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Abstract

In my thesis, I present one particular example of the formalism capable of describing the
propagation of a family of light rays in a curved spacetime. It is based on the resolvent operator
of the geodesic deviation equation for null geodesics which is known as the bilocal geodesic
operator (BGO) formalism. The BGO formalism generalizes the standard treatment of light
ray bundles by allowing observations extended in time or performed by a family of neighbouring
observers. Furthermore, it provides a more unified picture of relativistic geometrical optics
and imposes a number of consistency requirements between the optical observables.

The thesis begins with a brief introduction of the transfer matrix and its relativistic versions
known as the Jacobi propagators and the bilocal geodesic operators. A brief literature review
is given illustrating various interpretations of bilocal operators in contexts of extended objects,
gravitational waves, and seismology.

The second chapter is dedicated to the basics of differential geometry with an emphasis
on the geometry of the tangent bundle, which will later provide a foundation for the BGO
formalism. We start from the coordinate systems on the base manifold and its tangent bun-
dle and then study coordinate-dependent and independent representations of induced higher-
dimensional vectors. Next, we discuss the notion of the geodesic flow and define the BGOs in
terms of this flow. Finally, we display how certain results obtained on the tangent bundle lead
to the differential equations for BGOs.

In the third chapter, I present my original work on a fully analytical derivation of the BGOs
for static spherically-symmetric spacetimes. Firstly, I summarize two different techniques to
obtain an exact solution, both resting upon symmetries of the spacetime and integrability of
geodesic (deviation) equations. The methods are then applied to derive the solution both
in coordinate and parallel-transported frames. Finally, the results are used to study optical
distance measures in Schwarzschild spacetime.

In the fourth chapter, I present several theorems about the inequality concerning optical
distance measures. The result is valid irrespective of spacetime symmetries or lack thereof
and depends on the validity of General Relativity together with rather standard assumptions
about the matter content and propagation of light in the Universe. The chapter concludes
with a short discussion about the possibility of experimental verification or rejection of the
mathematical result.

In the last chapter, I summarize the content of the thesis and ponder its possible extensions.
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Streszczenie

W pracy prezentuję formalizm opisujący propagację wiązek promieni światła, nazywany for-
malizmem bi-lokalnych operatorów geodezyjnych (BGO). Jego podstawą jest rezolwenta równa-
nia dewiacji geodezyjnych dla geodezyjnych zerowych. Formalizm BGO uogólnia standardowy
opis wiązek światła, pozwalając na obserwacje rozciągające się w czasie lub wykonane przez
rodzinę obserwatorów znajdujących się blisko siebie. Ponadto wprowadza on ujednolicony
opis relatywistycznej optyki geometrycznej, co pozwala udowodnić ścisłe relacje między obser-
wablami i krzywizną czasoprzestrzeni.

Dysertacja rozpoczyna się krótkim wprowadzeniem do tematyki macierzy przejścia (trans-
fer matrix) i jej relatywistycznych uogólnień, zwanych czasami propagatorami Jacobiego lub
bi-lokalnymi operatorami geodezyjnymi. Podaję też krótki przegląd literatury ilustujący roz-
maite zastosowania tych opertatrów w kontekście równań ruchu rozciągłych ciał w ogólnej
teorii względności, fal grawitacyjnych i sejsmologii.

Drugi rozdział poświęcony jest matematycznym postawom geometrii różniczkowej, przede
wszystkim geometrii wiązki stycznej. Materiał ten będzie potem podstawą formalizmu BGO.
Rozpoczynam od przypomnienia pojęcia układu współrzędnych na czasoprzestrzeni i na wiązce
stycznej oraz opisuję zależne i niezależne od układu współrzędnych metody rozkładu wektorów
stycznych do wiązki stycznej. Natępnie opisuję analog kongruencji geodezyjnych na wiązce sty-
cznej, zwany geodezyjnym przepływem (geodesic flow) i definiuję przy jego pomocy bilokalne
operatory geodezyjne. Na koniec wyprowadzam równania różniczkowe na te obiekty korzys-
tając z geometrii wiązki stycznej.

W trzecim rozdziale prezentuję swoją oryginalną pracę, w której wyprowadzam dokładne
wyrażnenia na BGO dla statycznych, sferycznie symetrycznych czasoprzestrzeni. Opisuję na-
jpierw dwie techniki otrzymywania dokładnych rozwiązań, obie korzystające z wielkości za-
chowanych i całkowalności równań geodezyjnych w sferycznie symetrycznych czasoprzestrzeni-
ach. Metody te stosuję potem do wyprowadzenia rozwiązań wyrażonych w reperze współrzęd-
nościowym i transportowanym równolegle. Na koniec, korzystając z tych wyników, badam
optyczne miary odległości (odległość paralaktyczną i rozmiaru kątowego) na czasoprzestrzeni
Schwarzschilda.

W czwartym rozdziale prezentuję dwa ogólne twierdzenia dotycząnie nierówności między
optycznymi miarami odległości. Są one prawdziwe bez względu na to, czy czasoprzestrzeń
jest symetryczna, czy nie. Zakładają one prawdziwość ogólnej teorii względności, standardowe
warunki na rozkład materii oraz przybliżenie optyki geometrycznej dla propagacji światła. Na
końcu rozdziału dystkutuję pokrótce możliwość eksperymentalnej weryfikcacji tej nierówności.

W ostatnim rozdziale podsumowuję treść dysertacji i rozważam rozmaite możliwe uogól-
nienia wyników.
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Acronyms and notations
List of acronyms

Acronym Meaning
BGO Bilocal Geodesic Operator
GDE Geodesic Deviation Equation
GE Geodesic Equation
NEC Null Energy Condition
ODE Ordinary Differential Equation
SNT Semi-Null Tetrad

Notations and their meanings

Notation Description
g metric tensor
∇ Levi-Civita connection

Γαµν Christoffel symbol
M semi-Riemannian manifold
TpM tangent space at p ∈M(
∂

∂xµ

∣∣∣∣
p

)
coordinate basis vector of TpM

Xp = vµ
∂

∂xµ

∣∣∣∣
p

element of TpM

TM tangent bundle of M
T(p,Xp)TM tangent space to the tangent bundle at (p,Xp) ∈ TM(
∂

∂xµ

∣∣∣∣
p

,
∂

∂vµ

∣∣∣∣
p

)
induced basis vector of T(p,Xp)TM

Y(p,Xp) element of T(p,Xp)TM

Greek indices α, β, . . . run from 0 to 3

Latin lowercase indices i, j, . . . run from 1 to 8

G, Gi geodesic spray and its component
πM projection map from TM to M
γ, γµ geodesic curve and its representation in a coordinate system
γ̇ ordinary derivative of γ wrt the affine parameter
φ coordinate function of a coordinate chart; geodesic flow
∧ wedge product
y interior product
LX Lie derivative along an element of tangent space
∼= is isomorphic to
⊕ direct sum

subscripts H, V a part of a vector fully contained in horizontal or vertical subspace
superscript T generalized transpose of operator
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Chapter 1

General introduction

The theory of transfer matrices and propagators is a fairly common tool in theoretical physics
and mathematics. In many physical systems the propagation of disturbances can be described
as the propagation of waves, which at some level of approximation can be described using
resolvent operators mapping some initial state of the physical system to the state at some
later time. This approach has been used in many branches of physics ranging from the theory
of elasticity to the quantum field theory.

In astrophysics and cosmology, most observations require a good understanding of the
propagation of electromagnetic waves through a curved spacetime. In the high-frequency
limit the propagation of waves, which is almost always applicable in astrophysical situations,
can be well approximated by propagation along null geodesics [28, 53, 54, 79, 90, 48]. Still, for
sources of a finite extent we need to consider a whole family of null geodesics, corresponding
to the light rays from different points of the source’s cross-section. While the general problem
of light ray propagation is non-linear, it can be simplified for geodesics remaining close to a
given one. Namely, if one geodesic is known, then the behaviour of neighbouring null geodesics
can be described sufficiently well by the first order geodesic deviation equation (GDE). As a
system of linear ordinary differential equations, it admits the propagation matrix or resolvent
formulation, in which the solution at a later time can be obtained from the state at an earlier
moment by the action of a linear operator.

In the most general sense, the geodesic deviation equation relates the relative motions of
physical particles or light rays to the spacetime geometry. However, to our knowledge, there
has been still no complete discussion in the literature of the transfer matrix technique to the
geodesic deviation equation in the case of null geodesics, representing light rays. The goal of
this thesis is to fill in this gap and provide a new perspective on geometric optics in general
relativity. Following our previous work, we will refer to this framework as the bi-local geodesic
operator, or BGO formalism.

The BGO formalism can describe all nontrivial optical effects as experienced by a source
and an observer in two regions of spacetime connected by a null geodesic. The effects are
considered at the lowest order in the perturbations of the positions of the source and the
observer. The main starting point is the GDE around a null geodesic. Note that this equation
is fully relativistic, in the sense that it makes no approximations regarding the metric tensor,
such as the Newtonian or post-Newtonian approximation. On the other hand, unlike the more
familiar optical scalars formalism (also known as Sachs formalism) [109, 91] it is based on a
linear system of equations. We show in this work that this opens up the possibility to apply
directly the machinery of linear algebra to many problems in geometrical optics.

The formalism can describe, among other things, the standard effects of gravitational
lensing, in the form of the magnification and elliptical deformation of the source’s image.
This information is stored in a lower-dimensional operator known as the Jacobi matrix [115,
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91]1. However, in its most general form it also includes geodesic perturbations related to
the variation of the observer’s position or the observation time. This way the BGO formalism
expands the standard set of observables by including the effects of the observer’s displacements,
i.e the parallax effects, as well as the time variations of the redshift and position, i.e. the drift
effects. Furthermore, in the BGO formalism, it is relatively easy to show that these effects are
in fact related to each other and derive precise mathematical relations between the observables.
As an example, the second paper from this thesis [62] explores general relations between the
magnification of a source and the parallax effects.

Let us mention that the mathematical apparatus of propagator matrices along the timelike
geodesics in GR has been considered earlier in the context of timelike geodesics. It was used in
the studies of the motion of massive extended [19] and charged [18] bodies, and the propagation
of gravitational waves and their memory effects [31] under the name of Jacobi propagator2.
In the null case the resolvent formalism was occasionally used as a technical tool to describe
gravitational lensing in inhomogeneous Universe models [32]. However, the authors restrict
the space of solutions of the GDE to those which correspond to momentary observations,
excluding this way any drift effects.

A different treatment of propagation of light rests upon Synge’s world function [99, 123,
128, 61]. Namely, it turns out that the first and second derivatives of the world function
have a direct connection to the solutions of the geodesic equation and the GDE respectively.
This approach is less useful in practice since the formula for the world function requires full
knowledge of the solution to the GE, which in general is very difficult. Therefore, we do not
follow this approach in this Thesis, although we note here that the BGO formalism can indeed
be formulated in the language of the world function [61].

As mentioned above, the wave-like propagation of disturbances and their high-frequency
limit can also be found in other contexts, for example, in deformable media which falls under
the theory of seismology. In this context, the solutions of the elastodynamic equations in high-
frequency regime can be approximated by seismic rays, and their propagation in an appropriate
approximation is ruled by bi-local operators, quite similar to the BGOs [30, 13, 14, 129].

More recently, the BGO approach has also appeared in other works in a slightly different
formulation. In [37, 16] the authors applied the perturbative expansion of the solution to
the GDE in powers of the Riemann tensor, and later used it to estimate the optical scalars.
In [126], the non-relativistic counterpart of BGOs was presented, together with an extensive
discussion of its symplectic properties. However, the authors again limit their considerations
to momentary observations and do not consider the drift effects.

The aim of the first part of this thesis is to provide a solid geometrical foundation for the
BGO formalism valid for any smooth manifold equipped with a metric and its Levi-Civita
connection. Then we will use this to display the relation of BGOs to various optical effects
and observables.

The two papers included in this Thesis illustrate the application of the BGOs. In the first
paper we consider the BGOs in static spherically symmetric spacetimes which are derived in
two different ways. The first approach one to vary the solution to the GE with respect to its
initial conditions. However, a simple variation leads to non-covariant results. The problem is
averted by making sure the variations themselves are expressed in a covariant language. The

1Here by the Jacobi matrix Dij we mean the resolvent operator of the GDE projected on the screen space.
In the weak lensing literature there is a similar but different Jacobian matrix of the lens equation (also known

as the amplification or magnification matrix [115]) defined by Aij =
∂βi

∂θj
. The crucial difference is that

the second matrix requires a clear separation of the background and the lens. In general, they are related
by Dij = (DB)ikAkj with DB being the solution on the background, but in practice for homogeneous and
isotropic spacetimes (DB)ij can be replaced by an averaged area distance, i.e. d̄Aδij [8].

2In the mathematical literature of Lorentzian manifolds it is known as the Jacobi tensor [5]
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geometric interpretation of this requirement will be outlined in the mathematical introduction
to the Thesis, in Sec. 2.4. The second method we propose directly involves the GDE, its
conservation laws, and symplectic properties, whose geometric foundations will be laid in Secs.
2.5-2.7. Finally, the BGOs are used to describe optical distance measures in Schwarzschild
spacetime.

In the second paper, we prove several distance inequalities assuming GR, propagation of
light in vacuum, and reasonable conditions on the matter. Inequalities themselves are proved
with the use of Sachs optical equations [109], while the BGOs allow us to relate the parallax
effect to the behaviour of a special bundle of rays. This relation is crucial for the proof of
inequality.

We would also like to bring attention to a complementary work on BGOs [43, 42, 40].
In these papers, the authors introduce a Mathematica package to calculate the BGOs in
arbitrary evolving spacetimes. Similarly to our approach here, the authors rewrite the GDE
as two systems of the first order ODEs which are then integrated backward in time. Then,
to integrate the solution forward in time they apply the symplecticity of the total resolvent
operator. One of the goals of this thesis is to reveal a deeper geometrical meaning of the first-
order formulation and explain why the total transfer matrix is not just a formal construction.
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Chapter 2

Mathematical preliminaries

2.1 Introduction

The bilocal geodesic operators, or BGOs, are a very useful tool in the study of light propagation
between distant regions of spacetime. They relate deviations of the initial point and its tangent
vector to their counterparts at the other end of the curve. Since they are defined for arbitrary
initial data sets, they describe how a curved spacetime influences the evolution of any perturbed
geodesic, provided that the perturbation is not too large. In the context of light propagation,
the BGOs describe how a perturbed light ray is bent by the spacetime curvature, or, more
broadly, how any whole infinitesimal bundle of light rays is affected by the curvature. They also
describe how the results of observations performed at the observer’s endpoint of the geodesic
segment vary with respect to the observer’s proper time. In the relativistic and cosmological
literature these variations are known as drifts. Physical aspects of drift effects [60], general
relativistic parallax [62], times of arrivals [61], and BGOs [41] have been discussed previously,
along with some geometrical remarks.

