1

j
(V ( j)ei j�t − V (− j)e−i j�t )

+ 1

i�2

∞∑
j

1

j2
([V ( j), H0]ei j�t − H.c.) + · · · . (16)

For the purpose of this work, we take the lowest-order terms
only and t0 = 0. This gives

tHF = −�̃(1 − ξ 2)τσx, (17)

K (t ) = ξσz sin τ, (18)

where we introduced dimensionless position ξ , tunneling en-
ergy �̃, and time τ :

ξ ≡ gX0

�
, �̃ ≡ �

2�
, τ ≡ �t . (19)

Picking the initial time t0 = 0, there is no initial kick K (0) =
0. The convergence of the expansion is guaranteed for �̃, ξ 	
1. Using (17) and (18), the unitary evolutions defined in (13)
are easily found:

e−i(t−t0 )HF = cos[�̃(1 − ξ 2)τ ] + iσx sin[�̃(1 − ξ 2)τ ],

e−iK (t ) = cos[ξ sin τ ] − iσz sin[ξ sin τ ]. (20)

The first is the slow motion part of the dynamics, while the
second is the fast motion part (the micromotion), with the
time-periodic frequency proportional to sin τ . They lead to the
following effective evolution, modulo O(�−2) terms:

Uk (X0, t ) = [
cos(ξk sin τ ) − iσ (k)

z sin(ξk sin τ )
]

× [
cos

[
�̃k

(
1 − ξ 2

k

)
τ
] + iσ (k)

x sin
[
�̃k

(
1 − ξ 2

k

)
τ
]]

.

(21)

III. OBJECTIVE QUANTUM STATES

We now investigate possibilities of a formation of the
SBS-like state (1). The form of the evolution (7) dictates
that the corresponding pointer state eigenvalues are the initial
oscillator position X0, equivalently its amplitude, that controls
the evolution of the environment and hence leaks into it.
Following the general quantum Darwinism setup, we assume
that part of the environment, called oE , is under observation
while the rest, called uE , is unobserved. We are thus interested
in the partial trace of (10) over uE :

ρS:oE (t ) = TruEρS:E (t )

=
∫

dX0dX ′
0ρ(X0, X ′

0)�X0,X ′
0
e−iHSt |X0〉〈X ′

0|eiHSt

⊗
i∈oE

Ui(X0, t )ρ (i)
E (0)U †

i (X ′
0, t ), (22)

where

�X0,X ′
0
≡

∏
k∈uE

Tr
[
Uk (X0, t )ρ (k)

E (0)U †
k (X ′

0, t )
]

=
∏

k

�
(k)
X0,X ′

0
(23)

is the decoherence factor, associated with the unobserved part
of the environment uE . We note that since the decoherence
factor is a function, which magnitude is always less than one,
it can never be ∼δ(X0 − X ′

0), and hence a full decoherence and
a strict S : E disentanglement cannot happen, though they take
place for discrete variables, but they happen rather in an ex-
istence of some decoherence length, below which coherences
are preserved [15,26].

To identify under such conditions the candidates for the
information-encoding states ρ

Ek
i from (1), we recall that in

the Darwinism setup, the observers monitor the system only
indirectly, via portions of the environment. Since in realistic
conditions, a single environment will in general carry a van-
ishingly small information about the system, we assume that

052204-3



TAE-HUN LEE AND JAROSŁAW K. KORBICZ PHYSICAL REVIEW A 109, 052204 (2024)

each observer has an access to a collection of environments,
called macrofraction [12], scaling with the total number of
environments N . The state of a macrofraction is obtained from
(22) by tracing out everything except for the given macfrofrac-
tion:

ρmac(t ) = TrSoE\macρS:oE (t )

=
∫

dX0 p(X0)ρmac(X0), (24)

where p(X0) ≡ 〈X0|ρS (0)|X0〉 is the probability distribution of
the initial position and

ρmac(X0) ≡
⊗

k∈mac

Uk (X0, t )ρ (k)
E (0)U †

k (X0, t ) (25)

is the conditional state corresponding to X0. Thus, to know
X0, each observer must be able to distinguish the states (25)
for different X0. There are different scenarios to study state
distinguishability [27], e.g., the quantum Chernoff bound
used already in some studies of quantum Darwinism [28,29]
or, more appropriate here due to the continuous parameter,
quantum metrology [30]. Here, like in the the previous SBS
studies, we will follow a simple form of the latter and will
study the generalized overlap (state fidelity), which is the
integral of the quantum Fisher information [31]:

B(ρ, ρ ′) ≡ [Tr
√√

ρρ ′√ρ]2. (26)

Note B(ρ, ρ ′) here is defined by squaring, which is different
from the usual definition. We note that B(ρ, ρ ′) vanishes if
and ony if the states have orthogonal supports, ρρ ′ = 0, pro-
viding a measure of distinguishability. Although it produces
less tight bounds on the probability of discrimination error
than the quantum Chernoff bound [28,32], it has the property
of factorizing with respect to the tensor product, making its
calculation easier and similar to the decoherence factor:

Bmac
X0,X ′

0
≡ B[ρmac(X0), ρmac(X ′

0)] =
∏

k∈mac

B(k)
X0,X ′

0
. (27)

From the metrological point of view, encoding X0 into a fully
product state (25) leads to a rather uninteresting classical
scenario [30], but encoding efficiency is not our goal here
and we postpone a study of more advanced scenarios with
entangled macrofraction states to a future research. Just like
with the decoherence, we expect that distinguishability will
be achieved only at some characteristic length scale.

Summarizing, the approach to the SBS structure will be
characterized by two quantities [16], the decoherence factor
(23) and the generalized overlap (27). We will call them
“objectivity markers.” We note that their factorized character,
i.e., a total measure is a product of measures for individual
environmental systems, which is due to the uncorrelated initial
state. As one expects, a single factor corresponding to a single
environmental spin will be oscillatory and of course will not
lead anywhere close to the SBS structure. However, due to
the factorized character, we expect that for a sufficiently large
group of spins a considerable dephasing will take place at
some length scales, leading to an approximate SBS structure.

IV. CALCULATION OF OBJECTIVITY MARKERS

We first focus on a single term in each expression (23)
and (27), dropping the environment indices for brevity. State
fidelity has a particularly simple form for spin- 1

2 states. Let
M ≡ √

ρρ ′√ρ, then

B(ρ, ρ ′) = TrM + 2
√

det M. (28)

Since in our case ρ and ρ ′ have the same initial state ρ0 but
different evolutions U and U ′, we obtain

M = U
√

ρ0U
†U ′ρ0U

′†U
√

ρ0U
†

and, finally,

BX0,X ′
0
= Tr

[
U †

X0,X ′
0
ρ0UX0,X ′

0
ρ0

] + 2 det ρ0,

where we defined a relative evolution operator:

UX0,X ′
0
≡ U †(X ′

0, t )U (X0, t ). (29)

We note that the decoherence factor also depends on it.
Before calculating the markers for the evolution (21), we

first derive general expressions. We will find it convenient to
use the Bloch representation, decomposing any operator into
identity and Pauli matrices. This representation will give a
nice geometrical interpretation for the decoherence factor and
the generalized overlap and their complementarity relation.
Let us decompose the initial state and the relative evolution
in the Pauli basis:

ρ0 = 1
2 (1 + 
a · 
σ ), (30)

where |
a| � 1 and

UX0,X ′
0
= u0 + i
u · 
σ , (31)

where

u2
0 + |
u|2 = 1. (32)

Then it is easy to obtain the decoherence factor

�X0,X ′
0
= u0 + i
a · 
u (33)

and its modulus ∣∣�X0,X ′
0

∣∣2 = u2
0 + (
a · 
u)2, (34)

which controls the decoherence process in the position basis.
Calculation of the generalized overlap, in turn, leads to (see
Appendix A for the details)

BX0,X ′
0
= 1 − |
a × 
u|2. (35)

Combining Eqs. (34) and (35) the relation between |�X0,X ′
0
|2

and BX0,X ′
0

is expressed by

BX0,X ′
0
− ∣∣�X0,X ′

0

∣∣2 = (1 − |
a|2)
(
1 − u2

0

)
. (36)

This relation can be interpreted as a sort of complementarity
between decoherence factor and distinguishability.

Using (34) and (36), we can express the decoherence factor
and the generalized overlap in the high-frequency expansion
of Sec. II. As seen, the decoherence factor and the generalized
overlap are a function of only a vector 
a representing an initial
density matrix for a spin ρ0 and a relative unitary operator
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UX0,X ′
0

defined in Eq. (29). Using (21), we obtain in the first
order of the high-frequency expansion that

UX0,X ′
0
= U †

F (τ ; ξ ′)UK (τ ; ξ − ξ ′)UF (τ ; ξ )

= u0 + i
u · 
σ , (37)

where

u0 = cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin τ ],

u1 = − sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin τ ],

u2 = sin[�̃(2 − ξ 2 − ξ ′2)τ ] sin[δξ sin τ ], (38)

u3 = − cos[�̃(2 − ξ 2 − ξ ′2)τ ] sin[δξ sin τ ],

with the notation δξ ≡ ξ − ξ ′ and the dimensionless param-
eters defined in (19). We recall that for the trajectories (8)
there is no initial kick at t0 = 0 [cf. (18)]. Each ui in (38) is a
product of a fast and a slow moving part, as one would expect
from the Floquet theory. The frequency of the slow motion is
proportional to the tunneling energy �̃, while the fast-moving
terms are independent of it and have the time-dependent fre-
quency δξ sin τ . There is also a distinction between (u0, u1)
and (u2, u3). The (u0, u1) pair has large overall sinusoidal
patterns with small internal vibrations while in (u2, u3) the
overall profiles are comparable to internal vibrations. As we
will see, the fast-moving parts are unwanted for objectivity.

To proceed further, we will assume that the environment is
initially in the thermal state, i.e.,

ρ
(k)
E (0) = e−βH (k)

E

Tr[e−βH (k)
E ]

= 1

2

[
1 + σx tanh

(
β�k

2

)]
, (39)

where β = 1/kBT , so that the parameters of the initial state
are given by 
a = (E (β ), 0, 0), where we introduced

E (β ) ≡ tanh

(
β�

2

)
= 〈E〉

�/2
, (40)

denoting the average thermal energy, rescaled by the tunneling
energy. We obtain the following single-factor expressions for
the decoherence and generalized overlap:∣∣�1

X0,X ′
0

∣∣2 = u2
0 + E (β )2u2

1, (41)

B1
X0,X ′

0
= 1 − E (β )2 + E (β )2

(
u2

0 + u2
1

)
, (42)

which leads to

∣∣�1
X0,X ′

0

∣∣2 =
[

1 − sin2[�̃(ξ 2 − ξ ′2)τ ]

cosh2(β�/2)

]
cos2[δξ sin τ ], (43)

B1
X0,X ′

0
= 1 − E (β )2 sin2[δξ sin τ ]. (44)

The time dependence of the decoherence factor is given by
the slow motion and the fast motion modulating each other.
In contrast, the generalized overlap depends only on the fast
oscillating part. We note that the decoherence factor depends
here on the temperature, contrasting the result in a boson-spin
system mapped from that of the quantum Brownian motion
in the Born-Markov approximation [4]. In particular, at zero
temperature the slow-motion part vanishes. Sample plots of
the markers as the functions of the rescaled time τ are pre-
sented in Figs. 1 and 2.