This chapter, apart from serving as a mathematical introduction, contains also the first
part of the new results of the Thesis. We show here how we can define the BGOs with the help
of the geometry of the tangent bundle. We will therefore begin by briefly reviewing the basic
notions of differential geometry, such as the tangent bundle, geodesics, and their lifts to the
tangent bundle. Recall that the geodesics induce a special vector field on the tangent bundle
known as the geodesic spray, which in turn defines the geodesic flow. This flow is analogous to
a fluid flow in the mechanics of continuous media. We will show that the tangent map to this
flow, or the deformation gradient tensor of the fictitious fluid related to the flow, naturally
splits into 4 covariant, bilocal operators we can identify with the BGOs.

In the meantime, we also develop a geometrical formulation of the techniques used in the
first paper [117] contained in this Thesis, in which we present two methods of solving the
GDE exactly and determining the BGOs. One of them requires the computation of the total
variation of a geodesic. However, the variation needs to be decomposed in a covariant manner
into the position variation at a point and the variation of the tangent vector. As we will see,
the meaning of this step is easy to understand if we express it in the language of the tangent
bundle. The key construction in this case is the covariant splitting of the tangent space to the
tangent bundle into the horizontal and vertical subspaces.

The geodesic flow preserves the symplectic structure of the tangent bundle [126, 59]. It
turns out that this has a direct implication for the symplectic properties of BGOs and light
propagation, see for example the proof of the distance inequality [62]. Therefore we will also
discuss the relation between the BGOs and the symplectic geometry of the tangent bundle in
the later part of this section.

As a general introduction to the topics presented below, we recommend the following
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references [72, 132, 6, 68, 110, 69, 52], while more specialized references are given in the text.

2.2 Charts and projections

The purpose of this section is to introduce some basic elements of differential geometry on
which we will build the formalism for BGOs. We begin with the basic concepts of coordinates
and tangent spaces on a manifold and then show how they apply to the tangent bundle. Since
the main goal of this work is to understand the physics of light propagation, we will also discuss
the geometric and physical interpretation of the elements of tangent spaces in the context of
geometric optics in curved spacetimes.

We begin by setting up the model for spacetime. The spacetime will be represented by a
smooth 4-dimensional Lorentzian manifoldM with metric g and its Levi-Civita connection ∇.
For its signature we choose (−+ ++). We note that although we are interested in manifolds
describing the spacetime geometry, the theory to be presented below can be equally applied
to Riemannian or semi-Riemannian manifolds of arbitrary finite dimensionality.

Every element ofM is simply a point, or more precisely, an event in spacetime. In order to
assign coordinates to this point we need to introduce a chart. By chart we mean the structure(
U, φ,R4

)
, where U ⊂M is an open set and φ is a map from U to R4. If (xµ) is our coordinate

system on U , then
∀p ∈ U : φ (p) = (xµ (p)). (2.1)

That is, φ allows us to assign to each point of the spacetime 4 numbers xµ known as coordinates,
in a smooth way. Note that from the point of view of differential geometry xµ does not
transform as a component of a vector. For the sake of simplicity, we assume the manifold M
and the metric g to be smooth.

Tangent vectors to a manifold at a point form a vector space known as the tangent space.
While there are several ways to introduce it, we will follow here the standard approach, resting
upon linear maps X : Ck (M)→ R acting on functions, which possess Leibniz-like properties
of differentiation and are known as derivations [110, 70]. At any p ∈M the set of derivations

forms a vector space with a well-defined natural basis

{
∂

∂xµ

∣∣∣∣
p

}
, given by partial derivatives

with respect to all coordinates, known as the coordinate basis. Any so-constructed vector space
at p ∈M is denoted by TpM and called the tangent space at p.

The formal definition using linear operators is somewhat too abstract for our purposes,
therefore we will also consider its other geometric interpretations. First, consider all differ-
entiable curves passing through a point p ∈ M . Then all their tangent vectors at p span a
vector space at this point. A more physical way of thinking about tangent vectors is to depict
them as all possible small displacements of the point p. We can think either of infinitesimal
displacement or, alternatively, of small but finite displacements, such that the scale of the
displacement is much smaller than the curvature scale or any other relevant length scale in
the neighbourhood of p. The latter interpretation requires the use of Riemann’s normal coor-
dinates, see [130, 71]. In other words, a vector in TpM can also stand for a perturbation of
the position of an object in the spacetime or a more general manifold. In this Thesis we will
make extensive use of this interpretation since it fits best the physical situations we want to
describe.

In principle, the manifold and its tangent spaces provide a sufficient background to study
problems describable by 2nd order ordinary differential equations (ODEs), such as the GDE.
However, the same problems can be recast as a 1st order ODE in a higher-dimensional setting
[55]. The order reduction is advantageous because it allows us to study all degrees of freedom
on equal footing and apply the resolvent formalism to the equation. In the case of the geodesic

5



equation and the geodesic deviation equation this can be achieved by considering the whole
tangent bundle TM [107, 108, 22, 45, 7, 131], which is a disjoint union of all tangent spaces:

TM =
⊔

p∈M
TpM = {(p,Xp) : p ∈M,Xp ∈ TpM} . (2.2)

It comes with a natural projection map πM satisfying

πM : TM 3 (p,Xp)→ p ∈M. (2.3)

One important property of the tangent bundle is that it is also a manifold. Therefore, we can
introduce on it geometrical objects such as charts, coordinates, curves and vector fields.

While there are many possible charts on TM , there is a class of natural charts induced by
the charts in the base manifold M . They can be considered as follows. Let Ũ be an open set
in TM defined by Ũ = π−1M (U), where U is an open set in M defining a chart. Suppose the
coordinates of p ∈ U read (xµ). Suppose also that a vector Xp ∈ TpM is tangent to M at p.

A vector can be expanded with respect to the local basis as Xp = vµ
∂

∂xµ

∣∣∣∣
p

, where vµ are the

components of Xp in the coordinate basis. Let φ̃ be a map from Ũ to R8 such that

∀ (p,Xp) ∈ Ũ : φ̃ ((p,Xp)) = (x̃µ, vν) , (2.4)

where
πM (x̃µ, vν) = xµ, (2.5)

or equivalently
x̃µ (p,Xp) = xµ (p) . (2.6)

Then the structure
(
Ũ , φ̃,R8

)
defines a (smooth) chart on TM and

(
χi
)

= (x̃µ, vν) are the
local coordinates. Note that xµ and x̃µ are images of different mappings and so cannot be
identical, but in practice their meaning is synonymous. Therefore, from now on we will drop
the tilde and denote the coordinates on TM as (xµ, vµ). These coordinates are known as the
adapted [112], induced [132], or canonically associated [6] coordinates. The dimension of the
tangent bundle is twice the dimension of the base manifold, so in our case it is 8.

In comparison with M , its tangent bundle admits a much greater variety of curves, simply
because of its higher dimension: for every curve on the base manifold there is an entire family
of curves related to the former by the projection πM . However, among all the curves in the
family corresponding to a given curve in M there is a unique one known as the lift, which
is defined as follows. Consider a differentiable curve on the spacetime γ : R ⊇ I → M . Let
Γ : R ⊇ I → TM be a curve in the tangent bundle such that for all λ ∈ I the curve Γ satisfies
Γ (λ) = (γ (λ) , γ̇ (λ)), that is, which in local coordinates of TM reads

{
xµ (λ) = γµ (λ)

vµ (λ) = γ̇µ (λ) .
(2.7)

Then we call Γ the lift of γ. Obviously, πM (Γ) = γ. The main benefit of lifting a curve to
TM is that the curves passing through the same point in M but differing by their tangent
vectors do not cross on TM .

Finally, since our goal is the description of the perturbations of curves, we need to introduce
the tangent space to TM . Pick any point (p,Xp) in TM . Since TM is a manifold, at every
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point it possesses a tangent space that we will denote by T(p,Xp)TM . Again, as a vector space,
it has basis, and the coordinates (xµ, vν) induce the associated basis {fx,µ, fv,µ}, where

fx,µ =
∂

∂xµ

∣∣∣∣
(p,Xp)

fv,µ =
∂

∂vν

∣∣∣∣
(p,Xp)

,

(2.8)

i.e. the basis vectors are given by the partial derivatives with all other coordinates fixed.
In analogy with the previous case, the elements of T(p,Xp)TM can be understood as either
tangent vectors to curves in TM passing through (p,Xp) or as infinitesimal perturbations of
the point (p,Xp). In the latter case we may think of it collectively as the perturbation of both
the point p ∈M and at the same time, of the vector X tangent to M at p.

2.3 Geodesic flow

Geodesics are arguably the most important family of curves in general relativity. They rep-
resent the worldlines of massive and massless particles interacting only with the gravitational
field. While geodesics themselves are curves on the base manifold, it is often useful to con-
sider them on the level of the tangent bundle. The main advantage of this approach is that
the geodesic motion in the tangent bundle can be represented by a flow of the whole tangent
bundle along a vector field, called the geodesic flow.

The geodesic flow is the central notion of this chapter, because, as we will see later, the
BGOs can be defined in terms of its properties. Namely, the BGOs are related to its action on
infinitesimal volume elements, or, more precisely, to the deformation gradient of the geodesic
flow. Therefore we will review in this chapter its definition and discuss some of its fundamental
properties.

In general relativity, a freely falling particle follows a uniquely defined curve known as
the geodesic. It is a smooth curve γ : R ⊃ I → M such that its tangent vector is parallel
transported along itself:

∇γ̇ γ̇ = 0. (2.9)

In coordinates this equation reads

d2γµ

dλ2
+ Γµαβ

dγα

dλ

dγβ

dλ
= 0, (2.10)

where γµ = xµ ◦ γ and γ̇µ =
dγµ

dλ
. Moreover, we also assume that the geodesic depends

smoothly on its initial data. This property will be utilised later to find solutions of the GDE.
Usually, geodesics are treated as curves in the base manifold M . However, we can also

consider closely related curves generated by lifting the geodesics to TM . It turns out that
this construction is closely related to the Hamiltonian approach to the geodesic motion. More
precisely, the phase space for geodesic motion is naturally modeled by the cotangent bundle
T ∗M . In a manifold without additional structures T ∗M is unrelated to TM . However, the
metric g provides a natural isomorphism between both spaces, so TM and T ∗M can be
considered interchangeably.

A particularly useful representation of all the geodesics on the tangent bundle is known as
the geodesic flow [88]. It is a family of diffeomorphisms φλ : TM × R → TM of the tangent
bundle defined by

φλ (p,Xp) =
(
γ(p,Xp) (λ) , γ̇(p,Xp) (λ)

)
(2.11)
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where γ and γ̇ is the geodesic and its derivative with respect to λ with initial conditions
γ (λ0) = p and γ̇ (λ0) = Xp.

The fact that φλ is a flow can be seen by checking that is satisfies φλ1+λ2 = φλ1 ◦ φλ2 .
Also, since for geodesics the length of their tangent vectors are conserved, it follows that
the geodesic flow preserves a number of subbundles of TM . Namely, let S+TM , S−TM
and S0TM be subbundles of TM in which the geodesics respectively satisfy the constraints
γ̇µγ̇µ = 1, γ̇µγ̇µ = −1 and γ̇µγ̇µ = 0. Then S+TM , S−TM and S0TM are preserved by the
flow φλ.

2.4 Vertical and horizontal subspaces

The dimension of the tangent bundle is twice the dimension of the spacetime. Moreover, the
tangent space of the tangent bundle has an associated basis (2.8), whose form suggests the
possibility of splitting any vector into two independent parts proportional to vectors ∂/∂xµ

and ∂/∂vµ respectively. However, this kind of splitting is not covariant, i.e. it depends on the
adapted coordinates we have chosen. Nevertheless, in the case of spacetime endowed with a
non-degenerate metric and its Levi-Civita connection, we have additional structure. As we will
show in this section, this leads to an invariant splitting of T(p,Xp)TM into two 4-dimensional
spaces, both isomorphic to TpM [39]. In other words. the construction is coordinate system-
independent and permits the representation of vectors in T(p,Xp)TM as pairs of tangent vectors
to the spacetime. This splitting is crucial for the definition of the BGOs, so in this section we
will describe it in detail and discuss its physical interpretation as well as its relation to the
observations in geometrical optics.

Previously we have shown that the tangent bundle TM has a natural coordinate system
(xµ, vµ), while its tangent space T(p,Xp)TM can be equipped with the basis {fx,µ, fv,µ} defined
by the partial derivatives with respect to the coordinates, see (2.8). In the associated basis
the expansion of a vector X ∈ T(p,Xp)TM reads

X = Xµ
x

∂

∂xµ
+Xµ

v

∂

∂vµ
. (2.12)

Vector X corresponds to a perturbation of a point in TM , i.e. a perturbation of a point in
M and a vector tangent at that point. In the decomposition above Xµ

x stands obviously for
the variation of position in M , and Xµ

v for the variation of the vector. This decomposition,
however, is not covariant. Consider a general transformation of adapted coordinates on TM ,
induced by coordinates on M . Then the transformation from (xµ, vµ) to

(
x̃µ̃, ṽµ̃

)
reads




x̃µ̃ = x̃µ̃ (xµ)

ṽν̃ = vν
∂x̃ν̃

∂xν
,

(2.13)

where
∂x̃ν̃

∂xν
is the Jacobian matrix of the coordinate transformation on M . It follows that the

associated basis vectors transform according to




∂

∂ṽν̃
=
∂xν

∂x̃ν̃
∂

∂vν

∂

∂x̃µ̃
=
∂vν

∂x̃µ̃
∂

∂vν
+
∂xµ

∂x̃µ̃
∂

∂xµ
.

(2.14)
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This in turn implies that the Jacobian matrix of the coordinate transform in TM reads1

∂
(
x̃µ̃, ṽµ̃

)

∂ (xν , vν)
=




∂x̃µ̃

∂xν
0

vρ
∂2x̃µ̃

∂xν∂xρ
∂x̃µ̃

∂xν


. (2.15)

From the structure of the transformations it follows that the decomposition (2.12) is not covari-
ant. Namely, after a general coordinate transformation on TM the components proportional
to ∂/∂x̃µ̃ may generate terms proportional to ∂/∂vµ. However, we can easily identify one
invariant subspace V(p,Xp) ⊂ T(p,Xp)TM , defined by

V(p,Xp) =

{
X ∈ T(p,Xp)TM : X = span

(
∂

∂vα

)}
(2.16)

that we will call the vertical subspace. It is invariant in the sense that the subspace defined
this way does not depend on the associated basis. The definition of V can also be stated in
the language of the projection maps. Let

d(p,Xp)πM : T(p,Xp)TM → TpM (2.17)

denote the differential (or the pushforward map) of the projection πM . Its action on the basis
vectors yields

d(p,Xp)πM

(
∂

∂xµ

∣∣∣∣
(p,Xp)

)
=

∂

∂xµ

∣∣∣∣
p

d(p,Xp)πM

(
∂

∂vµ

∣∣∣∣
(p,Xp)

)
= 0.