FIG. 1. Time dependence of decoherence factors for a single-
spin environment (43). The solid and dashed lines stand for ξ = 0.9
and 0.6, respectively, while ξ ′ = 0.1 is fixed. The rest of the parame-
ters are �̃ = 1

6 , β� = 1. Both slow and fast oscillations are clearly
visible.

The full decoherence and overlap functions are products
of the above factors [cf. (23) and (27)]. We begin their
analysis by first assuming small dimensionless amplitudes of
the central oscillator ξ, ξ ′ 	 1, which allows to expand the
trigonometric functions. In particular, sin2[�̃(ξ 2 − ξ ′2)τ ] ≈
(ξ 2 − ξ ′2)2t2�2/4 + O(ξ 8), which is valid for times

t 	 2�2

g2�
∣∣X 2

0 − X ′2
0

∣∣ . (45)

Similarly, we expand the fast-motion factors containing [(ξ −
ξ ′) sin τ ]. Keeping the terms at most quadratic in ξ , we obtain∣∣�1

X0,X ′
0

∣∣2 = 1 − δξ 2 sin2 τ + O(ξ 4)

≈ exp

[
−g2δX 2

0

�2
sin2 �t

]
, (46)

FIG. 2. Time dependence of generalized overlaps for a single-
spin environment (44). The solid and dashed lines stand for ξ = 0.9
and 0.6, respectively, while ξ ′ = 0.1 is fixed. The rest of the pa-
rameters are the same as in Fig. 1 for a better comparison: �̃ = 1

6 ,

β� = 1.
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where we came back to the original variable using (19) and de-
fined δX0 ≡ X0 − X ′

0. The temperature dependence, the whole
slow oscillating part, disappears in the lowest order and ap-
pears only in the ξ 4 terms and higher. The behavior of the
overlap is different in this respect and depends strongly on the
temperature even in the lowest order in ξ :

B1
X0,X ′

0
= 1 − δξ 2E (β )2 sin2 τ + O(ξ 4)

≈ exp

[
−g2δX 2

0

�2
E (β )2 sin2 �t

]
. (47)

To calculate the products (23) and (27), we will assume that
the constants gk and �k are identically and independently
distributed according to some probability distributions and
there are sufficiently many terms in the resulting sums in the
exponentials to apply the law of large numbers:

∣∣�X0,X ′
0

∣∣2 =
∏

k∈uE

∣∣�(k)
X0,X ′

0

∣∣2 = exp

[
−δX 2

0

�2

∑
k∈uE

g2
k sin2 �t

]

(48)

≈ exp

[
−Nu

〈g2〉δX 2
0

�2
sin2 �t

]
, (49)

where Nu, is the size of the unobserved fraction uE of the
environment and 〈g2〉 is the average of gk over the uE . This
procedure [16] can be viewed as a form of an introduction of
spectral density, but we keep control of the number of spins in
the fractions. Similarly for the generalized overlap,

BX0,X ′
0
=

∏
k∈mac

B(k)
X0,X ′

0

≈ exp

[
−Nmac

〈g2〉δX 2
0

�2
〈E (β )2〉 sin2 �t

]
, (50)

where Nmac is the observed macrofraction size and we as-
sumed that the distributions of g′s and �′s are independent;
〈E (β )2〉 is understood as the average over the � [cf. (40)].
Due to the periodicity of the markers (49) and (50), it is imme-
diately obvious that in the small displacement limit, there are
complete recoherences at the turning points tn = nπ/� and
there is no asymptotic behavior as t → ∞. We can thus speak
of the approach to the objective state only in the time intervals
between the turning points. As anticipated, this approach is
governed by two length scales, controlling the decoherence
and the distinguishability processes:

λdec ≡ �√
Nu〈g2〉 , (51)

λdist ≡ �√
Nmac〈g2〉〈E (β )2〉 . (52)

Their dependencies on the fraction sizes, or equivalently on
the Hilbert-space dimensionalities of the fractions, mean that
shorter distances are resolved as more spins are taken into
account. We call the above length scales the decoherence
and the distinguishability length scales. The distinguishability
length scale is temperature dependent and grows with the tem-

perature approximately linearly for high temperatures. This is
intuitively clear as hotter environment is closer to the totally
mixed state and thus its information-carrying capabilities are
worse. Moreover, for nonzero temperatures, λdist > λdec for
the same fraction sizes, meaning that one can extract the posi-
tion X0 from the environment with a worse resolution than one
at which the environment decoherences the central system.
This phenomenon of “bound information” in the environment
was observed in the QBM model in [15].

Let us now analyze the objectivity markers beyond the
small-amplitude approximation. We first look at the general-
ized overlap:

BX0,X ′
0
=

∏
k∈mac

[1 − Ek (β )2 sin2(δξk sin τ )]. (53)

It is immediately clear that the time-periodic frequency sin τ

dictates the periodic character of BX0,X ′
0
:

BX0,X ′
0
(t ) = BX0,X ′

0
(t + π/�), (54)

irrespectively of what are the distributions of gk and �k . In
particular, this periodicity implies a complete loss of distin-
guishability, BX0,X ′

0
(tn) = 1, at the turning points tn = nπ/�,

just like in the approximate analysis above. The behavior of
BX0,X ′

0
(t ) can be approximated using the law of large numbers

in the following way:

log BX0,X ′
0
=

∑
k∈mac

log B(k)
X0,X ′

0
≈ Nmac

〈
log B1

X0,X ′
0

〉
� Nmac log〈B1

X0,X ′
0
〉, (55)

where we used the concavity of the logarithm. Furthermore,〈
B1

X0,X ′
0

〉 = 1 − 〈E (β )2〉〈sin2(δξ sin τ )〉.
We are interested in the last average as it determines the
time dependence. For simplicity we will assume a uniform
distribution of g over some interval [0, ḡ]. This corresponds
to a spectral density with a sharp cutoff at ḡ. Elementary
integration gives

〈sin2(δξ sin τ )〉 = 1

ḡ

∫ ḡ

0
dg sin2

[
gδX0

�
sin τ

]
(56)

= 1

2

[
1 − sinc

(
2ḡδX0

�
sin τ

)]
, (57)

where sincx ≡ sin x/x, which leads to

BX0,X ′
0
≈

{
1 − 1

2
〈E (β )2〉

[
1 − sinc

(
2ḡδX0

�
sin τ

)]}Nmac

.

(58)

Since 1 − sincx ≈ x2/6 + O(x4) rises(decays) around the
turning points tn = nπ/� are given by the small-amplitude
approximation (50), with λdist rescaled by an unimportant
factor

√
3. A sample plot of (58) is presented in Fig. 3 for

different values of δξ̄ = ḡδX0/�. The decoherence factor can
be analyzed in the same steps (55)–(58) with the complica-
tion that it is composed of both slow- and fast-moving parts.
We need the average of (43). For simplicity we will assume
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FIG. 3. Generalized overlap for Nmac = 100 spin environments
with different interaction couplings ξ (the solid and dashed lines
stand for ξ̄ = 0.9 and 0.6, respectively). (�̃ = 1

6 , � = 3, β� =
1, ξ̄ ′ = 0.1) are chosen.

�k = � so the only randomness is in gk :〈∣∣�X0,X ′
0

∣∣2
〉
= 〈cos2(δξ sin τ )〉

− 〈sin2[�̃(ξ 2 − ξ ′2)τ ] cos2(δξ sin τ )〉
cosh2(β�/2)

= cosh(β�)

cosh(β�) + 1
〈cos2(δξ sin τ )〉 (59)

+ 1

2 cosh(β�) + 2
{〈cos[2�̃(ξ 2 − ξ ′2)τ ]

(60)

+〈cos[2�̃(ξ 2 − ξ ′2)τ ] cos(2δξ sin τ )〉} (61)

≡ �fast(τ ) + �slow(τ ), (62)

where we used trigonometric and hyperbolic identities to sim-
plify the expressions. The first term (59) is the fast oscillating
part which is equal to

�fast(τ ) = cosh(β�)

2 cosh(β�) + 2

[
1 + sinc

(
2ḡδX0

�
sin τ

)]
,

(63)

where we used above the same averaging as in (56) and (57).
It is clearly time periodic due to the periodic frequency sin τ ,
just like (58), but it is multiplied by a temperature-dependent
factor that is always smaller than 1. The behavior around
the turning points tn = nπ/� is again given by the Gaussian
law (49) with the λdec rescaled by

√
3. The terms (60) and

(61) are the slow oscillating parts, contributing for nonzero
temperatures. They can be calculated explicitly for a uniform
distribution by using Fresnel integrals as they contain g2 under
the cosine. For example, the term (60) is proportional to

f (τ ) ≡ 〈cos[2�̃(ξ 2 − ξ ′2)τ ]〉

= 1√
2�̃(ξ̄ 2 − ξ̄ ′2)τ

C(
√

2�̃(ξ̄ 2 − ξ̄ ′2)τ ), (64)

FIG. 4. Decoherence factors for Nu = 20 spin environments with
different interaction couplings ξ (the solid and dashed lines stand for
ξ = 0.9 and 0.6, respectively). (�̃ = 1

6 , � = 3, β� = 1, ξ ′ = 0.1
are chosen.)

where C(x) ≡ ∫ x
0 du cos u2 is the cosine Fresnel integral and

ξ̄ ≡ ḡX0/�. The long-time behavior of this term is determined
by an asymptotic expansion for large x, C(x) ≈ √

π/8 +
sin x2/2x + O(x−3) [33], which gives f (τ ) ∼ 1/

√
τ for long

times. The last term, (61), is a bit more complicated but can
be manipulated using basic trigonometric identities [refer to
(B2)]. As a result, from (64) and (B2) it follows that for large
times �slow(τ ) ∼ 1/

√
τ . And finally:

|�X0,X ′
0
|2 ≈ [�fast(τ ) + �slow(τ )]Nu (65)

= [�fast(τ )]Nu + O

(
1√
τ

)
(66)

=
[

cosh(β�)

cosh(β�) + 1

]Nu
[

1

2
+ 1

2
sinc

(
2ḡδX0

�
sin τ

)]Nu

+ O

(
1√
τ

)
. (67)

Despite the presence of a time-periodic term, unlike the gen-
eralized overlap (58) this function can effectively decay with
time, meaning decoherence can take place. This is due to the
temperature-dependent prefactor in (67), which multiplies the
sinc term and which decays with temperature and for high
temperatures (small β) is of the order ∼2−Nu . Thus, although
the sinc term is equal to one at the turning points tn = nπ/�,
its contribution is damped by the temperature-dependent term.
A sample plot of the exact expression (65) using (63), (64),
and (B2) is presented in Fig. 4.

We conclude that for cosine trajectories (8), although the
central ocillator can be effectively decohered, the environ-
ment, however, is unable to reliably store the amplitude
information for all times as there are periodic and complete
losses of distinguishability at the turning points. Thus, ob-
jective states can form only between the turning points. We
suspect these perfect revivals are caused by the recoil-less
approximation, which completely neglects the damping of the
central oscillator. They are also in contrast with the oscillator
environment, where for the same trajectory (8) and under the
same approximation (5) no such revivals were observed, but
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rather a steady decay [14]. The revivals, in turn, appeared in
the QBM model for sine trajectories, corresponding to initial
position squeezing, which was in agreement with the earlier
works [34]. It is therefore interesting to study more general
trajectories in the current model too.

A. Arbitrary trajectory

An arbitrary trajectory of the central oscillator is obtained
by adding a constant phase φ to (8):

X (t ) = X0 cos(τ + φ). (68)

It is then interesting to investigate how this phase can affect
the objectivity, especially whether there is a possibility to

overcome the asymmetry between the decaying decoherence
factor and the monotonously oscillating generalized overlap
found above. The phase changes the Fourier components V (1)

and V (−1) in high-frequency expansion in (14),

V (±1) = gX0

2
σz → gX0

2
σze

±iφ. (69)

Consequently, as seen in (15) and (16), K (t ) gets a phase
change (18):

K (t ) = ξσz sin(τ + φ), (70)

while the Floquet Hamiltonian HF remains the same as in
(17). In (13) φ �= 0 contributes to UX0,X ′

0
due to the nontrivial

initial kicks K (0). Explicitly, from (13) and (37), we obtain
UX0,X ′

0
= u0 + i
u · 
σ with [cf. (38)]

u0 = cos[δξ sin φ] cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] + sin[δξ sin φ] cos[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u1 = − cos[(ξ + ξ ′) sin φ] sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] + sin[(ξ + ξ ′) sin φ]

× sin[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u2 = − sin[(ξ + ξ ′) sin φ] sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] − cos[(ξ + ξ ′) sin φ]

× sin[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u3 = sin[δξ sin φ] cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] − cos[δξ sin φ] cos[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)]. (71)

The only relevant components for a decoherence factor (34) and a generalized overlap (35) associated with the thermal state (39),
i.e., with 
a = (E (β ), 0, 0), are u0 and u1, which follows from (32). We first analyze the small-ξ approximation as it is easier.
The factors u2

0 and u2
1 then read as

u2
0 = 1 − δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4],

u2
1 = O[ξ 4], (72)

which from (34) and (35) lead to the following single-spin expressions:∣∣�1
X0,X ′

0

∣∣2 = 1 − δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4],

= exp[−δξ 2| sin φ + ei2�̃τ sin(τ + φ)|2] + O(ξ 4),

B1
X0,X ′

0
= 1 − E (β )2δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4]

= exp[−δξ 2E (β )2| sin φ + ei2�̃τ sin(τ + φ)|2] + O(ξ 4). (73)

Figures 5 and 6 show sample plots of decoherence factors and fidelity, respectively. For multiple spins, the law of large numbers
gain can be used implies that the exponents above are rescaled by the fraction sizes, similarly to (49) and (50):

|�X0,X ′
0
|2 ≈ exp

[
− Nu

〈g2〉δX 2
0

�2
| sin φ + ei2�̃τ sin(τ + φ)|2

]
, (74)

BX0,X ′
0
≈ exp

[
−NmacE (β )2 〈g2〉δX 2

0

�2
| sin φ + ei2�̃τ sin(τ + φ)|2

]
. (75)

We see that the decays are governed by the same length scales (51) and (52) and the functions are doubly periodic with the
periods given by �−1 and �−1. Apart from this, the behavior in the small-ξ approximation is essentially the same as for φ = 0
case (49) and (50). We will see that this will change for a general φ. Some remarks are in order. For the purpose of this work,
we are assuming �k being the same for all spins. This avoids complicated averages of the type

∫
d� tanh(β�/2) cos(2�t )

although obviously different �k can introduce dephasing, helping to counter the periodicity. This possibility will be investigated
elsewhere. Here, we concentrate on randomized coupling constants gk .

We now estimate the objectvity markers for arbitrary parameters. According to our procedure [cf. (55)], we need the averages
of the single-spin functions. The detailed calculations are presented in Appendix B. As before, we separate between the fast and
slow oscillating parts: 〈∣∣�1

X0,X ′
0

∣∣2〉 = �fast(τ ) + �slow(τ ), (76)
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where oscillating parts are

�fast(τ ) ≡ 1

8
[2 + sinc{δξ̄ [sin φ + sin(τ + φ)]} + sinc{δξ̄ [sin φ − sin(τ + φ)]}] + E (β )2

8
[2 + sinc{(ξ̄ + ξ̄ ′) sin φ

+ δξ̄ sin(τ + φ)]} + sinc{(ξ̄ + ξ̄ ′) sin φ − δξ̄ sin(τ + φ)]}] (77)

and decaying parts behaving asymptotically as 1/
√

τ are

�slow(τ ) ≡
∑
a,b,c

d�
abcF�[a, b, c] = O

(
1√
τ

)
(78)

with F�[a, b, c] defined in (B5) and d�
abc can be identified in (B3) and (B4). Similarly,

〈BX0,X ′
0
〉 = Bfast(τ ) + Bslow(τ ), (79)

where

Bfast(τ ) ≡ 1 − E (β )2

8
[4 − sinc{δξ̄ [sin φ + sin(τ + φ)]} − sinc{δξ̄ [sin φ − sin(τ + φ)]}

− sinc{(ξ̄ + ξ̄ ′) sin φ + δξ̄ sin(τ + φ)]} − sinc{(ξ̄ + ξ̄ ′) sin φ − δξ̄ sin(τ + φ)]}] (80)

and

Bslow(τ ) ≡
∑
a,b,c

dB
abcF B[a, b, c] = O

(
1√
τ

)
(81)

with F B[a, b, c] defined in (B5) and dB
abc can be identified

in (B3) and (B4). As τ → ∞, �slow and Bslow die out as
1/

√
τ and only �fast and Bfast remain. Thus, as τ → ∞ a total

decoherence factor and a total generalized overlap are given
by the fast movers only:∣∣�X0,X ′

0

∣∣2 = [�fast(τ ) + �slow(τ )]Nu

= [�fast(τ )]Nu + O

(
1√
τ

)
, (82)

FIG. 5. Time dependence of decoherence factor for a single-spin
environment with φ = ±π/2 [Eq. (43)]. The solid and dashed lines
correspond to ξ = 0.9 and 0.6, respectively, while ξ ′ = 0.1 is fixed.
The rest of the parameters are �̃ = 1

6 , β� = 1. The separation be-
tween a slow and fast oscillation is less clear due to involvement of
another frequency than for φ = 0 in Fig. 1.

BX0,X ′
0
= [Bfast(τ ) + Bslow(τ )]Nmac

= [Bfast(τ )]Nmac + O

(
1√
τ

)
. (83)

The trajectory with φ = 0, i.e., X = X0 cos τ studied before, is
rather particular in the structure of UX0,X ′

0
[Eq. (38)] in that the

slow-moving part with the frequency �̃(ξ 2 − ξ ′2) completely
vanishes, leaving only the fast-moving part in BX0,X ′

0
. In this

oscillating case, it is not possible to have a decay BX0,X ′
0

regardless of the number of spins. However, as we see for
φ �= 0 the situation is different as even a small φ leads to the
dephasing of the sinc functions in (77) and (81), which in turn
lead to a decay of both functions for many spin environments
as we demonstrate below.

FIG. 6. Time dependence of the generalized overlap for a single-
spin environment with φ = ±π/2 [Eq. (43)]. The solid and dashed
lines correspond to ξ = 0.9 and 0.6, respectively, while ξ ′ = 0.1 is
fixed. The rest of the parameters are �̃ = 1

6 , β� = 1. The separation
between a slow and fast oscillation is less clear due to involvement
of another frequency than for φ = 0 in Fig. 2.
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FIG. 7. Decoherence factor for large-spin environments as a
function of time and different phases φ. The dotted, dashed, and
thick lines correspond to φ = π/10, π/4, π/2, respectively. (ξ̄ =
0.9, β� = 1, ξ̄ ′ = 0.1, Nu = 20 are chosen.)

We show that max[�fast(τ )] < 1, max[Bfast(τ )] < 1 for any
τ > 0, which means both functions are exponentially damped
as multiple spins are considered [cf. (82) and (83)]. It will be
convenient to introduce the following functions:

g−(τ ) ≡ sinc{δξ̄ [sin φ + sin(τ + φ)]}
+ sinc{δξ̄ [sin φ − sin(τ + φ)]}, (84)

g+(τ ) ≡ sinc{(ξ̄ + ξ̄ ′) sin φ + δξ sin(τ + φ)]}
+ sinc{(ξ̄ + ξ̄ ′) sin φ − δξ sin(τ + φ)]}. (85)

Their extrema for ξ, ξ ′ < 1, which guarantees the high-
frequency expansion and the positivity of sinc functions, are
given by

sin(τ + φ + π/2) = 0, (86)

sin(τ + φ) = 0. (87)

Since at φ = 0 the second condition indicates the maxima,
g±(τ ) continues being shifted to the left by φ �= 0 as sin(τ +
φ) = 0 moves to the left. So it can be recognized that the first
condition gives the minima while the other one the maxima,
which read as, for t > 0,

max(�fast ) = 1

4
{1 + sinc(δξ̄ sin φ) (88)

+ E (β )2(1 + sinc[(ξ̄ + ξ̄ ′) sin φ)])}

= 1 + E (β )2

2
− φ2

24
[δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2]

+ O(φ4) (89)

and

max(Bfast ) = 1 − E (β )2

4
{2 − sinc(δξ̄ sin φ)

− sinc[(ξ̄ + ξ̄ ′) sin φ)]} (90)

= 1 − φ2

12
E (β )2(ξ̄ 2 + ξ̄ ′2) + O(φ4). (91)

FIG. 8. Generalized overlap for large-spin environments as a
function of time and different phases φ. The dotted, dashed, and
thick lines correspond to φ = π/10, π/4, π/2, respectively. (ξ̄ =
0.9, β� = 1, ξ̄ ′ = 0.1, Nmac = 100 are chosen.)