(2.18)

Hence, X belongs to the vertical subspace if d(p,Xp)πM (X) = 0, and we can write V(p,Xp) =

ker
(
d(p,Xp)πM

)
. In other words, a vector in the tangent space to the tangent bundle belongs

to the vertical subspace if the corresponding the infinitesimal variation of the base point in M
vanishes.

A complementary subspace to V can be constructed for manifolds endowed with an addi-
tional structure like the metric and the connection. As we have noted before, a perturbation
of the position after a change of coordinates may acquire a component along ∂/∂vν . Hence,
a general perturbation of the position does not preserve the decomposition with respect to
the coordinate basis on TM . However, the existence of the Levi-Civita connection suggests
that a slight modification of the basis motivated by the parallel transport of vectors on TpM
might avoid mixing the terms. To check if this is the case, let us rewrite (2.12) by adding and
subtracting same terms:

X = Xµ
x

∂

∂xµ
+Xµ

v

∂

∂vµ
= Xµ

x

(
∂

∂xµ
− Γαµβv

β ∂

∂vα

)
+
(
Xµ
v + ΓµαβX

α
x v

β
) ∂

∂vµ
. (2.19)

We now introduce the following notation:

X = Xµ
HeHµ +Xµ

V eV µ, (2.20)

1We remind that for a given coordinate system on the tagent bundle xµ and vµ are considered independent
of each other.
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where

Xµ
H = Xµ

x

Xµ
V = Xµ

v + ΓµαβX
α
x v

β,
(2.21)

and the new basis reads:

eHµ =
∂

∂xµ
− Γαµβv

β ∂

∂vα

eV µ =
∂

∂vµ
.

(2.22)

Again, the part proportional to eV belongs to V(p,Xp). However, it is easy to check that
coordinate transformations (2.13) do not mix eH and eV . Therefore, by setting Xµ

V = 0 we
obtain another invariant subspace of T(p,Xp)TM [111, 112, 113], which we call the horizontal
subspace and denote by H(p,Xp):

H(p,Xp) =
{
X ∈ T(p,Xp)TM : X = span (eH)

}
. (2.23)

The condition above is equivalent to the requirement that Xµ
v + ΓµαβX

α
x v

β = 0. In geometric
terms, the equation above means that that the tangent vector Xp is parallel transported when
the base point p varies.

The horizontal and vertical subspaces as presented above are invariant under the choice of
coordinates on the base manifold, complementary and sufficient to span the entire T(p,Xp)TM .
That is, T(p,Xp)TM = V(p,Xp) ⊕H(p,Xp) and V(p,Xp) ∩H(p,Xp) = {0}. Hence, on the tangent
space of TM any vector can be decomposed uniquely into horizontal and vertical parts.

Both horizontal and vertical subspaces are isomorphic to the tangent space TpM , i.e.
there are coordinate-independent isomorphisms H(p,Xp)

∼= TpM and V(p,Xp)
∼= TpM [6, 110].

In terms of coordinates they are given by

isoH : H(p,Xp) 3 X
µ
H eHµ 7→ Xµ

H

∂

∂xµ

∣∣∣∣
p

∈ TpM

isoV : V(p,Xp) 3 X
µ
V eV µ 7→ Xµ

V

∂

∂xµ

∣∣∣∣
p

∈ TpM
(2.24)

In simple terms, we have shown that any infinitesimal variation of a point and a vector
at that point can be covariantly decomposed into two components. The first one, i.e. the
horizontal component, corresponds to the variation of the point together with the parallel
transport of the vector along this variation. The second one, i.e. the vertical part is simply the
variation of the vector without changing its base point. Both components can be parametrized
by vectors from the tangent space to the spacetime TpM . In other words, an infinitesimal
variation of a point and a vector can be uniquely represented by a pair of vectors tangent to
the spacetime, each representing a different type of variation.

The horizontal-vertical splitting presented above is particularly useful in the context of
geometrical optics, because the observables, such as the position drift or parallax, are directly
related to the covariant variation of the direction of light propagation between nearby points of
the spacetime [41]. The covariant direction variation, on the other hand, is given by the vertical
components of the variation of the observation point and the light propagation direction.

2.5 Geodesic spray

We know that for a curve to be geodesic on M , its tangent vector has to satisfy Eq. (2.9).
Suppose we are given a non-vanishing vector field γ̇ satisfying the geodesic condition and
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defined on the whole manifold. The 3-parameter family of its integral curves is known as
the geodesic congruence. In a similar way, we can define a congruence on TM that consists
of lifts of all possible geodesics on the spacetime. The vector field on TM which generates
these curves (in fact, the entire geodesic flow introduced in Sec. 2.3) is known as the geodesic
spray. In other words, the geodesic spray is an infinitesimal counterpart of the geodesic
flow on the level of TM . In this section we will recall the notion of the geodesic spray and
review its geometric properties. In particular, we will show that the geodesic spray preserves
the symplectic structure, which allows us to study the geodesic motion in the Hamiltonian
formulation. In later sections dedicated to null geodesics, these geometrical features will be
related to the physical properties of light rays and their propagation.

The decomposition of T(p,Xp)TM we have introduced previously holds for any vector field
on TM . In our work we apply it to a specific vector field, namely the geodesic spray. It
is defined as a vector field G(p,Xp) : TM 3 (p,Xp) → T(p,Xp)TM [27], which in adapted
coordinates reads (

Gi(p,Xp)

)
=

(
vµ

−Γµαβ (xρ) vαvβ

)
. (2.25)

Its connection to geodesics is best understood in the following way. Suppose we want to find
a curve in TM whose projection in M is a geodesic. This can be stated in the language of the
geodesic spray as the 1st order initial value problem:





(γµ, γ̇µ) (λ0) = (xµ0 , v
µ
0 )

d

dλ
(γµ, γ̇µ) = Gi(γ,γ̇).

(2.26)

In other words, all the integral curves of G are lifts of geodesics in TM .
The geodesic spray has a few other special properties. In local basis we have

G(p,Xp) = vµ
∂

∂xµ
− Γµαβv

αvβ
∂

∂vµ
= vµeHµ (2.27)

Hence, G(p,Xp) belongs to the horizontal subspace H(p,Xp). Furthermore, dπMG(p,Xp) = Xp.
Comparison with (2.11) reveals that G generates the geodesic flow:

G(p,Xp) =
dφλ ((p,Xp))

dλ

∣∣∣∣
λ=λ0

(2.28)

Geodesic spray is also involved in the formulation of various conservation laws on the
tangent bundle [121, 93, 94]. For example, consider the mapping g (v, v) : TM 3 (xµ, vµ) →
gµν (xρ) vµvν ∈ R, i.e. the norm of vµ. Then taking Lie derivative of g (v, v) along G yields

LG (g (v, v)) = vµgαβ,µv
αvβ − 2Γµαβ (x) vαvβgµρv

ρ

= gαβ,µv
µvαvβ − (gαρ,β + gρβ,α − gαβ,ρ)vρvαvβ

= 0.

(2.29)

Another important structure is the sympletic form ω on TM , whose expansion in local
cobasis reads

ω = dvµ ∧ dxµ
= d (gµν (x) vν) ∧ dxµ
= vνgµν,ρdx

ρ ∧ dxµ + gµνdv
ν ∧ dxµ.

(2.30)

Again we are interested in its flow along G. Lie derivative acts on differential forms by

LG (ω) = d (G y ω) + G y dω. (2.31)
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The second term vanishes due to Eq. (2.30). As for the first term, we have

G y ω = vνgµν,ρv
ρdxµ − vνgµν,ρdxρvµ − gµνdvνvµ − Γναβv

αvβgµνdx
µ

= d

(
−1

2
gµνv

αvβ
) (2.32)

Altogether, LG (ω) = 0, and the symplectic form is conserved.
In semi-Riemannian geometry g (v, v) and ω are always preserved along the geodesic spray.

However, it may happen that the manifold has additional symmetries generating additional
conservation laws. Consider a mapping ξ : TM 3 (xµ, vµ) → vµξµ (xρ) ∈ R where ξµ is so
far an unspecified vector field on M . We are interested in finding such ξµ for which the Lie
derivative of vµξµ along G vanishes. By a straightforward calculation we find that

LG (vµξµ) = vαvβξ(α;β). (2.33)

This will vanish for arbitrary vµ iff ξ(α;β) = 0. In other words, Eq. (2.33) holds for all geodesics
iff ξµ is a Killing vector field on M . A similar argument for higher-order contractions results
in equations for Killing tensor fields. Further extensions of this argument are possible by
confining oneself to a subbundle. In the case of null geodesics, i.e. the subbundle S0TM ,
one can weaken the requirement by demanding vanishing Lie dragging only along lifts of null
geodesics:

LG (vµξµ) = φ (xρ) gµνv
µvν , (2.34)

where φ : M → R is an arbitrary smooth function. Then instead of Killing equations, one
obtains conformal Killing equations.

2.6 Lie dragging of vector along G

With all ingredients in place, we can now define the BGOs using the geodesic spray, the
geodesic flow it generates, and its deformation tensorW i

j . We begin by showing an equivalence
between the Lie dragging of a vector in T(p,Xp)TM along the geodesic spray and the GDE.
By doing so we will automatically reduce the GDE to the first order linear ODE. This in
turn will allow us to express the solution with the help of the resolvent operator, that is, a
linear operator encapsulating all possible propagation effects of families of particles between
2 regions. In the last step, we will limit ourselves to the problem of propagation of light and
demonstrate the connection between the geodesic flow and the BGOs in agreement with [41].

Let γ (λ) be a geodesic with initial conditions γ (λ0) = p and γ̇ (λ0) = Xp, and let φλ (p,Xp)
be its image under the geodesic flow, i.e. the lift of the geodesic. Let Y ∈ T(p,Xp)TM be a
vector that we drag along the integral curve of G to T(γ(λ),γ̇(λ))TM . We would like to describe
the geometry of neigbouring geodesic, at the lowest, linear order in terms of the perturbation
vector Y. In the language of differential geometry is equivalent to requiring that Y is Lie
dragged in the direction of G. Then setting LG (Y) = 0 yields

dY i

dλ
= Gi,jY

j . (2.35)

Since G contains Christoffel symbols, one may expect that after differentiation, covariant
structures like the Riemann curvature tensor should emerge. Indeed, from Eqs. (2.21), (2.27),

the relation
d

dλ
= Gi∂i and careful decomposition of the equation to the horizontal and

vertical subspace it follows that Eq. (2.35) is equivalent to the following ODE solved on the
base manifold along the geodesic γ:

(
∇γ̇Y µ

H

∇γ̇Y ν
V

)
=

(
0 δµβ

Rνγ̇γ̇α 0

)(
Y α
H

Y β
V

)
(2.36)
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where Rνγ̇γ̇µ = Rναβµγ̇
αγ̇β . This equation is linear both in Y µ

H and Y µ
V and defines a system

of linear ODEs whose solution is expressible in terms of a resolvent operator. That is, the
solution can be expressed as Y i (λ) = (Wλ)ijY

j (λ0). Motivated by this, we introduce a map

Wλ : T(p,Xp)TM 3 Y →Wλ (Y) ∈ T(γ(λ),γ̇(λ))TM (2.37)

satisfying the system of ODEs
dW i

k

dλ
= Gi,jW

j
k (2.38)

with initial data

W i
k (λ0) = δik =

(
δµν 0
0 δµν

)
. (2.39)

On the other hand, we know that the tangent space of the tangent bundle is isomorphic to
the direct sum of two tangent spaces:

T(p,Xp)TM
∼= TpM ⊕ TpM. (2.40)

Together with the decomposition of vectors in horizontal and vertical parts, this suggests that
Wλ has an inherent 2 × 2 block structure. In the papers to be presented later, this is used
extensively, but the notation is slightly different. We associate the horizontal part of Y with
the perturbation of the position, and the vertical part – with the perturbation of the tangent
vector. Therefore, the subscripts for horizontal and vertical parts are replaced with X and L
respectively, in line with the notation used in [41, 62, 117]. Also, components vµ, and thus
also the tangent vector to the geodesic, will now be denoted by lµ. Finally, we decompose Wλ

into 4 operators that we label according to their connection with the initial and final data.
Then the action of Wλ can be expressed as

(
Y µ
X

Y µ
L

)
=

(
WXX

µ
ν WXL

µ
ν

WLX
µ
ν WLL

µ
ν

)(
Y ν
X (λ0)
Y ν
L (λ0)

)
. (2.41)

Since both the vertical and the horizontal subspaces are isomorphic to the appropriate tangent
space, the operators WXX , WXL, WLX and WLL can be identified with bitensors acting
between the tangent spaces at two different points:

W∗∗ : Tγ(λ0)M → Tγ(λ)M. (2.42)

The Eq. (2.36) can be rewritten as an equation for the covariant derivative of the bitensors
with respect to the point γ(λ):

(
∇lWXX

µ
ν ∇lWXL

µ
ν

∇lWLX
µ
ν ∇lWLL

µ
ν

)
=

(
0 δµβ

Rµllα 0

)

︸ ︷︷ ︸
S

(
WXX

α
ν WXL

α
ν

WLX
β
ν WLL

β
ν

)
(2.43)

Here we denote by S a block matrix made of the curvature tensor and the unit matrix. It
will later reappear in Eq. (2.48). From the block structure we also see that in principle the
propagation of variations can be studied independently by appropriately setting the initial
conditions, i.e. WXX and WLX depend only on initial position variations while WXL and
WLL – on initial direction variations.

We note here that Eq. (2.43) takes a particularly simple form when expressed in a parallel-
transported tetrad along the geodesic γ. The covariant derivatives become ordinary derivatives
and we obtain simply a matrix equation

d

dλ

(
WXX

µ
ν WXL

µ
ν

WLX
µ
ν WLL

µ
ν

)
= S

(
WXX

α
ν WXL

α
ν

WLX
β
ν WLL

β
ν

)
. (2.44)
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2.7 Symplectic structure and BGOs

We have previously shown that the geodesic spray G preserves the symplectic form ω. With
the help of the horizontal-vertical splitting we can now show the symplectic properties of
BGOs.

Firstly, let us look at the action of ω on two arbitrary vectors Y,Z ∈ T(p,Xp)TM with
components Y i and Zi. We know that on a semi-Riemannian manifold one can decompose
vectors uniquely into their horizontal and vertical parts:

Y = Y µ
HeHµ + Y µ

V eV µ

Z = ZµHeHµ + ZµV eV µ.
(2.45)

By a straighforward calculation one can show that
{
ω (eV µ, eV ν) = ω (eHµ, eHν ) = 0

ω (eV µ, eHν) = −ω (eHµ, eV ν) = gµν
(2.46)

Then for any two vectors Y,Z ∈ T(p,Xp)TM the symplectic form yields

ω (Y,Z) = Y µ
V ZHµ − Y

µ
HZV µ

= gµνY
µ
V Z

ν
H − gµνY µ

HZ
ν
V

=
(
Y µ
H , Y

ν
V

)( 0 −gµν
gµν 0

)(
ZµH
ZνV

)

= Y iΩijZ
j

(2.47)

where Ωij plays the role of the skew-symmetric matrix. The explicit form of Ωij is important in
deriving how the symplecticity of W should be understood at the level of the block operators
of W .

We will now prove the simplecticity ofW . Consider the ODE forW expressed in a parallel-
transported tetrad, i.e. the matrix equation (2.44). We take it together with its transpose:

d

dλ
W = SW

d

dλ

(
W T

)
=
(
W T

)(
ST
), (2.48)

where by transpose of W and S we mean
(
WXX

µ
ν WXL

µ
ν

WLX
µ
ν WLL

µ
ν

)T
=

(
WXX

µ
ν WLX

µ
ν

WXL
µ
ν WLL

µ
ν

)
(2.49)

and (
0 δµν

Rµllν 0

)T
=

(
0 R µ

νll

δ µ
ν 0

)
. (2.50)

From Eq. (2.48) it follows that

d

dλ

(
W TΩW

)
= W T

(
STΩ + ΩS

)
W = 0. (2.51)

Hence, W TΩW must be constant along l. Finally we evaluate W TΩW at λ = λ0 and take
into account initial data from Eq. (2.39). It follows that

W TΩW = Ω. (2.52)
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Therefore, W is symplectic. This also implies that not all components of W are independen-
dent. In terms of block operators Eq. (2.52) is equivalent to





WLXµρWXX
ρ
ν −WXXµρWLX

ρ
ν = 0

WLXµρWXL
ρ
ν −WXXµρWLL

ρ
ν = −gµν

WLLµρWXX
ρ
ν −WXLµρWLX

ρ
ν = gµν

WLLµρWXL
ρ
ν −WXLµρWLL

ρ
ν = 0.

(2.53)

For completeness, we mention additional algebraic properties valid for smooth semi-Riemannian
manifolds [41]. From Eq. (2.36) one can see that for all C,D ∈ R the vector Y with the hori-
zontal/vertical decomposition

(
Y µ
X

Y ν
L

)
=

(
(C +Dλ)lµ

Dlν

)
(2.54)

is a solution, where lµ = γ̇µ as explained in Sec.2.6. Assuming that C and D can be chosen
independently, the substitution of Y into Eq. (2.41) yields the following simultaneous set of
constraints: 




WXX
µ
ν (λ) lµ (λ0) = lµ (λ)

WXL
µ
ν (λ) lµ (λ0) = (λ− λ0)lµ (λ)

WLX
µ
ν (λ) lµ (λ0) = 0

WLL
µ
ν (λ) lµ (λ0) = lµ (λ)

. (2.55)

In addition to this, any Y which solves Eq. (2.36) generates two conserved quantities:

A =
(
Y µ
X − λY

µ
L

)
lµ

B = Y µ
L lµ.

(2.56)

This can be checked by taking covariant derivatives of A and B along l and using Eq. (2.36) to
express ∇lY µ

X and ∇lY µ
L in terms of Y µ

X and Y µ
L . Evaluating them at both endpoints, applying

Eq. (2.41) and requiring the equalities to hold for arbitrary initial Y we get




lν (λ) WXX
µ
ν (λ) = lν (λ0)

lν (λ) WXL
µ
ν (λ) = (λ− λ0)lν (λ0)

lν (λ) WLX
µ
ν (λ) = 0

lν (λ) WLL
µ
ν (λ) = lν (λ0) .

(2.57)
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Chapter 3

Bilocal geodesic operators in static
spherically-symmetric spacetimes

In the first paper we present an exact solution of the GDE in terms of BGOs along any null
geodesic in static, spherically symmetric spacetimes and its application to the of the behaviour
of the distance measures in the Schwarzschild spacetime.

The solution is derived in two different ways. The first approach requires a general solution
of the GE, either in exact form or in terms of implicit relations. Then one has to vary it with
respect to the components of the initial position and direction. After a few adjustments,
which make the expressions covariant, the solution is recovered. The second approach makes
direct use of the symmetries of the spacetime. Namely, Killing vectors generate the first
integrals of the GDE, which effectively reduces the order and the number of ODEs we need
to solve. In the end, the solution depends on various conserved quantities, initial conditions
and may possibly also involve nontrivial integrals of functions of metric coefficients. Thus
derived solutions, expressed in the coordinate tetrad, are valid for timelike, spacelike and null
geodesics whenever the chosen local coordinates are valid.

Still, the physical interpretation of the solution requires some care due to chosen coordinate
system. The situation can be improved by rewriting the result in a different tetrad with
a clear physical interpretation. In this paper we choose the parallel transported semi-null
tetrad (SNT). We first construct it at the point of observation and then solve the parallel
propagation equation while simultaneously taking into account the constraints of the SNT.
Then the solution of the GDE is projected onto this SNT, in which the solution takes a much
simpler form.

Finally, we use the results to study the angular diameter and the parallax distances in the
spacetime of Schwarzschild black hole. The behaviour is analyzed numerically while the most
apparent properties are explained qualitatively by splitting the problem into three different
regions: the initial region close to the observer, the intermediate region around the black hole,
and the faraway region with the source positioned at increasingly larger distances from the
black hole.

Although the paper discusses only static spherically symmetric spacetimes, the principles
behind the methods of solution can be readily generalized to any sufficiently symmetric space-
time. In other words, if a spacetime possesses an adequate number of Killing vectors and
tensors, both methods will produce a solution, at least in the coordinate tetrad. Furthermore,
the projection of the results on the SNT requires the parallel transport of the SNT. In this
paper, the result was achieved by assuming an ansatz motivated by the assumed geometry of
the spacetime and then fulfilling the SNT constraints. When the form of the ansatz is not
self-evident, one can still avoid solving the parallel transport equations if the spacetime admits
a Killing-Yano tensor. However, this is not always guaranteed, not even in the presence of a
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Killing tensor. In that case one is left with a system of linear ODEs.
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Abstract
We present a method to compute exact expressions for optical observables
for static spherically symmetric spacetimes in the framework of the bilocal
geodesic operator formalism. The expressions are obtained by solving the linear
geodesic deviation equations for null geodesics, using the spacetime symme-
tries and the associated conserved quantities. We solve the equations in two
different ways: by varying the geodesics with respect to their initial data and
by directly integrating the equation for the geodesic deviation. The results are
very general and can be applied to a variety of spacetime models and configura-
tions of the emitter and the observer. We illustrate some of the aspects with an
example of Schwarzschild spacetime, focusing on the behaviour of the angu-
lar diameter distance, the parallax distance, and the distance slip between the
observer and the emitter outside the photon sphere.

Keywords: geometric optics, distance measures, geodesic deviation, gravita-
tional lensing, black holes, exact solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

In general relativity, the motion of particles is affected by the spacetime geometry along their
paths. Although the curvature itself cannot be observed, we can measure it directly by studying
relative motions of neighbouring freely falling particles. The key equation in this problem is
the first-order, linear geodesic deviation equation (GDE), which relates relative accelerations of
particles to the Riemann curvature tensor in their vicinity. Its range of application varies from
tracking nearby satellites orbiting the Earth to the observation of light coming from faraway
luminous bodies.
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1361-6382/22/155002+38$33.00 © 2022 IOP Publishing Ltd Printed in the UK 1



Class. Quantum Grav. 39 (2022) 155002 J Serbenta and M Korzyński

The current standard framework for optical measurements rests on gravitational lensing for-
malism introduced by Sachs [1]. Sachs formalism was critical in theoretical GR, for example,
the derivation of the Kerr metric [2, 3], with somewhat lesser importance in observational GR.
It uses the GDE directly or in the form of optical scalar equations. The information about the
influence of geometry on light is then encapsulated the expansion, shear and twist of infinites-
imal bundles of rays [4]. These objects in turn can be related to various measures of distances
like the angular diameter distance and the luminosity distance. Although being relatively suc-
cessful in matching the observational data to the theory, the formalism is incomplete in the
following sense: it can only accommodate fixed sources and observers, so drift effects cannot
be obtained from it directly [5]. Also, it is not always clear how special relativistic effects like
aberration or Doppler shift affect the observables.

Recently, a new formalism of bilocal geodesic operators (BGOs) [6] has been introduced,
extending the previous formalism by allowing drift effects and other effects like the parallax.
It is based on the resolvent of the first order GDE. As inputs, it requires the curvature along
the line of sight (LOS) and the initial and final data at its endpoints. Due to their symplectic
nature and the properties of null geodesics, these operators possess several symmetries. This
suggests that the complete picture is simpler than it looks at first glance.

There also exist other ways to study the geometry of geodesics. One of them is the
Synge’s world function, which holds the information about pairs of points connected by unique
geodesics. This information can be accessed by taking derivatives of the worldfunction with
respect to the endpoints. It can be shown that the second derivatives of the world function are
related to the bilocal operators [7]. If the world function can be calculated exactly, the solutions
of the GDE can be obtained simply by the differentiation. However, for spherically symmetric
spacetimes the exact form is rarely available [8, 9], and one is usually confined to a perturbative
analysis of the world function and its derivatives [10–13].

In general, the Universe is not symmetric, which means that one has to use numerical meth-
ods to solve the propagation equations for light to obtain all optical effects. However, there are
many interesting cases where the geodesic equation is integrable, and one can expect that GDE
in these cases is integrable.

In this paper we address some of these questions. We first describe the connection between
the GDE and the BGOs and present their symplectic properties. Then we relate the BGOs to
the variations of the geodesic with respect to its initial data and list a number of general and
Killing-vector-induced conservation laws for the BGOs and the solutions of the GDE. Later, we
apply all this knowledge to compute the BGOs for static spherically symmetric spacetimes and
isolate physical effects by projecting our results onto the parallel propagated semi-null tetrad
(SNT). In the last part of the paper, we consider the propagation of light in Schwarzschild
spacetime, where we numerically investigate the behaviour of the angular diameter distance,
the parallax distance, and their relative difference, i.e. the distance slip [6], as we displace the
emitter along the null geodesic. Finally, we reformulate these results in greater generality by
studying the behaviour of BGOs in the initial, intermediate, and faraway regions.

Indeed, the problem of analytical integration of GDE is not a new one. There have been many
successful attempts both for timelike [14–17] and null [17–22] geodesics, but the complete
picture of the solutions is lacking. Often solutions assume particular initial conditions or types
of orbits. Additionally, in the null case, the studies are usually limited to the behaviour of the
light ray bundle projected onto the Sachs screen. This limitation completely neglects effects
due to the motion of the emitter or observer.

The extension of the geometrical optics framework may also be important for the present
and upcoming astrophysical and cosmological observations. For example, in the cosmological
setting the parallax as well the position and redshift drifts provide additional data which can
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be used to study inhomogeneities and large-scale flows of matter and further constrain cosmo-
logical models [5, 6]. On the other hand, the observational and computational advancements
recently lead to the first images of the black hole shadow [23]. The theory behind it is well-
developed [24], but not entirely complete. In these problems the observer is usually considered
to be static or comoving with some global flow. It would be interesting to see whether the BGO
formalism could be used to make the problem fully covariant and reveal new properties of the
black hole shadow. Static spherically symmetric spacetimes are good starting points for such
studies because they are sufficiently simple while still being good models for various types of
massive compact objects.

1.1. Applications

Due to assumed symmetries, all possible applications concerning will be limited to static space-
times with spherical symmetries. Killing vectors allow us to integrate equations exactly, and
solutions include only a handful of integrals of functions of metric coefficients along the trajec-
tory of light. Furthermore, observer effects like stellar aberration with the arbitrary alignment
of observer’s four-velocity are taken into account by appropriate parallel transports. Moreover,
general treatment of geodesic deviation allows us to characterize the formation of caustics in
a more precise manner. Now we can state precise conditions for the formation of focal or con-
jugate points in terms of parameters of the null geodesic. Similarly, we can quantify how the
size and the shape of an image as seen by the observer depends on the positions of emitters
and observers. The formalism applied here treats all optical effects on the same footing, so this
information is related to previously mentioned effects and forms a consistency requirement
between all of them.

In practice this means that we can study cases when the lensing and lensed structures do not
fit the traditional lensing formalism, e.g. when the impact parameter of the light or distances
between emitters, observers and lensing bodies are not much larger than Schwarzschild radius.
Geodesic bilocal operator formalism holds both in weak and strong lensing regimes as well as
all intermediate cases. Hence, we are able to patch these results and explain transitions from one
regime to the other one. It is worth mentioning that general relativity is, in general, not assumed
here. We only require a four-dimensional Lorentzian metric theory of gravity. The conclusions
about the spacetime we reach are purely geometric. Thus, the physical interpretation depends
on the choice of the theory of gravity.

The applicability is also limited by the geometrical optics framework. The radiation wave-
length must be much smaller than the size of neighbourhoods of the source and the emitter or
the scale of the spacetime curvature. On top of that, compared to the curvature radius, the width
of the connecting tube has to be small enough for the linear GDE approximation to be valid.
Finally, both endpoints have to be positioned sufficiently far from each other so that all rela-
tions between the null tangent vector and the observed position of the source on the observer’s
sky or the null condition could be linearized around the fiducial geodesic.

1.2. Structure of the paper

In section 2, we begin with formulating BGOs in the geometric optics regime and restating
some of their properties. Then we sketch one of the methods of calculating them, based on
the variation of null geodesic with respect to initial data. The second method employs Killing
conservation to reduce GDE to a system of coupled first order ordinary differential equations
(ODEs), which we integrate, and is described in section 3. In section 3 we also find expres-
sions of optical observables for the emitter and observer travelling arbitrarily and describe their
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behaviour, with detailed derivation given in the appendices. In section 4 we estimate effects
for a Schwarzschild black hole for static observers and emitters. We state our conclusions in
section 5.