Note that these values depend on (ξ̄ , ξ̄ ′) and β� but not
directly on the tunneling energy �̃, which is nevertheless
necessary to damp the slow-moving parts as we have shown
earlier. We see from the above expressions that

(1) max(Bfast ) < 1 for any nonzero φ, provided E (β ) > 0,
i.e., the temperature is finite β > 0;

(2) max(�fast ) < 1 for any nonzero φ, provided E (β ) < 1,
i.e., the temperature is nonzero β < ∞.

This, in turn, implies via (82) and (83) that outside the
temperature extremes, both markers |�X0,X ′

0
|2 and BX0,X ′

0
are

asymptotically damped for Nu, Nmac � 1 and the state (23)
approaches the objective state. The amount of damping, and
hence the quality of the objectivity in the state, depends on
Nu, Nmac and the temperature. For small φ, we obtain from
(82) and (83) the following bounds:

∣∣�X0,X ′
0

∣∣2 �
[

1 + E (β )2

2
− φ2

24
[δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2]

]Nu

≈
[

1 + E (β )2

2

]Nu

× exp

[
−Nuφ

2 δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2

12[1 + E (β )2]

]
, (92)

BX0,X ′
0
�

[
1 − E (β )2φ2

12
(ξ̄ 2 + ξ̄ ′2)

]Nmac

≈ exp

[
−Nmac

E (β )2φ2

12
(ξ̄ 2 + ξ̄ ′2)

]
. (93)

This situation is to be contrasted with the previous section,
where we showed that the cosine trajectory (8) does not lead
to the permanent damping of the generalized overlap for any
amount of spins in the macrofraction and hence no permanent
objective states can be formed. Sample plots of both markers,
using the exact expressions calculated in Appendix B, are
presented in Figs. 7 and 8. We see in particular that it is more
difficult to damp the generalized overlap as it takes about 5×
more spins than needed to induce the decoherence. This is to
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be expected as the spins are encoding the continuous variable:
the oscillation amplitude X0.

V. CONCLUDING REMARKS

We analyzed the emergence of objectivity in the last canon-
ical models of decoherence, a boson-spin model in SBS state
formation that so far has not been used in the rest. Due to
the complicated dynamics, we used the recoil-less limit where
the influence of the environment on the central oscillator is
assumed to be negligible. This is an opposite limit to the usual
Born-Markov one, but the most appropriate for studying in-
formation transfer to the environment during the decoherence
process. The recoil-less limit can be viewed as a version of the
Born-Oppenheimer approximation, where the central system
evolves unperturbed and affects the environmental spins via
coupling to its classical trajectory, which acts as an external
time-dependent force. The resulting effective dynamics of the
environment allows for the use of the Floquet theory. We
perform the analysis in the first order of the high-frequency
expansion and demonstrate and find, in particular, an inter-
esting fact: fast-moving parts of the motion are detrimental
to the emergence of objectivity while the slow-moving parts
enable it. Another interesting aspect of the model, not present
in other canonical models, is a mismatch between the encoded
variable, which is a continuous positionlike variable (the os-
cillation amplitude), and the encoding system, which is finite
dimensional (a collection of spins). In this respect, we show
two facts. First, we derive two characteristic wavelengths: one
corresponding to the decoherence scale on the side of the cen-
tral system and another governing the resolution, with which
collections of environmental spins encode the continuous vari-
able. The lengths are different, in particular, the encoding one
depends on the temperature and is larger than the decoherence
one, which shows the phenomenon of “bound information” in
the environment: the resolution of a possible read-out from the
environment is lower than the scale on which coherences are
destroyed. Both length scales depend on the fraction size, i.e.,
the bigger the size, the lower the length scales, which is quite
intuitive. However, the presence of the length scales does not
guarantee a stable formation of objectivity. We show that the
latter depends on the type of motion of the central system.
In particular, for initial states with a well-defined momentum,
there can be only a momentary formation of objectivity, while
even a small departure from this specific initial condition
leads to an asymptotic formation of objective states. This is
exactly opposite to what one finds in QBM, where initially
well-defined momentum states lead to a stable appearance of
objectivity, and one of the examples showing how spin and
oscillator environments differ.

Our analysis can be applied for the quantum measure-
ment theory in the following points. First, our result is an
example of how a continuous variable can be measured by
finite-dimensional systems in a realistic scenario of an open
quantum dynamics. Second, from a broader perspective, it
could be used to have an exemplary answer to the fundamental
question of when the measurement is completed. One may
postulate that it is completed when the system+measuring
apparatus are close enough to the SBS state, which guarantees

an objective character of the measurement result. This remark
of course applies to the whole of the SBS and quantum Dar-
winism program.

ACKNOWLEDGMENT

T.-H.L. and J.K.K. acknowledge the support from
the Polish National Science Center (NCN), Grant No.
2019/35/B/ST2/01896.

APPENDIX A: GENERALIZED OVERLAP IN BLOCH
REPRESENTATION

We will get a geometrical expression for a generalized
overlap B2(ρ, ρ ′) for a qubit when ρ and ρ ′ are unitarily
related and its relation with a decoherence factor |�X0,X ′

0
|2.

B(ρ, ρ ′) is defined in Eq. (26) as

B(ρ, ρ ′) = TrM + 2
√

det M, (A1)

where

M = √
ρρ ′√ρ (A2)

with

ρ ≡ Uρ0U
†, ρ ′ ≡ U ′ρ0U

′†.

Using the cyclic property of a trace and determinant, B(ρ, ρ ′)
in Eq. (A1) is rewritten as

B(ρ, ρ ′) = TrM̃ + 2
√

det M̃, (A3)

where W = U †U ′ = U †
X0,X ′

0
and

M̃ = W ρ0W
†ρ0. (A4)

With the notations W = u0 − i
u · 
σ and ρ0 = (1 + 
a · 
σ )/2,
we express W ρ0 as

W ρ0 = 1
2 (v0 + 
v · 
σ ), (A5)

where

v0 ≡ u0 − i
a · 
u,

vi ≡ u0ai − iui + (
u × 
a)i. (A6)

With ρ0W = (W †ρ0)† and W †(
u) = W (−
u) we obtain ρ0W :

ρ0W = 1
2 (v0 + 
̄v · 
σ ), (A7)

where

v̄i ≡ u0ai − iui − (
u × 
a)i. (A8)

Using Eqs. (A4), (A5), and (A7), we obtain

M̃ = m̃0 +
∑

i

m̃iσi, (A9)

where

m̃0 ≡ 1
4 (|v0|2 + 
v · 
̄v∗),

m̃i ≡ 1
4 [viv

∗
0 + v̄∗

i v0 + i(
v × 
̄v∗)i],

and hence TrM is expressed as

TrM = TrM̃ = 1
2 (|v0|2 + 
v · 
̄v∗). (A10)
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3.3 Holevo bound and objectivity in the boson-spin model

3.3.1 Summary

The purpose of this article is to formulate and study a different description of objec-

tivization process from what we used before, by using the language of quantum channels.

Both quantum Darwinism and SBS approaches rely on the information transfer from a cen-

tral system to the environment. This information transfer can be described as a quantum

channel [1]. In this article we use the Holevo quantity [36], which is the upper bound on the

classical capacity of a quantum channel, to study information transfer in the boson-spin

model.

We work in the simplest case that only a single spin-12 environment remains under the

observation. What is novel in our analysis is the continuous character of the information

and the use of the continuous version of the Holevo theorem [51]. The continuous informa-

tion from a harmonic oscillator stored into a finite dimensional spin system is understood

at some given resolution scale.

We confirm the following results which were found in the previous work using the

generalized overlap. The zero phase in the trajectory of oscillator does not lead to an

asymptotic but only a periodic behaviour in the Holevo quantity as the generalized overlap

does not vanish for large time. The self-Hamiltonian plays a significant role in stabilizing

the asymptotic patterns in the Holevo quantity, breaking oscillatory behaviours. The

interaction coupling is found to increase the Holevo quantity.

In addition, we found how a squeezing parameter and a displacement parameter in

the initial state of the oscillator affect the Holevo quantity. As the squeezing parameter

increase, the initial distribution is more localized. This implies that a harmonic oscillator

initially had the lower information, which leads to the lower Holevo quantity. On the other

hand, it turns out that as a displacement parameter goes to zero, the Holevo quantity also

becomes lower. Noticing that the effective quantum state of the boson-spin model does

not have a translational symmetry, a displacement parameter not only control the position

distribution of an oscillator but also the strength of interaction. For instance, while a

vanishing displacement parameter makes the probability distribution the absence of the

interaction dominant, a non-zero displacement not only makes the quantum state localized

at the corresponding position but also still keeps the interaction strong accordingly.
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My contribution to the preprint is following:

• Taking a part in discussions and formulations of the initial idea.

• Performing all the the analytical and numerical calculations and analysis.

• Generating all the plots.

• Writing a large part of the manuscript.



Holevo bound and objectivity in the boson-spin model

Tae-Hun Lee∗ and Jarosław K. Korbicz†
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Emergence of objective, classical properties in quantum systems can be described in the modern
language of quantum information theory. In this work, we present an example of such an analysis.
We apply the quantum channel theory to a boson-spin model of open quantum systems and calcu-
late, using recoilless approximation and the Floquet theory, the Hoevo quantity, which bounds the
capacity of the channel, broadcasting information about the central system into its environment.
We analyze both the short-time regime, showing quadratic in time initial growth of the capacity, and
the asymptotic regime. Complicated dependence on the model parameters, such as temperature,
tunneling energy for the environment, etc is also analyzed, showing e.g. regimes where the Holevo
bound reaches its maximum.
Keywords: decoherence, spectrum broadcast structure, quantum Darwinism, Holevo quantity

I. INTRODUCTION

Most modern studies of how the objectivity of the
macroscopic world appears during the quantum-to-
classical transition rely on the quantum Darwinism idea
[1, 2]. It is a more advanced form of a decoherence process
and states that information about the system of interest
in order to become objective has to be broadcasted in
multiple copies into the environment during the decoher-
ence process. This rises a natural question: What is the
capacity of such a broadcasting channel? This question
has been studied in a series of works in spin-spin model,
e.g. in a models where a central spin interacts with a
spin environment [3–9]. In this work, we complement
those studies by considering a boson-spin model, where
the central system is a harmonic oscillator. We will use
the results obtained in our earlier studies of the model
[10], where we considered a stronger form of objectiv-
ity known as the spectrum broadcast structures (SBS)
[11, 12]. These are specific multipartite state structures,
which encode an operational form of objectivity and ex-
plicitly show objectification as a form of a broadcast-
ing process. The novel point of our studies is that now
the central system is infite-dimensional. Thus, we will
investigate how well continuous-variable information is
broadcast into the finite dimensional spin environments.
Since the infinite amount of continuous information can-
not be stored into any range of finite degrees of freedom,
encoding continuous information into finite environment
should be understood as recorded information in finite
bits with some finite resolution length [10]. As a result,
the mutual information between the system with infinite
degrees of freedom and one with a finite degrees of free-
dom is understood as how many bits are used to encode
continuous information with a given resolution.