1.3. Notation

Greek letters (α, β, . . .) run from 0 to 3, and uppercase Latin indices run from 1 to 2. They
all enumerate tensor components in the coordinate tetrad. In some rare cases the uppercase
Latin indices are also used to label linearly independent solutions of differential equations.
Boldface versions of indices cover the same range but denote components in the SNT, defined
in section 3.5, as opposed to the coordinate tetrad. The dot denotes the derivative with respect
to the affine parameter along the null geodesic. Prime denotes differentiation with respect to
r. Subscript O and E denote evaluation of the quantity at respectively the point of observation
and emission, i.e. fO ≡ f (λO).

We introduce the following short-hand notation for integrals over a null geodesic, performed
both over the affine parameter and the radial coordinate r. These integrals have common ker-
nels which we will denote (�r)−2 or (�r)−3 as well as a varying part composed of the metric
coefficients A(r), B(r) and C(r). Namely:

IB =

∫ λ

0

dλ̃

B (r (λ)) (�r)2 = ⨏
rE

rO

dr̃

B (̃r) (�r)3

IAB =

∫ λ

0

dλ̃

A (r (λ)) B (r (λ)) (�r)2 = ⨏
rE

rO

dr̃

A (r̃) B (r̃) (�r)3

IBC =

∫ λ

0

dλ̃

B (r (λ)) C (r (λ)) (�r)2 = ⨏
rE

rO

dr̃

B (̃r) C (r̃) (�r)3

IABC =

∫ λ

0

dλ̃

A (r (λ)) B (r (λ)) C (r (λ)) (�r)2 = ⨏
rE

rO

dr̃

A (r̃) B (r̃) C (r̃) (�r)3 .

(1)

The slash reminds us that in the case of a turning point along the photon path, the integral over
r must be split into segments with appropriately chosen signs of the integrand, see [25].

We assume the speed of light c = 1.

2. Formulation

Let M be a smooth Lorentzian manifold with a metric g of signature (−, +, +, +). Let (ζμ) be a
coordinate system. Let γ : [λO , λ] → M be a geodesic connecting two points, xO and xE , with
affine parameter values λO and λ respectively. We also introduce two tetrads for decomposing
geometric objects:

(
∂μ

)
will denote the coordinate tetrad associated with (ζμ), while

(
eμ

)
will

denote the tetrad, which is parallel transported along γ.
We choose a coordinate system which covers the neighborhoods of both endpoints of γ.

Then the geodesic curve xμ (xO, �O, λ) is a function of the initial point xO, the initial tan-
gent vector �O, and the value of the affine parameter λ, corresponding to the geodesic with
aforementioned initial conditions.
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Now we perturb the initial data of the geodesic at λO according to xμ
O → xμ

O + δxμ
O, �μ

O →
�μ
O + δ�μ

O in a coordinate tetrad. Up to the linear order in perturbation, the deviation vector
δxμ = ξμ satisfies the following first order GDE [26, 27]:

∇�∇�ξ
μ − Rμ

νξ
ν = 0. (2)

In the literature the tensor

Rμ
ν = Rμ

αβν�
α�β (3)

is also known as the (optical) tidal matrix or optical tidal tensor.
The deviation at a different point, corresponding to a different value of λ, will take the

following form:

δxμ = WXX
μ

νδxν
O + WXL

μ
νΔ�ν

O

Δ�μ = WLX
μ

νδxν
O + WLL

μ
νΔ�ν

O,
(4)

where δxμ
O, δxμ are the position perturbations and Δ�μ

O, Δ�μ are the covariant perturbations of
the tangent vector at λO and λ respectively. The covariant perturbations of tangent vectors are
defined by

Δ�μ
O = δ�μ

O + Γμ
αβ (xO) �α

Oδxβ
O

Δ�μ = δ�μ + Γμ
αβ (x) �αδxβ.

(5)

The equations (2) and (4) are related by

ξμ (λO) = δxμ
O

ξμ (λE ) = δxμ

∇�ξ
μ (λO) = Δ�μ

O

∇�ξ
μ (λE ) = Δ�μ.

(6)

Here WXX, WXL, WLX, WLL are bitensors mapping tangent vectors from O to E . Together they
form the bilocal geodesic operator W : TOM ⊕ TOM �→ TEM ⊕ TEM, defined by the linear
relation

(
δxμ

Δ�ν

)
= W

(
δxα

O
Δ�β

O

)
. (7)

W and its four constituent bitensors may be expressed as functionals of the Riemann cur-
vature tensor along the LOS. Namely, W expressed in a parallel-propagated tetrad plays the
role of the resolvent of the GDE with O as the starting point and therefore satisfies the resol-
vent ODE when expressed in the parallel propagated tetrad. In the same way, four bitensors
can be expressed as solutions of appropriate matrix ODEs written in any parallel propagated
tetrad [6].

2.1. Bilocal geodesic operators and Killing vectors

In a spacetime admitting a Killing vector we may derive additional identities and algebraic
relations for the BGO, which enormously simplify the problem of determining the components
of the BGO in a given spacetime.
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Assume that the spacetime admits a Killing vector Kμ, i.e. ∇μKν + ∇νKμ = 0. Since the
flow of Kμ is an isometry, it must also map geodesics into geodesics. Therefore, the deviation of
the fiducial null geodesic by Kμ must preserve the geodesic character of the curve at linear and
other orders. It follows that ξμ(λ) = Kμ must be a valid solution of the GDE [28]. This can also
be proven by direct differentiation of the Killing condition and substitution into the GDE so
that ∇�∇�Kμ − Rμ

βKβ = 0 [29]. This means that the initial data of the GDE at O of the form
δxμ

O = Kμ
O, Δ�μ

O = (∇�Kμ)O must be mapped into the initial data at E of the form δxμ
E = Kμ

E ,
Δ�μ

E = (∇�Kμ)E . From (4) applied to O and E we obtain then the following identities:

Kμ
E = WXX

μ
νKν

O + WXL
μ

ν(∇κKν)O�κ
O (8)

(∇κKμ)E�κ
E = WLX

μ
νKν

O + WLL
μ

ν(∇κKν)O�κ
O. (9)

A dual set of identities can be derived by invoking symplectic properties of BGOs. Consider
the matrix W defined by

W =

(
WXX

μ
α WXL

μ
β

WLX
ν

α WLL
ν

β

)
, (10)

its transpose

WT =

((
WXX

T
) μ

α

(
WLX

T
) ν

α(
WXL

T
) μ

β

(
WLL

T
) ν

β

)
(11)

with W∗∗μ
α =

(
WT

∗∗
) μ

α
, and the nondegenerate, antisymmetric matrix

Ω =

(
0 gαβ

−gγδ 0

)
(12)

defining the symplectic structure on the tangent bundle TM [30–32]. It can be shown that

WTΩW = Ω. (13)

Inverting (13) and combining the result with (8) and (9) yields:

KOμ = KEνWLL
ν

μ − (∇σKν)E�σ
EWXL

ν
μ (14)

(∇σKμ)O�σ
O = −KEνWLX

ν
μ + (∇σKν)E�σ

EWXX
ν

μ. (15)

2.2. The linear GDE and its conserved quantitites

The existence of Killing vectors also affects the properties of the GDE and its solutions.
Namely, suppose that ξμ satisfies the GDE along the geodesic, and Kμ is a Killing vector.
Then the following quantity is conserved along the geodesic curve [33]:

ξμ∇�K
μ − Kμ∇�ξ

μ = Σ. (16)

This can be proven in the following way. We have that both ξ and K satisfy the GDE:

∇�∇�ξ
μ − Rμ

νξ
ν = 0

∇�∇�K
μ − Rμ

νKν = 0.
(17)

6
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Now contract the first equation with Kμ and the second one with ξμ, and subtract one from the
other. Due to the symmetries of Riemann tensor we are left with

Kμ∇�∇�ξ
μ − ξμ∇�∇�K

μ = 0. (18)

Finally, use the linearity of the covariant derivative and cancel out similar terms to write the
expression as a covariant derivative along �:

∇�

(
Kμ∇�ξ

μ − ξμ∇�K
μ
)

= 0. (19)

We can also assign a physical meaning to the quantity Σ [22]. Suppose C is a conserved quantity
generated by a Killing vector: C = Kμ�μ. Now let us take a covariant derivative along the
deviation vector ξ. Recalling that ξ is Lie dragged along � and that K is a Killing vector, we
can show that:

∇ξC = Σ. (20)

Hence, Σ is simply a variation of a Killing conserved quantity along ξ.
Apart from the conservation laws connected with the Killing vectors, we automatically have

two conserved quantities in GDE in any spacetime. Let the geodesic tangent vector �μ and the
deviation vector ξμ be evaluated at the same point xμ (λ) along the geodesic. Then

�μξμ = A + Bλ, (21)

where A and B are constants [6]. Thus we have the conservation of two quantities: B = ∇�ξ
μ�μ

and A = �μξμ − λ · ∇�ξ
μ�μ. Finally, due to the symmetries of Riemann tensor, any two

solutions ξ1, ξ2 of the GDE generate a constant of integration:

ξ1μ∇�ξ2
μ − ξ2μ∇�ξ1

μ = const. (22)

This expression is bilinear and antisymmetric in the solutions ξ1 and ξ2. It defines a conserved
symplectic form in the space of solutions [30].

3. Static spherically symmetric spacetimes

3.1. Solution of the geodesic equation in arbitrary spherical coordinates

A static spherically symmetric spacetime has the metric of the following form:

g = −A (r) dt2 + B (r) dr2 + C (r)
(
dθ2 + sin θ2 dφ2

)
. (23)

The radial coordinate may be reparametrized r → r(r̃). In particular, without the loss of gen-
erality, we may choose the area radius r, defined by C(r) = r2. Nevertheless, in the subse-
quent calculations we will keep the radial coordinate general with A(r), B(r), C(r) treated as
independent functions.

The spacetime has a four-parameter symmetry group generated by four Killing vectors [34]:

Tμ = (1, 0, 0, 0)

Φμ
x = (0, 0, − sin φ, − cot θ cos φ)

Φμ
y = (0, 0, cos φ, − cot θ sin φ)

Φμ
z = (0, 0, 0, 1) .

(24)
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We will now briefly present the derivation of the general solution of the geodesic equation in
the implicit form. This is a well-known material, but we present it here for completeness and
to introduce the notation for the following sections.

The Killing vectors simplify the problem of solving the geodesic equation. Namely, each
Killing vector generates a conserved quantity along the geodesic:

E = −A (r) �t (25)

Lx = −C (r)

(
sin φ�θ +

sin 2θ

2
cos φ�φ

)
(26)

Ly = C (r)

(
cos φ �θ − sin 2θ

2
sin φ�φ

)
(27)

Lz = C (r) sin2 θ�φ, (28)

�μ denoting the components of the tangent vector. By convention, we consider here null
geodesics parametrized backwards in time, from the observer towards the emitter. For this
reason we demand �t = dt

dλ
< 0. For simplicity we also fix the parametrization so that the

observation point corresponds to λO = 0.
Since �μ is tangent to a geodesic, its length ε = gμν�

μ�ν is conserved as well:

ε = −A (r) (�t)2 + B (r) (�r)2 + C (r)
((

�θ
)2

+ sin2 θ
(
�φ

)2
)

. (29)

Obviously, photon worldlines correspond to ε = 0, but we keep ε here unspecified to allow for
unconstrained variations of the initial data of the geodesic. Upon the substitution of (25)–(28)
into (29) one gets

ε = −E2

A
+ B · (�r)2 +

L2
x + L2

y + L2
z

C
, (30)

where L2
x + L2

y + L2
z = L2. This can be solved for the radial component �r:

�r = ±r

√
ε

B
+

E2

AB
− L2

BC
. (31)

±r here denotes the two possible sign choices for the radial component. This expression for �r

in terms of the conserved quantities and r (implicitly present in the metric components A(r),
B(r), C(r)) will be important later. Since �r(λ) = dr(λ)

dλ
, (31) can be seen as a first order ODE

for r(λ), which in turn can be solved as an integral with respect to r:

λ = ⨏
rE

rO

±rdr̃√
ε
B + E2

AB − L2

BC

. (32)

We can also solve the equations (25)–(29) for �t and integrate the resulting ODE obtaining

tE − tO = −
∫ λE

λO

E
A

dλ̃ = ⨏
rE

rO

E
A

dr̃
�r

. (33)

We have changed the integration variable to r in the second expression. Recall that in (31) we
have expressed �r in terms of r and conserved quantities so that the second integral can be
evaluated outright.
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Now we will consider angular coordinates. From (25)–(28) we observe that

dθ

sin2 θ
=

(
Ly

Lz
cos φ − Lx

Lz
sin φ

)
dφ,

which can be integrated to

cot θO − cot θE =
Lx

Lz
(cos φE − cos φO) +

Ly

Lz
(sin φE − sin φO) . (34)

This implies that the value of θ along the geodesic is completely determined by the value of the
coordinate φ and the constants Lx , Ly and Lz. This is an expression of the fact that the geodesic
is contained in a plane orthogonal to �L. In the final step we solve (25)–(29) for �φ, integrate
the resulting ODE and this way derive an implicit expression for φE :

∫ φE

φO
sin2 θ dφ =

∫ λE

λO

Lz

C
dλ̃ = ⨏

rE

rO

Lz

C�r
dr̃. (35)

Equations (32)–(35), together with (25)–(29), form the general solution of the geodesic
equation in an implicit form.

3.2. Solution of the geodesic equation in aligned coordinates

Before going on, we note that we can also make another use of the large symmetry group of
the problem. The geodesic motion in static spherically symmetric spacetime is analogous to
the central force problem in Newtonian gravity. Thanks to the SO (3) symmetry, one can rotate
the coordinate system to contain the geodesic motion in the θ = π/2 plane. This corresponds
to angular momentum having only Lz as a non-zero component. In such a coordinate system
the geodesic equation is solved by

tE − tO = −
∫ λE

λO

E
A

dλ̃

λE − λO = ⨏
rE

rO
±r

√
ABC

ACε + E2 C − L2
z A

dr̃

φE − φO =

∫ λE

λO

Lz

C
dλ̃

θ =
π

2
.

(36)

In the same way, we may impose the condition tO = 0 by applying an appropriate time trans-
lation. We will call the coordinate system adapted this way to a given geodesic the aligned
coordinate system.

3.3. Bilocal geodesic operators from the variations of the general solution of the geodesic
equation

The GDE together with its initial data is a system of second order ODEs. Its solution can be
found analytically only in the simplest cases. However, it turns out that it is possible to circum-
vent this problem if we know the general solution of the geodesic equation on our manifold
in an explicit or implicit form. In that case the components of W can be found by simple dif-
ferentiation. This approach is not new and has been considered previously [15, 35], but only

9
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in the context of the Hamilton–Jacobi equation for the geodesic motion: suppose we have the
solution to the geodesic equation expressed in terms of the curve parameter and the integration
constants. Suppose also that we have a complete integral of the associated Hamilton–Jacobi
equation. Then the variation of this integral with respect to the coordinates of the geodesic and
the geodesic constants yields the solution to the GDE.