More precisely, we will be interested in the capacity of
channels, broadcasting system-related information into

∗ taehunee@cft.edu.pl
† jkorbicz@cft.edu.pl

the environment during the open evolution and deco-
herence. Our main tool will be the well-known Holevo
quantity χ(ρ), which bounds the mutual information
I(X : Y ), accessible in the environment [13, 14]:

I(X : Y ) ≤S
(∑

X

pXρX

)
−
∑

X

pXS(ρX) (1)

≡ χ(ρ),

where S(·) is the von Neumann entropy, ρX are states
encoding classical parameter X, distributed with some
probability pX . We will calculate the Holevo bound for a
boson-spin model in a so-called recoilless limit, where a
central oscillator is not much affected by the presence of
the environment. This is the opposite limit to the com-
monly studied Born approximation, see e.g. [15], but is
more suitable for objectivity studies where we are in-
terested in how information flows from the system to
the environment. We will analyze both the short time
and the asymptotic behavior, identifying how quickly the
system-to-environment channel capacity growth and at
what level it is stabilized, depending on the model pa-
rameters.

II. DYNAMICS OF THE SYSTEM

We start describing the system and its approximate
dynamics, based on [10]. The Hamiltonian H for the
joint system of a harmonic oscillator of a mass M and
an angular frequency Ω and interacting qubits with a
couplings gi and a self-energies ∆i is given by

H = HS +
∑

i

H
(i)
E +

∑

i

H
(i)
int, (2)



2

where

HS =
P̂ 2

2M
+

1

2
MΩ2X̂2, (3)

H
(i)
E = −∆i

2
σ(i)
x , (4)

H
(i)
int = giX̂ ⊗ σ(i)

z . (5)

Despite the apparent simplicity, the above dynamics is
complicated and for the purpose of this work we will
use a series of approximations, which nevertheless are
enough to demonstrate the main features of the dynam-
ics. First of all, since we are considering information
transfer into environment, it is suitable to assume that
the state of environment is allowed to change while the
dynamics of the harmonic oscillator is not significantly
influenced by interaction with the environment. This is
called recoilless approximation and is the opposite to the
broadly studied Born approximation. Negligence of the
environmental recoil makes it possible to use the well-
known Born-Oppenheimer approximation and the follow-
ing ansatz can be used [16]:

|ΨS:E⟩ =
∫
dX0ϕ0(X0)e

−iĤSt|X0⟩Ueff(X(t;X0))|ψ0⟩.
(6)

Here X(t;X0) is an approximate trajectory followed by
the central system and parameterized by the initial po-
sition X0, ϕ0(X0) = ⟨X0|ϕ0⟩ is the wave function of the
initial state of a central system, |ψ0⟩ is the initial state of
the environment, and the effective evolution Ueff is gov-
erned by the corresponding effective Hamiltonian Heff:

Heff =
∑

i

[
−∆i

2
σ(i)
x + giX(t;X0)σ

(i)
z

]
. (7)

Hence, the total unitary evolution operator is read by

US:E(t) =

∫
dX0e

−iHSt|X0⟩⟨X0| ⊗ Ueff(X(t;X0)). (8)

Assuming a completely separable initial state,

ρS:E(0) = ρS(0)⊗
⊗

i

ρ
(i)
E (0), (9)

the dynamics of the total density matrix ρS:E(t) is writ-
ten as:

ρS:E(t) =

∫
dX0dX

′
0⟨X0|ρS(0)|X ′

0⟩e−iHSt|X0⟩⟨X ′
0|eiHSt

⊗
N⊗

i=1

Ui(X0, t)ρ
(i)
E (0)U†

i (X
′
0, t), (10)

where Ui(X0, t) corresponds to the effective Hamiltonian
for the ith spin, Hi, in Heff in (7). In particular, we will
be interested in local states of environment fragments,
called macrofractions. We thus trace out everything from

the above state except for the chosen macrofraction (ar-
bitrary at this moment):

ρmac(t) = TrSE\macρS:E(t)

=

∫
dX0p(X0)ρmac(X0), (11)

where p(X0) ≡ ⟨X0|ρS(0)|X0⟩ is the probability distri-
bution of the initial position and:

ρmac(X0) ≡
⊗

i∈mac

Ui(X0, t)ρ
(i)
E (0)U†

i (X0, t) (12)

is the conditional state corresponding to X0. We will
be calculating the Holevo quantity, associated with the
ensemble (II), (12).

A. Initial state of the system

Before we proceed, we need to specify the initial state
of the system in order to obtain the approximate trajec-
tories and the initial distribution p(X0); cf. (II). For def-
initeness, we choose the displaced squeezed state, which
allows for an easy control which initial quadrature is well
defined and which is not:

|ϕ0⟩ = D(α)S(ζ)|0⟩ ≡ |α, ζ, 0⟩, α = |α|eiϕ, ζ = reiθ,
(13)

where D(α) ≡ eαa
†−α∗a and S(ζ) ≡ e

1
2 (ζa

†2−ζ∗a2) are the
displacement and the squeezing operators respectively.
Equivalently, a squeezed coherent state S(ζ)D(α̃)|0⟩ can
be used with a substitution

α→ α̃ = α cosh r − eiθα∗ sinh r. (14)

In the absence of the environmental decoherence, the
evolution of the above state would be simply given by
|α, ζ, t⟩ = e−iHSt|α, ζ, 0⟩, leading to the well-known time-
dependent Gaussian probability distribution of the posi-
tion (see e.g. [17]):

pt(X) = |⟨X|α, ζ, t⟩|2 =

(
1

πη(t)

)1/2

exp

[
− (X − q(t))2

η(t)

]
,

(15)

where:

η(t) ≡ 1

MΩ
(cosh 2r + cos(2Ωt+ θ) sinh 2r) > 0, (16)

q(t) ≡
√

2

MΩ
|α| cos(Ωt+ ϕ) (17)

This motivates the following choice of the trajectory in
the Born-Oppenheimer ansatz (6):

X(t;X0) = X0 cos(Ωt+ ϕ), (18)

and defines the initial probability distribution through
p(X0) = pt=0(X0).
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B. Floquet dynamics

The effective Hamiltonian for the ith spin, Hi, in Heff
in (7) is given by:

Hi = −∆i

2
σ(i)
x + giX0 cos(Ωt+ ϕ)σ(i)

z . (19)

The unitary evolution operator U(X0, t) on a single qubit
can be calculated with the help of the Floquet theory and
the high frequency expansion as it was done e.g. in [10]:

U(X0, t) = e−iK(t)e−iHF teiK(0), (20)

where

HF t = −∆̃(1− ξ2)τσx +O(ξ3), (21)

K(t) = ξσz sin τ +O(ξ2) (22)

and the following dimensionless parameter are intro-
duced:

τ ≡ Ωt, ξ ≡ gX0/Ω, ∆̃ ≡ ∆/2Ω. (23)

together with a rescaled coupling strength:

g̃ ≡ g

Ω
, (24)

Operator (20) has the following Bloch representation:

U(X0, t) = U0I+ iU1σx + iU2σy + iU3σz, (25)

where

U0 = cos[ξ(sin(τ + ϕ)− sinϕ)] cos[∆̃(1− ξ2)τ ]

U1 = cos[ξ(sin(τ + ϕ) + sinϕ)] sin[∆̃(1− ξ2)τ ]

U2 = sin[ξ(sin(τ + ϕ) + sinϕ)] sin[∆̃(1− ξ2)τ ] (26)

U3 = − sin[ξ(sin(τ + ϕ)− sinϕ)] cos[∆̃(1− ξ2)τ ].

We choose an initial state of the environment ρE(0) to
be a thermal state for HE = −∆σx/2 in (2):

ρE(0) =
1

2
[I+ E(β)σx] , (27)

where E(β) ≡ tanh(β∆/2) with β ≡ 1/kBT . Applying
U(X0, t) from (25) to (27), the final state ρX0(τ) for a
single environmental qubit can be written in the Bloch
representation as:

ρX0(τ) = U(X0, t)ρE(0)U
†(X0, t)

=
1

2
[I+ a⃗(X0, τ) · σ⃗]. (28)

The explicit expressions a⃗(X0, τ) were obtained e.g. in
[10] and are shown in Appendix A2.

III. HOLEVO QUANTITY FOR A SINGLE
ENVORONMENT

We consider the simplest case that the remaining spin
after unobserved spin degrees of freedom traced out in
the decoherence process, is an observed single spin.

According to the Holevo’s theorem, the quantum mu-
tual information I(X : Y ) between a preparation sys-
tem X and a measurement system Y is bounded by the
Holevo quantity χ(ρ):

I(X : Y ) ≤ χ(ρ) ≡ S(ρ̄)− S̄, (29)

where the average quantities ρ̄ and S̄ are defined by

ρ̄ ≡
∫
dXp(X)ρX ,

S̄ ≡
∫
dXp(X)S(ρX). (30)

Here {ρX} is a set of prepared states for random variables
X with the probability density distribution {p(X)} and
S(ρX) is the entropy for a state ρX . Infinite dimension-
ality of ρX could lead χ(ρ) to be infinite unless physical
constraints, e.g. the number of photons to be fixed, are
applied [18]. In our case ρX has a finite dimension, so
χ(ρ) is finite.

A. Entropy of the average state

Using (15) for t = 0 the average density matrix ρ̄(τ)
for a qubit as introduced in (30) can be now calculated

ρ̄(τ) =

∫
dX0p(X0)ρX0(τ). (31)

ρ̄(τ) is again written in the Bloch representation:

ρ̄(τ) =
1

2

∫
dX0p(X0)(I+ a⃗(X0, τ) · σ⃗)

≡ 1

2
[I+ E(β)µ⃗(τ) · σ⃗] , (32)

where µi(τ) are given by:

µ1(τ) ≡
1

2
Re{I[0, k−, 0] + I[0, k+, 0] +D12(τ)}

µ2(τ) ≡
1

2
Im{I[0, k−, 0] + I[0, k+, 0] +D12(τ)} (33)

µ3(τ) ≡ Re[D3(τ)].

The expressions for I[·, ·, ·] are given in (B6) and (B7) and
the decaying quantities D12(τ) and D3(τ) are defined as

D12(τ) ≡
1

2
(I[−k, k−,−k0] + I[k, k−, k0]

− I[−k, k+,−k0]− I[k, k+, k0]), (34)

D3(τ) ≡
1

2
(I[−k, δk/2,−k0]− I[k, δk/2, k0]),
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with:

k+ = 2g̃[sin(τ + ϕ) + sinϕ],

k− = 2g̃[sin(τ + ϕ)− sinϕ],

δk = k+ − k−,

k = −2g̃2τ∆̃, (35)

k0 = 2τ∆̃.

Note that the quantities D12(τ) and D3(τ) in (34) are
a combination of I[±k, ·, ·] with k = −2g̃2τ∆̃ ̸= 0 and
hence vanish as t → ∞. The eigenvalues of ρ̄(τ) in (32)
are λ̄1,2 = (1 ± µ(τ)E(β))/2, µ(τ) ≡ |µ⃗(τ)|. Thus, the
entropy S(ρ̄) is expressed as

S(ρ̄) = −λ̄1 log2 λ̄1 − λ̄2 log2 λ̄2

= −1

2
(1 + µ(τ)E(β)) log2(1 + µ(τ)E(β))

− 1

2
(1− µ(τ)E(β)) log2(1− µ(τ)E(β)) + 1, (36)

Since ρX0(τ) and ρE(0) in (28) are only unitarily related,
S̄(ρ) = S(ρE(0)). With the eigenvalues of ρE(0), (([1 +
E(β)]/2, [1− E(β)]/2)), S̄ is time-independent:

S̄ = S(ρE(0))

= −1

2
(1 + E(β)) log2(1 + E(β)) (37)

− 1

2
(1− E(β)) log2(1− E(β)) + 1.

The Holevo quantity χ(ρ) is

χ(ρ) = S(ρ̄)− S̄

= −1

2
(1 + µ(τ)E(β)) log2(1 + µ(τ)E(β))

− 1

2
(1− µ(τ)E(β)) log2(1− µ(τ)E(β))

+
1

2
(1 + E(β)) log2(1 + E(β)) (38)

+
1

2
(1− E(β)) log2(1− E(β)).

χ(ρ) in (38) can be viewed as a difference between Shan-
non entropies, H[(1+µ(τ)E(β))/2] and H[(1+E(β))/2]
for a qubit. All the relevant parameters are contained in
µ(τ) and a temperature dependence in E(β). The Shan-
non entropy H(p) for p ≥ 1/2 is a decreasing function of
p and its slop is steeper as p → 1. As µ(τ) gets smaller
χ(ρ) gets bigger. Since |dH(p)/dp| approaches the max-
imum as E(β) → 1 (T → 0), with µ(τ) being fixed, χ(ρ)
gets bigger as T → 0, i.e. as a temperature decreases, in-
formation is better transferred. This is intuitively clear
and consistent with the results in [10, 19] that the dis-
tinguishability decreases as temperature increases.

B. Short time behaviour

As seen in Fig. 1, χ(ρ) quickly grows and gets stabi-
lized from the beginning. To verify this behaviour, we

investigate a short time behaviour of χ(ρ). For this pur-
pose, as χ(ρ) is determined only by µ(τ) and E(β), we
expand µ(τ) in τ and g̃ up to O(τ2) and O(g̃2) according
to the small coupling approximation, g̃ ≪ 1. Follow-
ing the details given in Appendix C, µ2(τ) in (C5) is
expressed as

µ2(τ)

= 1− 2τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)] (39)

+O(τ3) +O(g̃3)

This expression clearly shows that µ2(τ) is a decreasing
function in τ and hence χ(ρ) is an increasing function in
τ since as seen in (38) χ(ρ) is a decreasing function in
µ(τ). Expanding χ(ρ) in τ up to O(τ2) and O(g̃2) from
(C7),

χ(ρ) =
E2(β)

4
[log(1− E(β))− log(1 + E(β))]µ′′(0)τ2

+O(τ3) +O(g̃3)

=
E2(β)

2
log

1 + E(β)

1− E(β)

× τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)]

+O(τ3) +O(g̃3)

= Λτ2 +O(τ3) +O(g̃3), (40)

where

Λ ≡ E2(β)

2
log

1 + E(β)

1− E(β)
[1− (1− 4∆̃2) sin2 ϕ]η2g̃2.

(41)

and from (16)

η ≡ η(0) =
1

MΩ
(cosh 2r + cos θ sinh 2r), (42)

q ≡ q(0) =

√
2

MΩ
|α| cosϕ. (43)

(40) is one of our main results. It shows that χ(ρ) grows
quadratically in time for short times. The speed of the
growth is given by the factor Λ from (41). Interestingly,
the larger ϕ is, the larger the initial growth of χ(ρ) is,
which is opposite to behaviour for τ → ∞. This is shown
in Fig.2. Fig.3 clearly shows those short time behaviours
at different values of ϕ.

C. Asymptotic Holevo quantity

Let us introduce the following asymptotic quantity
χ∞(ρ). Noticing that χ(ρ) quickly approaches χ∞(ρ) as
it evolves, χ∞(ρ) is not only simpler to analyze but also
more relevant to the time scale in our focus on classical-
ity.

χ∞(ρ) = lim
τ→∞

χ(ρ). (44)



5

FIG. 1: Comparison of the Holevo quantity χ(ρ) with
the asymptotic form χ∞(ρ) (M = 1. Ω = 5, r = 1,
θ = 0, |α| = 1, ϕ = π

3 , g̃ = 1
2 , ∆ = 1, β = 10).

It turns out that the contribution of D12(τ) and D3(τ) in
(34) to the Holevo quantity χ(ρ) in (38) with µi in (33)
becomes negligible for large τ . The difference between
the exact expression χ(ρ) and the asymptotic quantity
χ∞(ρ) in (52) is negligible after some initial stabilization
period and it is easier to analyze χ∞(ρ) than χ(ρ). As
τ → ∞ in (B7),

lim
τ→∞

I[−k, k−,−k0] = lim
τ→∞

I[k, k−, k0] (45)

= lim
τ→∞

I[−k, k+,−k0] = lim
τ→∞

I[k, k+, k0] = 0.

Especially, it is easy to notice in (34) that D12(τ) and
Re[D3(τ)] at ϕ = 0 identically vanish, without making
any contribution to µi(τ) in (33), i.e. there is no differ-
ence between χ(ρ) and χ∞(ρ) at ϕ = 0,

χ(ρ) = χ∞(ρ) at ϕ = 0. (46)

This implies that at ϕ = 0 χ(ρ) has only a oscilla-
tory pattern without the asymptotic behaviour, shown
in Fig.2. In (34) D12(τ) and D3(τ) asymptotically van-
ish as τ → ∞,

lim
τ→∞

D12(τ) = lim
τ→∞

D3(τ) = 0. (47)

The reason that D12(τ) and D3(τ) vanish for large time
scale is due to the self-Hamiltonian −∆σx/2 in (3), i.e.
non-zero k = −2g̃2τ∆̃, which is proportional to τ . For
ϕ = 0 there is no ∆̃ dependence for χ(ρ), so χ(ρ)
shows a monotonous periodic pattern without informa-
tion growth. This verifies that ϕ = 0 case does not show
the distinguishability in the objectivity shown in [10].
Due to (47) µi(τ) tends to approach as

lim
τ→∞

µ1(τ) =
1

2
Re(I[0, k−, 0] + I[0, k+, 0])

lim
τ→∞

µ2(τ) =
1

2
Im(I[0, k−, 0] + I[0, k+, 0]) (48)

lim
τ→∞

µ3(τ) = 0.

Thus, the asymptotic quantity µ∞ is expressed as

µ∞ ≡ lim
τ→∞

√
µ2
1(τ) + µ2

2(τ) + µ2
3(τ)

=
1

2

∣∣∣∣e−
ηk2

−
4 + e−

ηk2
+

4 eiqδk±

∣∣∣∣

=
1

2

{
e−

ηk2
−

2 + e−
ηk2

+
2 (49)

+2e−
η(k2

−+k2
+)

4 cos[2g̃q0 sin 2ϕ]

}1/2

≤ cos[g̃q0 sin 2ϕ],

where q0 ≡ |α|
√

2
MΩ , η and q were defined in (42). Fig.1

shows how quickly χ(ρ) approaches the corresponding
asymptotic limit χ∞(ρ).

For large τ , the eigenvalues of ρ̄, λ̄1,2, approach

λ̄1 → 1

2
(1 + µ∞E(β)),

λ̄2 → 1

2
(1− µ∞E(β)) (50)

and S(ρ̄) approaches S∞(ρ̄),

S∞(ρ̄) = −1

2
(1 + µ∞E(β)) log2(1 + µ∞E(β))

− 1

2
(1− µ∞E(β)) log2(1− µ∞E(β)) + 1. (51)

The asymptotic Holevo quantity χ∞(ρ) is

χ∞(ρ) = S∞(ρ̄)− S̄

= −1

2
(1 + µ∞) log2(1 + µ∞E(β))

− 1

2
(1− µ∞E(β)) log2(1− µ∞E(β))

+
1

2
(1 + E(β)) log2(1 + E(β)) (52)

+
1

2
(1− E(β)) log2(1− E(β)).

D. Parameter dependence

χ(ρ) depends on parameters from the Hamiltonian,
(∆, g,Ω,M) and the initial conditions, (β, ϕ, η, q0). For
our interest in large time behaviours, we analyze χ∞(ρ)
instead of χ(ρ). χ∞(ρ) is parameterized by two param-
eters, µ∞ and E(β). It increases as µ∞ as well as E(β)

decreases. µ∞ in (49) is a function of |γ⃗|, where γ⃗ ≡ α⃗+β⃗,
whose magnitudes and the relative angle ψ are given by

|α⃗|(g̃, η, ϕ, τ) ≡ e−
ηk2

−
4 = e−ηg̃2 cos2(τ/2+ϕ) sin2(τ/2), (53)

|β⃗|(g̃, η, ϕ, τ) ≡ e−
ηk2

+
4 = e−ηg̃2 sin2(τ/2+ϕ) cos2(τ/2), (54)

ψ(g̃, q0, ϕ) ≡ 2g̃q0 sin 2ϕ. (55)
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|α⃗| and |β⃗| depend on a squeezing parameter η, ϕ and
τ contained in k± in (35). This geometrical description
is useful to analyze µ∞(|γ⃗|) and hence χ∞(ρ). It is im-
mediately noticeable that for large η, χ∞(ρ) is high. We
list possible cases when χ∞(ρ) is minimized and max-
imized with the configuration of (|α⃗|, |β⃗|, ψ) in (53) for
fixed temperature first.
Maximizing χ(ρ) (µ∞ → 0):

1. η → ∞ (α⃗ = β⃗ = 0): This corresponds to the
uniform distribution of p(X0). It leads to S(ρ̄) → 1
and χ(ρ) = χM (β).