The method we present is a bit different. It avoids the Hamilton–Jacobi equation and pro-
vides a direct path from the solution of the geodesic equation to the BGOs. The technique
that we will apply has already been described partially in [36], i.e. without the operators
WLX and WLL, and we will describe it now in full detail. It is coordinate-dependent in the
sense that it requires fixing a coordinate system in which we know how to solve the geodesic
equation.

Let xμ
(
xν

O, �ν
O, λ

)
be the general solution to the geodesic equation written in coordinates

(ξμ) with the initial data xμ(λO) = xμ
O, �μ(λO) = �μ

O. Let xμ
E denote the coordinates of the sec-

ond endpoint of the geodesic, corresponding to a fixed value of the affine parameter λ = λE ,
and let �μ

E denote the tangent vector to the geodesic in λ = λE . Let us now consider the full
covariant variation with respect to all variables, including λ, of the second endpoint E , taken
at (xμ

O, �μ
O, λE ). It reads:

δxμ
E = WXX

μ
νδxν

O + WXL
μ

νΔ�ν
O + �μ

Eδλ (37)

Δ�μ
E = WLX

μ
νδxν

O + WLL
μ

νΔ�ν
O. (38)

These relations generalize (4) to the situation when we allow the affine parameter of the second
endpoint of the geodesic to vary as well, i.e. λ = λE + δλ. They follow simply from (4) and
the definition of a geodesic. Namely, the position variation under the variations of λ, with fixed
initial data (δxμ

O = ΔlμO = 0), is by definition given by the tangent vector �μ
E , and hence the last

term in (37). On the other hand, the covariant variations of the tangent vector along any fixed
geodesic γ must vanish because the tangent vector �μ is covariantly constant (∇��

μ = 0), and
hence no δλ term in (38).

Now, it follows from equations (37) and (38) that by taking the full solution to the geodesic
equation in a given coordinate system (ξμ), differentiating it with respect to all the compo-
nents of xμ

O, �μ
O and λ, and expressing the results in terms of covariant differentials, component

by component, one can recover all the BGOs. Their components, expressed in the coordi-
nate tetrads of the coordinate system (ξμ), play simply the role of the expansion coefficients
in the basis (δxμ

O, Δ�μ
O, δλ). With this result in hand, we are now ready to describe step by

step how we can evaluate W from the derivatives of the general solution of the geodesic
equation.

We begin with ordinary total variations of xμ
(
xν

O, �ν
O, λ

)
and the tangent vector

�μ(xν
O, �ν

O, λ) = ∂xμ

∂λ
, taken at λ = λE :

δxμ
E =

(
∂xμ

E
∂xν

O

)

�O ,λ

δxν
O +

(
∂xμ

E
∂�ν

O

)

xO ,λ

δ�ν
O +

(
∂xμ

E
∂λ

)

xO ,�O

δλ

δ�μ
E =

(
∂�μ

E
∂xν

O

)

�O ,λ

δxν
O +

(
∂�μ

E
∂�ν

O

)

xO ,λ

δ�ν
O +

(
∂�μ

E
∂λ

)

xO ,�O

δλ.

(39)

Just like in thermodynamics, the subscripts denote here variables kept fixed during respective
variations. Note also that we have used δxμ

E for the variation of xμ and δ�μ
E for the variation of

10
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�μ. Now we apply (5) to change the basis of variations from
(
δxμ

O, δ�μ
O, λ

)
to

(
δxμ

O, Δ�μ
O, λ

)

and switch from δlμE to ΔlμE in the second equation. Together with (37) and (38), this leads to
the following relations:

WXL
μ
ν =

(
∂xμ

E
∂�ν

O

)

xO ,λ

WXX
μ
ν =

(
∂xμ

E
∂xν

O

)

�O ,λ

− WXL
μ

βΓβ
αν (xO) �α

O

WLL
μ
ν =

(
∂�μ

E
∂�ν

O

)

xO ,λ

+ Γμ
αβ (xE ) �α

EWXL
β

ν

WLX
μ
ν =

(
∂�μ

E
∂xν

O

)

�O ,λ

+ Γμ
αβ (xE ) �α

E WXX
β

ν − WLL
μ

βΓβ
αν (xO) �α

O

+ Γμ
αγ (xE ) �α

E WXL
γ

βΓβ
αν (xO) �α

O.

(40)

We have thus expressed the four bitensors by �μ
O, the Christoffel symbols at O and E and

the derivatives of xμ(xν
O, �ν

O, λ) (the first derivatives
∂xμ

E
∂xν

O
,

∂xμ
E

∂�νO
, �μ

E ≡ ∂xμ
E

∂λ and the second deriva-

tives
∂�

μ
E

∂xν
O

≡ ∂2 xμ
E

∂λ∂xν
O

,
∂�

μ
E

∂�νO
≡ ∂2xμ

E
∂λ∂�νO

). These bitensors are sufficient to reconstruct optical observ-

ables, such as the matrix of magnification and parallax, as well as position and redshift drifts
(see [6]).

When we apply the BGO formalism to light rays, we need to impose one more requirement
for the variations of the endpoints. Namely, we limit the admissible variations to those which,
at the leading, linear order, preserve the null character of the corresponding geodesics. This
can be done either before or after the variation. In the first case

(
Δ�σ

O�Oσ = 0
)

we obtain W
that is restricted to a subspace of codimension 1 and thus contains less information [36]. In the
second case no information is lost.

In this paper we assume that a geodesic can be found for an arbitrary causal character. We
thus denote the normalization parameter by ε, and allow it to vary arbitrarily:

Δ�σ
O�Oσ = δε. (41)

We will now apply the method to our spacetime model. We note here that this is a type of
‘brute force’ approach to the problem: it is quasi-algorithmic, but at the same time it requires
a lot of algebraic manipulations, involving the differentiation of conservation laws, solving of
systems of linear equations, and matrix multiplication. It may therefore turn out to be unpracti-
cal for more complicated metrics without the help of computer-assisted algebra. It is, however,
applicable to any metric with a sufficient number of conservation laws.

For the spacetime of our interest, the majority of expressions for the components of the
geodesic are implicit, so a few more steps have to be taken. The implicit relations defining
geodesics consist of two types of equations. In the first group, i.e. (25)–(29), we have the
definitions of five conserved quantities expressed in terms of the initial data xμ

O, �μ
O. We can

write them symbolically as

Ji = f i(x
μ
O, �μ

O), (42)

with i = 1, . . . , 5. The other group of equations relates the photon’s position at λ = λE with
the initial position and the conserved quantities. These four equations have the form of implicit

11
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relations between the coordinates of the point xμ
E on the geodesic, the corresponding value of

the affine parameter λE , the initial point xμ
O and the conserved quantities Ji. The relations are

implicit, and three of them comprise integrals. In a symbolic form we may write them down as

ht(tE , xμ
O, Ji, λE ) = 0

hr(rE , xμ
O, Ji, λE ) = 0

hθ(θE , xμ
O, Ji, λE ) = 0

hφ(φE , xμ
O, Ji, λE ) = 0.

(43)

While the total number of conserved quantities is five, we need to note that the values of the
three components of the angular momentum are not entirely independent. Namely, given the
vector�yO = (rO sin θO cos φO , rO sin θO sin φO , rO cos θO), defining the photon position in
quasi-Cartesian coordinates, we have

�yO(xμ
O) · �L = 0. (44)

Moreover, this relation, with the same �L, must hold at all times along a geodesic. Equation (44)
expresses the fact that all orbits in a spherically symmetric spacetime are planar, with the orbital
plane perpendicular to �L. Now, given the initial point xμ

O, we may use (44) to eliminate one
of the components of �L in favour of the other two. Therefore the total number of independent
relations we have obtained is just 8.

We know from the previous section that we can choose our coordinate system to be aligned,
meaning that θO = π

2 , θ̇O = 0, φO = 0, tO = 0 for the fiducial null geodesic γ0. We will impose
this coordinate condition, but only after the variations are performed, to keep the geodesics’
variations unconstrained.

The derivation of W in the coordinate tetrads goes through a sequence of algebraic manip-
ulations of the linear relations between the variations of the initial data, the data at E and the
conserved quantities. These linear relations, in turn, are obtained by taking total variations of
the implicit equations above. Note that since all algebraic operations involved in this procedure,
i.e. substituting and solving for particular variations, are performed at the level of linearized
relations, the method always works, although it is, in the end, rather cumbersome.

The derivation of W proceeds now as follows: we begin by varying the first set of equations,
i.e. (25)–(28), or symbolically (42), obtaining the relations

δJi = L(δxμ
O, δ�ν

O), (45)

with L denoting from now on any unspecified linear relation. We then vary the second set, i.e.
(32)–(35), or (43), obtaining after simple manipulations relations of the type

δxμ
E = L(δxα

O, δJi, δλ). (46)

After the variation we impose the condition for aligned coordinates in the sense of section 3.2
for the fiducial null geodesic. This way we simplify the algebraic expressions for the coef-
ficients present in both linear relations. We then substitute (45) into (46), obtaining direct
relations between the variations of the initial data and the variations of the final position:

δxμ
E = L(δxα

O, δ�β
O, δλ). (47)

We have derived this way the first half of the linear relations we need.
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The second half is the linear relations between the variations of �μ
E and the variations of the

initial data. We can obtain them from the conservation of Ji. Note that the variations δJi are
related to the variations of the data (xμ

E , �μ
E ) at E by the same functional relations as those at the

initial point, i.e. we have

δJi = L(δxμ
E , δ�ν

E ), (48)

with the same coefficients of L as in (45), but evaluated at point E instead of O. We may now
combine (48) with (45) and solve the resulting linear equations for δ�μ

E . This yields a relation of
type δ�μ

E = L(δxα
O, δ�β

O, δxγ
E , δλ). We now need to eliminate δxγ

E from this relation using (47)
to obtain

δ�μ
E = L(δxα

O, δ�β
O, δλ). (49)

By comparing with (39), we note that the coefficients of the linear relations in (47) and
(49) must be equal to the partial derivatives of the functions xμ(xα

O, �β
O, λ) and �μ(xα

O, �β
O, λ).

Therefore, in the final step we can use (40) to calculate the components of W in the coordinate
tetrads directly from the coefficients of L in (47) and (49). The result is quite complicated, and
we present it in appendix A.3, while the intermediate steps of the calculations are contained
in appendix A.1. However, as we will see in section 3.6, it can be simplified by a lot with an
appropriate choice of the two tetrads.

3.4. Geodesic bilocal operators from the solution of GDE by using Killing vectors

The previous method is very straightforward and could in principle be implemented as an
algorithm with any computer algebra program. On the other hand, its manual implementation
is extremely tedious. For this reason we present a simpler method which uses directly the GDE
and its conserved quantities.

3.4.1. Overview of the method. The method of Killing conservation uses the fact that each
Killing vector generates the first integral of GDE. The conserved quantities can then reduce
the order of the GDE system and the new first order system of ODE’s is much easier to solve. In
the process, one must introduce integration constants, which can be related to the perturbations
of initial data via the GDE conservation equations. Then the components of W operators can
be read off one by one. Unlike the method of initial data variations, where variation had to be
done in arbitrary coordinates to retain all the effects of deviation, and only in the very end a
particular coordinate choice was set, here we may work in the aligned coordinates from the
very beginning. GDE already contains all effects we are interested in, and we can start in the
aligned coordinates without loss of generality.

3.4.2. Conservation equations. From (16) we know that Killing vectors generate the first
integrals of GDE. However, equation (16) requires not only the Killing vector, but also its
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covariant derivatives along the geodesic. We begin with the evaluation of derivatives in the
aligned coordinates:

Tμ = (1, 0, 0, 0)

Φμ
z = (0, 0, 0, 1)

Φμ
x = (0, 0, − sin φ, 0)

Φμ
y = (0, 0, cos φ, 0)

∇�T
μ =

A′

2

(
�r

A
,
�t

B
, 0, 0

)

∇�Φ
μ
z =

C′

2

(
0, − �φ

B
, 0,

�r

C

)

∇�Φ
μ
x =

(
0, 0, − cos φ�φ − C′

2C
�r sin φ, 0

)

∇�Φ
μ
y =

(
0, 0, − sin φ�φ +

C′

2C
�r cos φ, 0

)
.

(50)

The first integrals of the GDE in the form of (2), generated by Killing vectors have the
following form:

Σx = C sin φ
dξθ

dλ
− Cξθ cos φ �φ

Σy = −C cos φ
dξθ

dλ
− Cξθ sin φ�φ

Σz = −C
dξφ

dλ
− C′ξr�φ

ΣT = A
dξt

dλ
+ A′ξr�t.

(51)

By evaluating (16) at the initial point, where ξμ = δxμ
O and ∇lξ

μ = ΔlμO, we find expres-
sions of conserved quantities in terms of initial data:

ΣT = −A′
O

2
�rδxt

O +
A′

O
2

�tδxr
O + AOΔ�t

O

Σx = −
(

CO cos φO�φ
O +

C′
O

2
�r sin φO

)
δxθ

O + CO sin φOΔ�θ
O

Σy =

(
−CO sin φO�φ

O +
C′

O
2

�r cos φO

)
δxθ

O − CO cos φOΔ�θ
O

Σz = −C′
O

2
�φ
Oδxr

O +
C′

O
2

�r
Oδxφ

O − COΔ�φ
O.

(52)

We keep φO arbitrary, because setting it to zero at this stage complicates the evaluation of
W operators. We leave this value unspecified until ξ is fully expressed in terms of initial
data.

Note that the first two equations in (51) are related, i.e. by shifting φ → φ − π
2 one can

obtain the second equation from the first one. Hence, in order to have four independent first
integrals we need include (21), or, to be more exact, its covariant derivative along �. Then we
have one more first integral:

B = Eξ̇t +
d

dλ
(B�rξr) + Lzξ̇

φ

B = EΔ�t
O + BO�r

OΔ�r
O + LzΔ�φ

O.

(53)
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Now we have a sufficient number of equations for integration.

3.4.3. Solving the equations. We begin by solving for ξθ. Although it looks like we need an
explicit form of φ (λ), actually we can integrate it without referring to any particular solution.
From (51) and (52) we have that:

ξθ = κ1 sin φ − Σx

Lz
cos φ

∇�ξ
θ = ξθ

(
cot φ�φ +

C′

2C
�r

)
+

Σx

C sin φ
.