2. |α⃗| = |β⃗| → τ+ϕ = (2n+1)π (n ∈ Z) and ψ = (2n+
1)π: As long as ψ = (2n + 1)π is satisfied, χ∞(ρ)
arrives at the local maxima at τ + ϕ = (2n+ 1)π.

3. g̃ ↑ → |α⃗| ↓, |β⃗| ↓ and ψ ↑: Increasing g̃ increases
χ∞(ρ)

4. ϕ ↑: Apart from oscillatory parts, as ϕ increases
χ∞(ρ) increases.

Fig.2 shows that the larger ϕ is the more information
is encoded in the spins. On the other hand, Fig.4 shows
that when α⃗ and β⃗ are anti-parallel, χ∞(ρ) is maximized,
i.e. for the parameters g̃, q and ϕ satisfying

2g̃|α|
√

2

MΩ
sin 2ϕ = π, (56)

all χ(ρ) quickly get maximized regardless of values of ϕ.
χ(ρ) with this condition is the maximum rather than at
ϕ = π/2. Fig.5 shows that χ(ρ) under the maximization
condition (56) asymptotically has a higher value larger
than those without it. Also, it shows that non-zero ϕ
is crucial to have an asymptotic behavior stabilizing the
maximum.
Minimizing χ(ρ) (µ∞ → 1):

1. η → 0 (α⃗ = β⃗ → 1) and ψ = 0: This corresponds to
p(X0) → δ(X0 − q), i.e. the initial density matrix
is a localized pure state, which leads to χ∞(ρ) = 0.
There are two cases for ψ = 0.

2. sin 2ϕ = 0: As seen in (53) at ϕ = 0 |α⃗| = |β⃗|
and χ(ρ) vanishes periodically while ϕ = π/2 does
not since |α⃗| ̸= |β⃗| ϕ = 0 is consistent with the
result that sinϕ = 0 does not lead to a vanishing
generalized overlap (distinguishability) [10].

Now we verify the intuition that reducing temperature
increases distinguishability. As mentioned below (38),
χ∞(ρ) is a difference between the Shannon entropies
H[(1 + µ∞E(β))/2] and H[(1 + E(β))/2]. This differ-
ence gets larger as E(β) is closer to 1. Recognizing that
for p > 1/2 dH(p)/dp < 0 and |dH(p)/dp| increases as p

FIG. 2: The Holevo quantities at different initial
conditions, ϕ = (π2 ,

π
4 ,

π
6 , 0). (M = 1. Ω = 5, r = 1,

θ = 0, |α| = 1, g̃ = 1
2 , ∆ = 1, β = 10).

increase. For β′ > β (T > T ′),

χ∞(β′)− χ∞(β)

= H[(1 + µ∞E(β′))/2]−H[(1 + µ∞E(β))/2]

− {H[(1 + E(β′))/2]−H[(1 + E(β))/2]}

≈ ∆E

[
µ∞

∂H(p′)
∂p′

− ∂H(p)

∂p

]
> 0, (57)

where p′ = (1 + µ∞E(β))/2 and p = (1 + E(β))/2.
This means that as a temperature gets lower χ∞(ρ) gets
larger. This is consistent with the fact that lowering tem-
perature enhances the distiguishability [10]. All theses
observations are consistent with effects on the objectiv-
ity in [10]. The temperature dependence of the Holevo
quantity is shown in Fig.6.

Finally, we wish to mention the maximum χ(ρ). Define

g[µ(τ)E(β)]

≡ −1

2
(1 + µ(τ)E(β)) log2(1 + µ(τ)E(β)) (58)

− 1

2
(1− µ(τ)E(β)) log2(1− µ(τ)E(β)) ≤ 0.

Since dg(µ)/dµ ≤ 0, at µ = 0, g[µ(τ)E(β)] = 0, which is
the maximum. As χ(ρ) = g(µE(β)) − g(E(β)), χ(ρ) is
the maximum χM (β) at µ = 0 with β fixed.

χM (β) ≡ 1

2
(1 + E(β)) log2(1 + E(β))

+
1

2
(1− E(β)) log2(1− E(β)) (59)

= −g(E(β)) ≥ 0.

Since −dg(E(β))/dE(β) ≥ 0, χM (β) is 1, the largest, at
E(β) = 1, i.e. β → ∞ (T = 0).

0 ≤ χ(ρ) ≤ χM (β) ≤ 1. (60)

IV. CONCLUSION

This article examined how the information of contin-
uous degrees of freedom is encoded into a system of fi-
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FIG. 3: Short time behaviours of the Holevo quantities
at different initial conditions ϕ = (π2 ,

π
4 ,

π
6 , 0). (M = 1.

Ω = 5, r = 1, θ = 0, |α| = 1, g̃ = 1
2 , ∆ = 1, β = 10).

FIG. 4: The Holevo quantities reaching the maxima
with the squeezing parameter η fixed and q varied at
ϕ = (π2 ,

π
4 ,

π
6 , 0) . (M = 1, r = 1, θ = 0, |α| = 1, Ω

under the condition ψ = 2g̃q0 sin 2ϕ = π, g̃ = 1
2 , ∆ = 1,

β = 10).

FIG. 5: Comparison among the Holevo quantities at
ψ = 2g̃q0 sin 2π/3 = π, π

3 and π
2 with Ω = 5 . (M = 1,

r = 1, θ = 0, |α| = 1, g̃ = 1
2 , ∆ = 1, β = 10).

nite degrees of freedom with a simple system, a boson-
spin model. On the dualism of the quantum Darwin-
ism between objectification and information transfer, we
wanted to verify the objectivity that was investigated
with the decoherence factor for decoherence and the gen-
eralized overlap for distiguishability in the last work [10]
for the boson-spin system, especially distinguishability,
with a point of view of information transfer by calculat-
ing the mutual information bound, the Holevo quantity.

We considered the simplest situation, in which a cen-

FIG. 6: Temperature dependence of the Holevo
quantities at β = (10, 5, 2, 1) . (M = 1. Ω = 5, r = 1,

θ = 0, |α| = 1, ϕ = π
3 , g̃ = 1

2 , ∆ = 1).

tral harmonic oscillator and a single spin system remain
after unobserved spins traced out. In order to apply for
the Holevo theorem, we assumed that the system is in a
perfect decoherence in a position basis up to a local uni-
tary transformation. An initial probability distribution
is chosen from a displacement and squeezed state and an
initial state of a spin is chosen to be a thermal state. In
this setting we investigated how the Holevo quantity for
our model is shown to be consistent with distinguishabil-
ity measured by the generalized overlap. We verified that
as expected, the high temperature is against the precision
of encoding, which is consistent with the result [10, 19].

We established the role of a self-Hamiltonian of a spin
environment, that it is necessary to make sure asymp-
totic stabilization in the Holevo quantity. We found the
relation between the Holevo quantity and the parameters
in the system. We verified that the intuitive relations of
the Holevo quantity with a squeezing parameter, temper-
ature and a coupling constant, that increasing a squeez-
ing parameter and a coupling constant and decreasing
temperature increase the Holevo quantity. Increasing dis-
placement parameter q also increases the Holevo quan-
tity, which can be understood as q is the size of position
space in statistical distribution. We explained on the de-
pendence of the Holevo quantity on ϕ why a vanishing
initial phase ϕ in the oscillator trajectory does not pro-
vide the distinguishability. This verifies that ϕ = 0 does
not provide the objectivity on a position basis.
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Appendix A: Bloch Representation

Before integrating to get µi(τ) in (33), we first need
to express ρX0

(τ) defined in (28) in the Bloch represen-
tation. Given the expression for U(X0, t) in (25) and
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an initial thermal state ρE(0) = [I + E(β)σx]/2 in (27),
ρX0

(τ) is written in the Bloch form,

ρX0
(τ) = U(X0, t)ρE(0)U

†(X0, t)

=
1

2
[I+ a⃗(X0, τ) · σ⃗], (A1)

where

a1(X0, τ) = E(β)(2U2
0 + 2U2

1 − 1),

a2(X0, τ) = 2E(β)(U1U2 − U0U3), (A2)
a3(X0, τ) = 2E(β)(U0U2 + U1U3)

and from (26)

U0 = cos[ξ(sin(τ + ϕ)− sinϕ)] cos[∆̃(1− ξ2)τ ]

U1 = cos[ξ(sin(τ + ϕ) + sinϕ)] sin[∆̃(1− ξ2)τ ]

U2 = sin[ξ(sin(τ + ϕ) + sinϕ)] sin[∆̃(1− ξ2)τ ] (A3)

U3 = − sin[ξ(sin(τ + ϕ)− sinϕ)] cos[∆̃(1− ξ2)τ ].

It would be more conveniently to express ai(X0, τ) in
(A2) as an exponential series for the Gaussian integra-
tion,

a1(X0, τ) = E(β)Re[c12(X0, τ)],

a2(X0, τ) = E(β)Im[c12(X0, τ)], (A4)
a3(X0, τ) = E(β)Re[c3(X0, τ)],

where

c12(X0, τ) ≡
1

4
[2eik−X0 + 2eik+X0

+ ei(k−X0−kX2
0−k0) + ei(k−X0+kX2

0+k0)

− ei(k+X0−kX2
0−k0) − ei(k+X0+kX2

0+k0)],

c3(X0, τ) ≡
1

2
[ei[−(k+−k−)X0/2+kX2

0+k0] (A5)

− ei[(k+−k−)X0/2+kX2
0+k0]],

with g̃ ≡ g/Ω and

k− = 2g̃[sin(τ + ϕ)− sinϕ],

k+ = 2g̃[sin(τ + ϕ) + sinϕ],

k = −2g̃2τ∆̃, (A6)

k0 = 2τ∆̃.

Appendix B: Gaussian integrals

The Holevo quantity χ(ρ) consists of two parts S(ρ̄)
and S̄ in (29). Computing S(ρ̄) requires the Gaussian
integral with the initial probability distribution in (31).
The Gaussian distribution p(X0) is given in (15),

p(X0) =

(
1

πη

)1/2

exp

[
− (X0 − q)2

η

]
, (B1)

where (η, q) were defined in (42). Since p(X0) in (15)
and (c12, c3) are Gaussian in complex space, from (A4)
and (A5) the integrals µi(τ) in (33) can be written as
Gaussian integrals

µ1(τ) = Re
∫
dX0p(X0)c12(X0, τ),

µ2(τ) = Im
∫
dX0p(X0)c12(X0, τ), (B2)

µ3(τ) = Re
∫
dX0p(X0)c3(X0, τ).

Using the following integral formula

I[a, b, c] =

√
1

πη

∞∫

−∞

dye−(y−y0)
2/η+iay2+iby+ic (B3)

=

√
1

1− iaη
exp

[
ia

1− iaη

(
y20 +

b

a
y0 + i

b2η

4a

)
+ ic

]
,

µi(τ) in (B2) are obtained as
∫
dX0p(X0)c12(X0, τ)

=
1

4
[2I[0, k−, 0] + 2I[0, k+, 0]

+ I[−k, k−,−k0] + I[k, k−, k0] (B4)
− I[−k, k+,−k0]− I[k, k+, k0],

and
∫
dX0p(X0, τ)c3(X0, τ)

=
1

2
(I[k,−δk/2, k0]− I[k, δk/2, k0]), (B5)

where

I[0, k−, 0] = e−
ηk2

−
4 eik−q,

I[0, k+, 0] = e−
ηk2

+
4 eik+q, (B6)

I[−k, k−,−k0] =
√

1

1 + ikη
e

−ik
1+ikη

(
q2− k−

k q−i
k2
−η

4k

)
−ik0

,

I[k, k−, k0] =

√
1

1− ikη
e

ik
1−ikη

(
q2+

k−
k q+i

k2
−η

4k

)
+ik0

,

I[−k, k+,−k0] =
√

1

1 + ikη
e

−ik
1+ikη

(
q2− k+

k q−i
k2
+η

4k

)
−ik0

,

I[k, k+, k0] =

√
1

1− ikη
e

ik
1−ikη

(
q2+

k+
k q+i

k2
+η

4k

)
+ik0

,

and with δk ≡ k+ − k−

I[−k, δk/2,−k0] =
√

1

1 + ikη
e

−ik
1+ikη

(
q2− δk±

2k q−i
δk2

±η

16k

)
−ik0

,

I[k, δk/2, k0] =

√
1

1− ikη
e

ik
1−ikη

(
q2+ δk

2k q+i δk2η
16k

)
+ik0 .

(B7)
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The decaying quantities D12(τ) and D3(τ) as t→ ∞ are
defined as

D12(τ) ≡
1

2
(I[−k, k−,−k0] + I[k, k−, k0]

− I[−k, k+,−k0]− I[k, k+, k0]), (B8)

D3(τ) ≡
1

2
(I[−k, δk/2,−k0]− I[k, δk/2, k0]).

Appendix C: Short time expansion

We expand I[·, ·, ·] defined in (B6) and (B8) up
to O(τ2) and O(g̃2). Expanding (k+, k−, k, k0) in
(A6) up to O(τ2) with the corresponding coefficients
(c0, c1, c2, d0, d),

k+ = c0 + c1τ + c2τ
2

= 4g̃ sinϕ+ [2g̃ cosϕ]τ − [g̃ sinϕ]τ2 +O(τ3)

k− = c1τ + c2τ
2

= [2g̃ cosϕ]τ − [g̃ sinϕ]τ2 +O(τ3)

k = dτ = −2g̃2∆̃τ (C1)

k0 = d0τ = 2∆̃τ

and the square root

√
1

1− ikη
=

√
1 + ikη

1 + k2η2
≈ 1 +

1

2
ikη. (C2)

With those series, the exponent of I[k, k+, k0] in (B6) is
expanded

ik

1− ikη

(
q2 +

k+
k
q + i

k2+η

4k

)
+ ik0

= −1

4
ηc20 + iqc0

+ i

(
−1

2
ηc0c1 + qc1 + q2d+ d0

)
τ

+

(
−1

4
ηc21 −

1

2
ηc0c2 + iqc2

)
τ2 +O(g̃3) (C3)

Similarly, all the other I[·, ·, ·] can be expanded by replac-
ing (k, k+, k0) with the relevant parameters. The Holevo
quantity χ(ρ) in (38) is determined by µ and E(β), so
what we need is to compute µ(τ) in (33). By substitut-
ing the (C1), (C2) and (C3) into (B6) and (B7), µ(τ) is
expanded up to O(τ2) and O(g̃2),

µ2(τ)

= 1− 1

2
τ2ηc21 −

1

8
τ2ηd20c

2
0 cos

2(qc0/2) (C4)

+O(τ3) +O(g̃3)

= 1− 2τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)]

and hence

µ(τ) =

√
1− 2τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)]

= 1− τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)]

+O(τ4). (C5)

Keeping in mind µ(0) = 1, µ′(0) = 0,

χ(µ = 1) = 0

∂χ

∂µ

∣∣∣∣
µ=1

= 0 (C6)

∂2χ

∂2µ

∣∣∣∣
µ=1

=
E2(β)

2
[log(1− E(β))− log(1 + E(β))]

χ(ρ) ≈ E2(β)

4
[log(1− E(β))− log(1 + E(β))]µ′′(0)

≈ E2(β)

2
log

1 + E(β)

1− E(β)
(C7)

× τ2η2g̃2[cos2 ϕ+ 4∆̃2 sin2 ϕ cos2(2qg̃ sinϕ)]

≈ E2(β)

2
log

1 + E(β)

1− E(β)
(cos2 ϕ+ 4∆̃2 sin2 ϕ)η2g̃2τ2.
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Chapter 4

Conclusion and outlook

4.1 Conclusion

Using two simple but important models, where a central system is a harmonic oscil-

lator and environmental systems are either a collection of harmonic oscillators or spins,

i.e. QBM and the boson-spin model, respectively, we investigated how our classical world

can emerge from quantum mechanics based on the recent approach called spectrum broad-

cast structure (SBS), which is a stronger version of quantum Darwinism. Specifically, we

looked for one of major classical properties, “objectivity” emerging from pure quantum

nature. The objectivity can be characterized by two quantities, which we call the objec-

tivity markers, i.e. the decoherence factor and the generalized overlap. SBS and quantum

Darwinism explain how classicality is approached by interactions with the environment,

through spreading of the information about the system into the environment with a large

redundancy. In both models, we used the thermal environment and considered the situa-

tion that a central system state is hardly affected by the environment (Born-Oppenheimer

or recoilless approximation). This approximation is especially suited to see information

transfer to the environment.

In our study of QBM model, we showed that the objectivity is identified by two length

scales, the decoherence length and the novel distinguishability length characterizing the

decoherence factor and the environmental distinguishability, respectively. Under a hot

thermal initial state of the oscillator environment, we found that the decoherence length

is much smaller than the distinguishability length. This implies that decoherence is easier

to achieve than distinguishability. They are also in the complementary relation.
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In the boson-spin model, we analyzed the dynamics of the system in order to compute

the objectivity markers by using the Floquet theory and the high-frequency expansion in an

interesting way. First, it is confirmed that the most necessary condition for the objectivity is

a large number of environments. Second, we found that the initial condition of trajectories

for the central harmonic oscillator in position space strongly affects the objectivity. The

smaller initial amplitude of a harmonic oscillator associated with the initial phase is given,

the larger decoherence is created. Third, we found that achieving objectivity implies a

breaking periodicity in the objectivity markers. The phase of a classical trajectory for a

central harmonic oscillator and a self energy in a spin system play an important role in

breaking a periodicity and hence achieving objectivity.

Finally, moving to the quantum information point of view, we analyzed the continuous

Holevo quantity, the upper bound for a channel capacity formed by interaction in the

boson-spin model. The behaviour of the Holevo quantity in time shows how the maximum

information can be transferred from the continuous system, an oscillator to the spin-12
system. After the initial growth, the Holevo quantity is saturated to the maximum with

some fluctuations. This maximum can be surprisingly high even for a single spin. This is

mainly due to the existence of a spin self-Hamiltonian. Also, the dependence of the initial

trajectory verifies the minimum initial amplitude of a harmonic oscillator maximizes the

distinguishability by showing the maximum Holevo quantity.

4.2 Outlook

Quantum Darwinism and SBS were proposed to derive a classical limit from quantum

mechanics by emphasizing the role of environment. First, the main difficulty in obtaining

general solutions is the complexity in open quantum systems. Most studies in open quan-

tum systems adopt various approximations focusing only on particular physical regimes.

On the other hand, there are still untouched parts. First, the physical origin of and legiti-

macy of the partial tracing are not clear, though it is an important tool in open quantum

systems. Finally, there is no mechanism to explain how quantum evolution selects one par-

ticular quantum state in measurement, which is “the big problem” in quantum measurement

theory.

Besides those well-known issues addressed above, problems to be tackled in simple open

systems is to investigate how information in physical space propagates. In our systems

we have considered only interactions in one spacetime point for simplicity, although in
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reality each spacetime point can be an interaction point. In more complicated models of

environments, e.g. where there is an onion-like structure of interactions between different

parts. In this view it is known that the propagation of quantum information is naturally

limited with a speed, called the Lieb-Robinson bound [52]. This bound was derived in

lattice systems but the existence of speed limit is the result in general lattice systems. I

believe that research in this direction will open new areas in open quantum systems in

both dynamical and relativistic point of view.

4.2.1 Open questions

This thesis is a step towards hopefully more general theory of the quantum-to-classical

transition. We wish to address some open problems that we have not solved yet:

1. To compute higher order corrections in the influence functional in QBM since the

exact action for coupled oscillators is well-known in an integral form.

2. To search for a general complementarity relation between the decoherence factor and

the generalized overlap in QBM and boson-spin model;

We found the complementary relation between the decoherence and the distinguisha-

bility lengths under certain conditions in QBM but it seems that there might exist a

more general relation.

3. To compute effects from non-bi-linear interaction to the objectivity markers;

Computations would be more difficult since the convenient multiplicative property

in the objectivity markers cannot be used.

4. To compute higher order corrections to the Born-Oppenheimer ansatz for the effective

Hamiltonian.

5. To include a more general phase;

In more general consideration, a classical trajectory in the effective Hamiltonian for

environment can have its own phase for each different amplitude.

6. To compute higher order corrections for the decoherence factor and the generalized

overlap in the high frequency expansion in the boson-spin model.

7. To compute the Holevo bound in the boson-spin model with a multi-spin system.
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