(54)

Here κ1 is an arbitrary constant of integration. We see that ξθ depends on λ only through
φ (λ). This is simply a reiteration of the fact, that in static spherically symmetric spacetimes
the dynamics of θ is constrained by φ. In the same way, the dynamics of the perturbation of θ
is also constrained by φ.

The other three components are coupled through ξr. From (51) and (53) we write an equation
for ξr:

ξ̇r − �̇r

�r
ξr +

1
B�r

(
EΣT

A
− LzΣz

C
− B

)
= 0. (55)

Integrating it yields a solution for ξr, which is then used to find ξt and ξφ:

ξr = κ2�
r − �r

∫ λE

λO

(
EΣT

A
− LzΣz

C
− B

)
dλ

B�r2

ξt = κ3 +

∫ λE

λO

(
ΣT

A
+

EA′

A2
ξr

)
dλ

ξφ = κ4 −
∫ λE

λO

(
Σz

C
+

C′

C2
Lzξ

r

)
dλ,

(56)

where κ2, κ3, κ4 are arbitrary constants. The last step is to express all the constants in terms of
initial data—δxμ

O and Δ�μ
O. This can be done by evaluating ξμ and ∇�ξ

μ at O together with (52)
and (53). Then the W operators can be found by comparing ξμ and ∇�ξ

μ with equations (37)
and (38). Formally, we can write

WXX
μ
ν =

∂ξμ

∂δxν
O

WXL
μ
ν =

∂ξμ

∂Δ�ν
O

WLX
μ
ν =

∂∇�ξ
μ

∂δxν
O

WLL
μ
ν =

∂∇�ξ
μ

∂Δ�ν
O

. (57)

Explicit expressions of all these components with respect to the aligned coordinate tetrad
can be found in the appendix A.

3.5. Construction of a parallel propagated tetrad

In the previous sections we described how to obtain an exact solution to the GDE for static
spherically symmetric spacetimes in the coordinate tetrad. However, due to the diffeomorphism
invariance of general relativity, physical aspects of geodesic deviation are obscured by the
choice of coordinates. In order to mitigate this problem we will project our results onto a
parallel propagated tetrad. In this paper we will use the SNT [6], while the construction itself
is based on Marck [37]. For more details on the complete integrability of parallel transport
please check the review in [38].
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The SNT eμ
μ =

(
uμ, eμ

A, �μ
)

comprises the four-velocity uμ, a null vector �μ and two mutu-
ally orthogonal spacelike vectors eμ

A, called the transverse vectors, which are also orthogonal
to �μ and uμ. This frame is defined by the following constraints:

�μ�μ = 0

eμ
A�μ = 0

eμ
AeBμ = δAB

uμ
OuOμ = −1

uμ
OeAμ = 0

�μuOμ = Q > 0,

(58)

where Q is a constant related to the normalization of the null tangent �μ. The construction of
the frame will be done in two steps. Firstly, we will reduce the space of tetrads to a subspace
of those whose two vectors are parallel propagated. This will leave a one-parameter family
of tetrads at each point. Then we will use a linear transformation together with the parallel
propagation equation to parallel transport the entire tetrad.

We begin the first step with an observation that �μ is already parallel propagated. To obtain
the second vector, we notice that the vector that is perpendicular to the plane passing through
the origin of the coordinate system is parallel propagated along the whole plane. In our case,
this vector is eμ

1 = 1√
C
∂θ which is spacelike and perpendicular to the plane z = 0.

Now we will seek the vector eμ
2. By looking at equation (58) we see that from conditions

e1 · e2 = 0, e2 · � = 0 and e2 · e2 = 1 we get e2 up to an additive term c (λ) · �. Hence, from
purely geometric considerations and without solving any ODEs we get an equivalence class
of vectors e2 such that for all of them ∇�e2 differs only by f (λ) · � for some f . Next, we
pick a particular instance of e2, say, ẽ2 = α (λ) ∂t + β (λ) ∂r, which is not necessarily parallel
transported. Then, up to an overall sign, ẽ2 reads

ẽμ
2 =

(√
BC
A

�r

Lz
, −

√
C

AB
E
Lz

, 0, 0

)
(59)

while the unique associated four-velocity ũμ, orthogonal to both transverse vectors, is of the
form

ũμ =

(
E

2AL2
z Q

(
L2 + CQ2

)
, − �r

2L2
z Q

, 0,
Q

2Lz
− L

2CQ

)
. (60)

We will call the tetrad (ũμ, eμ
1 , ẽμ

2 , �μ) the intermediate SNT.
In the second step we will look for a linear λ-dependent transformation that preserves

equation (58). Let
(
ũμ, eμ

1, ẽμ
2, �μ

)
and

(
uμ, eμ

1, eμ
2, �μ

)
be SNTs, with the second one being

parallel transported. We assume the following ansatz:
⎛
⎜⎜⎝

uμ

eμ
1

eμ
2

�μ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

au bu cu du

a1 b1 c1 d1

a2 b2 c2 d2

a� b� c� d�

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ũμ

eμ
1

ẽμ
2

�μ

⎞
⎟⎟⎠ . (61)

Since �μ and eμ
1 are already parallel propagated, some coefficients can be set to either zero or

one. The rest of the coefficients are determined by the SNT constraints and can be shown to

16



Class. Quantum Grav. 39 (2022) 155002 J Serbenta and M Korzyński

depend on only one function Ψ (λ). Then, up to a sign, eμ
2 is

eμ
2 = ẽμ

2 − Ψ

Q
�μ (62)

while uμ is unique and of the form

uμ = ũμ + Ψẽμ
2 − Ψ2

2Q
�μ. (63)

To determine Ψ, we have to use the parallel propagation equation for any single vector of the
SNT. For example, demanding ∇�e

μ
2 = 0 yields

Ψ̇
�μ

Q
= ∇�ẽ

μ
2 , (64)

where dot denotes the derivative with respect to λ. This has to hold for any component. For
example, the equation for component φ yields the following simple ODE:

Ψ̇ = − C′

2
√

ABC

E
Lz

Q. (65)

The initial condition for Ψ will now fix a particular choice of the solution. The natural choice
is ẽ2 at the initial point, leading to Ψ (0) = 0, and this is what we use in the next section, but
other choices are possible too.

3.6. Projections of operators onto a semi-null tetrad

In the SNT all four BGO’s have the following form:

(66)

Here α denotes λ, 1, 1 and 0 for the operators WXL, WXX, WLL, WLX respectively. Due to the
algebraic properties of BGOs [6], the top row and the rightmost column have a fixed form
irrespective of the spacetime geometry. The 2 × 2 submatrix in the center corresponds to the
projection of the BGOs onto the screen space. It is diagonal in the SNT we have constructed,
and all of its components are independent of the choice of the observer’s four-velocity u as the
first component of the tetrad. For this reason, the two nonvanishing components, denoted by �,
do not contain Q or Ψ. This does not apply to the other three nonzero components, denoted by
�. Altogether, there are at most five nontrivial components per BGO, but symplectic properties
impose seven constraints, which brings the total number of nontrivial independent components
down to 13. We present all the nontrivial components of the BGOs and the optical tidal matrix
in the aligned coordinate tetrad and the SNT in the appendix A.6.

A portion of our results has been derived earlier, but in different contexts. In [18] the authors
studied the luminosity of a spherically collapsing star. By following a bundle of light coming
from a surface area element of the star which reached the observer and integrating over the
whole surface of the star, they managed to show the dependence of the total observed flux on
the radius of the surface. In [21] the topic of the study was the spherical gravitational lens
and its modification due to clumpiness of the matter within the lens or a large scale matter
distribution surrounding the lens itself.
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4. Optical distance measures and distance slip in Schwarzschild spacetime

Most methods of distance determination in astronomy we know use light propagation one way
or another. In a flat spacetime, with no relative motions of the sources and all distance measures
are perfectly equivalent. In general, however, light propagation is affected by the spacetime
curvature, which makes distance measures differ from each other and their counterparts in
flat spacetime. This leads to many paradoxical results, such as the finite maximal value of the
angular diameter distance in many FLRW Universe models [39–41] or absence of any apparent
motion of light sources in others [42]. In this section, we will to present and analyze in detail
the behaviour of the distance measures in static spherically symmetric spacetimes with the help
of the results of the previous sections. Although this class of metrics is quite special, it is also
sufficiently broad and can be used to study the nontrivial behaviour of distance measures. Even
though the final results are complicated, everything can be explained exactly.

The two distance measures we consider in this paper are the angular diameter distance (also
known as the area distance [4]) Dang and the parallax distance Dpar [6]. Just for completeness
we recall also the notion of the luminosity distance Dlum [4, 43, 44], defined with the help of
the measured flux of energy from a radiating body of known luminosity. It is well-known that
it is related to Dang via the Etherington’s duality relation [4]. Dang is defined using the ratio of
the solid angle an extended object takes up on the observer’s celestial sphere to its physical
cross-sectional area. The definition of Dpar on the other hand makes use of the trigonometric
parallax effect, i.e. the dependence of the position of the source’s image on the celestial sphere
on the observer’s transverse displacement suitably averaged over the baseline orientation. We
will also discuss the distance slip μ, introduced in [6] and studied in greater detail in [45] which
is defined as

μ = 1 − σ
D2

ang

D2
par

, (67)

where for sufficiently short distances σ = 1. It is an interesting quantity because it directly
measures the impact of the spacetime curvature on the light propagation in a frame-independent
way. Moreover, for short distances μ is equal to an integral of the mass density along the LOS.

The key observation is that the distance slip and the two distance measures between two
points connected by a null geodesic γ0 can be expressed in terms of the BGOs and the
observer’s four-velocity [6]. This means that the BGO formalism can be used to investigate the
dependence of the distance measures on the null geodesic γ0 and the positions of the emission
and observation point along it.

After introducing the distance measures and the infinitesimally thin ray bundle formalism,
we will consider the simplest nontrivial example of static spherically symmetric spacetimes,
namely, the Schwarzschild black hole. We will numerically study the behaviour of ray bundles
that begin at some distance from the photon sphere, propagate towards and around the black
hole, possibly, winding around it a number of times, and, finally, escape to infinity. The form of
trajectories will be controlled by the initial data of the fiducial geodesic. Using the results of this
paper, we will discuss the properties of Dang, Dpar and μ associated with sources positioned at
different points along the null geodesic. Finally, we will prove a few more general statements
regarding to the behaviour of these functions. Since distance measures can be expressed in
terms of W, we have all the tools to study them in general.
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4.1. Infinitesimally thin bundles

The behaviour of distance measures is much simpler to grasp if we relate it to the properties
of infinitesimally thin bundles of light rays. For this reason we briefly review the basics of
ray bundle formalism. We follow the definitions and conventions of Perlick [4]. Let λ �→ x (λ)
be an affinely parametrized null geodesic with a tangent vector � = ẋ. An infinitesimally thin
bundle of rays is the set

S = {cIξμ
I |c1, c2 ∈ R, cIcJδIJ � 1}, (68)

where, in the parallel propagated SNT, ξμ
I satisfies the GDE (cf (2))

ξ̈μ
I = Rμ

νξν
I, (69)

together with the orthogonality constraint

gμν�μξν
I = 0 (70)

and I enumerates linearly independent solutions. By construction, its cross-section by the
screen space of an observer is elliptical and spacelike. This problem setting is equivalent to
the one used to prove the Sachs shadow theorem [1], where a small object in a null geodesic
congruence casts a shadow on a screen in motion. In either case, the area of this cross-section
is a Lorentz invariant at any given point of the geodesic, i.e. it does not depend on the observer
we choose. The area can be expressed as

A =

∫

Σ

εABξA
1 ξB

2 , (71)

where εAB is the area two-form, and ξA
I are the projections of linearly independent solutions

of (69) onto the screen space, i.e. space spanned by the two transverse vectors in a SNT. It
evolves according to the equation

dA
dλ

= Aθ, (72)

where θ is the bundle expansion. Note that the area defined this way is a signed quantity. The
sign can change every time the bundle degenerates to a line or a point.

In order to determine θ one has to make use of null Raychaudhuri equations (also known as
Sachs optical equations). In this paper we will only consider the twist-free (or surface-forming)
bundles, i.e. those for which the twist ωAB vanishes. The equations read [46]

dθ

dλ
= −θ2

2
− σABσAB − Rμν�

μ�ν (73)

dσAB

dλ
= −θσAB + CAμνB�μ�ν , (74)

which in the BGO formalism are equivalent to

d2

dλ2
W∗∗

A
B =

(
−1

2
Rμν�

μ�νδA
C + CA

μνC�μ�ν

)
W∗∗

C
B. (75)
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For the purpose of this paper we introduce two infinitesimal ray bundles along γ0: the vertex
bundle and the initially parallel bundle. The vertex bundle is a bundle of rays crossing at O. It
is defined by the singular initial conditions for θ, σAB and ωAB at O [4]:

θ(λ) ∼ 2
λ − λO

(76)

σAB(λO) = 0 (77)

ωAB(λO) = 0. (78)

The initially parallel bundle, on the other hand, is strictly parallel at O, i.e.

θ(λ) = 0 (79)

σAB(λO) = 0 (80)

ωAB(λO) = 0. (81)

Both bundles are twist-free, or surface forming, i.e. ωAB = 0 along the whole null geodesic.
They are both closely related to the transverse components of the operators WXX and WXL:
namely, we have

ξA(λ) = WXL
A
B(λ)ξ̇B(λO) (82)

for the vertex bundle and

ξA(λ) = WXX
A
B(λ)ξB(λO) (83)

for the initially parallel bundle. Note that due to the orthogonality condition (70) ξμ has only
transverse components plus a component proportional to �μ. The latter is irrelevant from the
point of view of the geometry of cross-sections (see [1]), so it is the two transverse components
of ξμ given by (82) and (83) that define the distance measures.

Having developed the ray bundle formalism, now we can utilize it to understand distance
measures solely in terms of the cross-sectional areas of various ray bundles.

Let us begin with the vertex bundle. By definition of the magnification matrix [6]

δθA
O = (lO · uO)−1

(
WXL

−1
)A

B
δxB

E . (84)

From (84) and (82) it follows that

δθA
O = (�O · uO)−1ξ̇A

O . (85)

Integrating (84) over the angular shape of the figure on the observer’s sky yields

Ã(λ) = (lO · uO)2(det WXL
A
B)Ω̃O, (86)

where Ω̃O is the angular area of the figure as observed from O, and Ã(λ) is the physical area
of the cross-section of the ray bundle at E . Since the angular diameter distance reads

Dang = (lO · uO)
∣∣det WXL

A
B

∣∣1/2
, (87)

it simply follows that

Dang =

√
|Ã(λ)|
Ω̃O

. (88)
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Previously introduced initial conditions for the vertex bundle imply that its cross-sectional area
at O exhibits the following behaviour:

Ã (λ) = (λ − λO)2(�O · uO)2Ω̃O + O
(
λ3

)
. (89)

Consider now the initially parallel bundle. Its evolution is described by the WXX operator, which
stands for the following mapping:

ξA(λ) = WXX
A
B(λ)ξB(λO). (90)

Suppose the cross-sectional area of this bundle at O is AO . Integration of (90) over the initial
shape of the cross-section gives [7]

A (λ) =
(
det WXX

A
B

)
AO , (91)

which allows us to rewrite μ as

μ = 1 − A (λ)
AO

(92)

with A (λO) = AO. Finally, the substitution of the results presented above into (67) enables us
to write down the parallax distance:

Dpar =

√√√√
∣∣∣∣∣
Ã (λ)
A (λ)

∣∣∣∣∣

√
AO
Ω̃O

. (93)

To sum up, the ray bundle formalism allows us to express distance measures and their slip
through cross-sectional areas in a relatively simple way. The analysis can be made even more
straightforward if we apply the BGO formalism.

4.2. Special points

We fix the null geodesic γ0 and the observer’s position O along γ0. We can now introduce
three types of special points along a null geodesic, defined by the properties of the vertex
and initially parallel ray bundle. Their importance stems from the fact that they mark points
where Dang(λ), Dpar(λ) and μ(λ) take particular values. Each of these points may appear an
arbitrary number of times along a null geodesic or not appear at all, depending on the spacetime
geometry.

We call P a conjugate point with respect to O iff the vertex bundle from O refocuses back
at P at least along one transverse direction. This property is equivalent to the existence of
a Jacobi field along γ0, vanishing at O and P , but not identically zero. It is easy to check
that this happens iff det WXL

A
B = 0 between O and P . Conjugate points correspond to the

intersection of the fiducial geodesic with a caustic and are points of infinite magnification of
images of objects located at P as seen in O. We can see that in these points we formally have
Dang = 0. Moreover, as long as det WXX

A
B �= 0, we also have Dpar = 0. On the other hand, μ

does not need to take any special value in a conjugate point because its value is unrelated to
the properties of the vertex bundle.

We call P a focal point iff an infinitesimal bundle of rays running parallel at O refocuses at P
along at least in one direction. This happens when det WXX

A
B = 0. The physical interpretation
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of these points is vanishing parallax effect along at least one baseline: the parallax matrix must
be degenerate in at least one direction. This means that the displacements of the observer in
this direction result in no measurable image displacement. It is straightforward to see that at
these points we have diverging parallax distance, i.e. Dpar → ∞, as long as P is not a conjugate
point as well. Moreover, at focal points we always have μ = 1. However, the value of Dang can
be arbitrary at a focal point.

Finally, P is an equidistance point iff Dang = Dpar, i.e. both methods of distance determina-
tion yield the same value. The reader may check easily from (67) that at these points we have
either μ = 0 or μ = 2.

4.3. Numerical results

Now we will use this formalism to study light propagation and notions of distances in
Schwarzschild spacetime. In this analysis we are interested in a beam of light that connects
static emitters and observers placed outside the black hole’s photon sphere. The trajectory of
the geodesic is an arbitrary arc that (possibly) winds around the black hole a finite number
of times. We fix the observer’s position at r = 100rs, where rs is the Schwarzschild radius,
and vary the impact parameter b = |Lz|

E . Then we follow the corresponding null geodesic as
we increase the affine parameter value λ, and to each value we assign an emitter placed at
the point xμ (λ). The parametrization of the geodesic is fixed by rescaling the affine parameter
while keeping the products (uO · �O) equal to 1 for all instances of b. This means that λ agrees
with the spatial distance measured by the observer in his or her vicinity.

In every case the endpoint of the geodesic is placed sufficiently far away from the black
hole such that the curvature effects eventually would be negligible. The plots reveal that the
evolution of distance measures and μ has three distinct stages. For this reason we will discuss
their behaviour in the initial, intermediate and faraway regions separately.

In principle there are two ways to investigate this problem numerically. The first approach
is the numerical evaluation of the exact solutions of the geodesic equations and the GDE. The
second approach is the direct numerical integration of the geodesic equation and the GDE
projected onto the SNT. We choose the second approach because it provides an easier control
of the problem, especially at the turning points.

As depicted in figure 1(a), Dpar and Dang differ very slightly in the case of a large impact
parameter. As λ approaches 0, distances become arbitrarily close to each other. On the
other hand, the growth of λ is accompanied by a slight increase in the difference between
both distance measures, with Dpar being the larger one. Similarly, μ is slowly monotonically
increasing.

A slight decrease of the impact parameter (figure 1(b)) results in the appearance of the first
nontrivial effect. At first, Dpar is practically identical to Dang, but later Dpar starts to grow faster
and diverges upon reaching the focal point. Afterwards, it becomes monotonically decreasing,
with Dang eventually overtaking at the equidistance point. All this time both Dang and μ are
monotonically increasing. The positions of the focal and equidistance points, which correspond
to μ = 1 and μ = 2, are marked respectively by the solid and dashed lines.

Decreasing the impact parameter even more (figure 1(c)) reveals several more interesting
effects. Again Dpar is initially growing faster than Dang and diverges at the focal point. How-
ever, Dang is not monotonic anymore and, together with Dpar, vanishes at the conjugate point.
From now on, both distances grow monotonically, with Dpar growing faster at first but later
approaching a finite value.
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Figure 1. Dependence of Dpar, Dang and μ on initial conditions. The horizontal axis
shows the value of the affine parameter along the geodesic. Parametrization is the same
for all cases and is fixed by rescaling the affine parameter in a way that makes the prod-
uct (uO · �O) = 1. All distance measures are measured in Schwarzschild radii. Vertical
solid lines denote Dpar = ∞ (μ = 1), dashed lines—Dpar = Dang (μ = 1 ± 1). In the last
picture the region between the first pair of lines (which almost appears as a single line)
shows a behaviour similar to b = 4.47rs case. The second group comprises a solid line
surrounded by two dashed lines. The distances are plotted in a linear scale in plot (a) and
in logarithmic scale in (b)–(d).

A further decrease of the impact parameter (figure 1(d)) exposes only one new feature: the
nonmonotonicity of μ. We observe that there is a special point between two focal points, upon
reaching which μ begins to decrease. Such behaviour is suggested by (67), by which the value
of μ at any focal point is equal to one. Therefore, at some point in between it has to become
decreasing. Apart from that, we see a higher number of appearances of previously described
features. Dang has an overall growing tendency, but it decreases to zero every time a conjugate
point is passed. Analogously, Dpar diverges at focal points and vanishes at conjugate points.

In the faraway region the behaviour of distance measures becomes relatively simple. Dang

grows without bounds, while Dpar approaches a constant value. μ also grows indefinitely, but
its sign depends on the number of focal points passed.

Although these results represent only a few selected realisations of the problem, the qualita-
tive properties survive in the general setting. We now present these properties in three different
regimes (figures 2 and 3).
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Figure 2. An illustration of the problem setting. The line depicts the null geodesic. The
green, red and blue parts represent the initial, intermediate and faraway regions. The
boxes at both endpoints stand for locally flat neighbourhoods. The black sphere marks
the event horizon of the black hole.

Figure 3. Due to the symmetries of Schwarzschild spacetime every geodesic is com-
pletely contained in a plane passing through the center of the black hole. Geodesics that
emerge from the same point but differ in their vertical alignments belong to different
planes which share a line passing through the initial point and the center. All points
conjugate to the initial one lie on this line.

4.4. Initial region

We begin with two types of bundles of rays: a vertex bundle and an initially parallel bundle.
They can be understood by studying WXX and WXL. In order to explain their behaviour in the
initial region, we have to estimate the leading order behaviour. In the parallel propagated frame,
expressing these operators as Taylor series around λO = 0 and applying their ODEs and initial
conditions in the matrix form [6] yields:

WXL
A
B = λδA

B +
λ3

3!
RA

B +
λ4

4!

(
2ṘA

B

)
+

λ5

5!

(
3R̈A

B + RA
CRC

B

)
+ O

(
λ6

)

WXX
A
B = δA

B +
λ2

2!
RA

B +
λ3

3!
ṘA

B +
λ4

4!

(
R̈A

B + RA
CRC

B

)
+ O

(
λ5

)
,

(94)

where Ṙ denotes the derivative of R with respect to the affine parameter, and every curvature
term is evaluated at λ = 0.

24



Class. Quantum Grav. 39 (2022) 155002 J Serbenta and M Korzyński

Spatial projections of these operators live in the two-dimensional Euclidean space. Hence,
one can apply the Cayley–Hamilton theorem to express the determinants in terms of traces:

det2 (I + A) = 1 + Tr A +
(Tr A)2 − Tr

(
A2

)

2
. (95)

This is particularly useful when one has to organize power expansions to higher orders. Also,
it is instructive to decompose the optical tidal matrix as a sum of pure Ricci and Weyl terms,
i.e. RA

B = − 1
2 R��δ

A
B + CA

��B. Then at O the Taylor series expansion of determinants and μ
has the following form:

det WXL
A
B = λ2

(
1 − λ2

3!
R�� − λ3

4!
2Ṙ�� +

λ4

5!

[
5
6

R2
�� − 3R̈��

]
− λ4

5!

5
3

CA
��BCB

��A

)
+ O

(
λ7

)

det WXX
A
B = 1 − λ2

2!
R�� − λ3

3!
Ṙ�� +

λ4

4!

(
2R2

�� − R̈��

)
− 2

λ4

4!
CA

��BCB
��A + O

(
λ5

)

μ =
λ2

2!
R�� +

λ3

3!
Ṙ�� − λ4

4!

(
2R2

�� + R̈��

)
+ 2

λ4

4!
CA

��BCB
��A + O

(
λ5

)
.

(96)

Finally, we substitute these results into (87) and the parallax distance formula

Dpar = (lO · uO)
∣∣det WXL

A
B

∣∣1/2∣∣det WXX
A
B

∣∣−1/2
(97)

and obtain the leading order behaviour for the distance measures:

Dang

(�O · uO)
= λ − λ3

3!

R��

2
− λ4

4!
Ṙ�� − λ5

5!

3
2

R̈�� − λ5

5!

5
6

CA
��BCB

��A + O
(
λ6

)

Dpar

(�O · uO)
= λ +

λ3

3!
R�� +

λ4

4!
Ṙ�� +

λ5

5!

(
15
4

R2
�� + R̈��

)
+

λ5

5!

25
6

CA
��BCB

��A + O
(
λ6

)
.

(98)

From the above relations we conclude that Dang, Dpar and μ are all regular for sufficiently short
distances. Furthermore, whenever R�� is identically zero, e.g. in vacuum or in the presence of
the cosmological constant, the difference between the operators, their determinants and derived
distances is observable only at a relatively high order. This explains why for the Schwarzschild
spacetime in the beginning both vertex and initially parallel bundles are almost unaffected. In
particular, Weyl contribution appears at the fifth order for distance measures and at the fourth
order for μ. On the other hand, when R�� > 0, the difference is already visible at the third
order for distances and at the second order for μ. Moreover, in the leading order, Dpar is larger
than Dang, and μ is positive. In fact, it is possible to present a more general, non-perturbative
statement, valid in any spacetime. In the companion paper [45] we prove the following result:
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Theorem 4.1. Let O and E be two points along a null geodesic γ such that O lies in the
causal future of E and let the NEC hold along γ0 between O and E . Assume also that between
O and E there are no singular points of the infinitesimal bundle of rays parallel at O. Then
we have

μ � 0. (99)

Moreover, μ = 0 iff the transverse optical tidal tensor RA
μνB�μ�ν vanishes along γ0 between

O and E .

4.5. Intermediate region

In the intermediate region geodesics may circle the black hole, but eventually they escape
to infinity unless they fall onto the photon sphere or the black hole. In any case, both the
initially parallel and vertex bundles start to converge due to Weyl focusing, as can be seen
from (73) and (74). The parallel bundle is the first one to be focused because already at λO
because its expansion is zero, and later it can only decrease. The position of the correspond-
ing focal point depends on the parameters of the null geodesic, but it is reached sooner than
the corresponding conjugate point. At the focal point Dpar diverges and μ = 1 while Dang is
regular.

If, after passing the focal point, the geodesic is still sufficiently close to the black hole,
it will encounter the conjugate point where the vertex bundle will converge back to a
point. Even though the initial conditions determine the position of this point, the angular
coordinate φ is actually independent of them and always equals a multiple of π (assum-
ing that initially φ = 0). At the conjugate points both Dpar and Dang vanish, but μ is
regular.

By looking at the expressions for BGOs in the parallel propagated SNT one can notice that
the dependence on φ is periodic with the period of 2π, while the angular coordinates of focal
and conjugate points differ by a multiple of π. This can be easily understood from the symme-
try of the problem. In a spherically symmetric spacetime every perturbed geodesic is contained
in a plane. All these planes are tilted with respect to each other, but they share one common
line. All the points from which geodesics emanate or to which they converge lie on this line.
Furthermore, the geodesic equation depends on the square of angular momentum. Tilting a
plane implies a perturbation of the angular momentum, i.e. L2

x → L2
x + 2LxδLx + δL2

x . How-
ever, in the domain of the linear geodesic deviation, only linear terms should be considered. In
addition to this, both Lx and Ly vanish in the aligned coordinates, which implies that the lin-
ear perturbation is also absent. Therefore, every ray of the null congruence satisfies the same
geodesic equation. Provided we choose the correct affine parameter gauge, they meet at the
same point.

After the focal point one can almost always expect an equidistant point where Dpar = Dang.
This point may come either before or after the conjugate point. At this point μ is either 0 or 2,
and all observables are regular.

One has to note that the number of occurrences of these special points depends on the total
azimuthal angle swept by the geodesic, measured by φ. It is determined by the parameters
of the geodesic, i.e. b and rO . Even if we take λ from λO up to infinity, the range of φ is
bounded for geodesics that are not trapped by the black hole. It may therefore happen that
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several sequences of focal, conjugate or equidistant points will be traversed, or that in the end
the counts of each type of point will be different. However, the qualitative behaviour at these
points and in between is the same.

4.6. Faraway region

In the faraway region the curvature is becoming arbitrarily small, and the geodesic approaches
a radial null line. This results in the Weyl focusing becoming negligible. Thus, effectively,
nearby light rays propagate as if they were in the Minkowski spacetime. From (75) we have in
that case:

WXX ∼ AXX + λBXX

WXL ∼ AXL + λBXL

, (100)

where AXX, AXL, BXX, BXL are constant matrices. Their precise form depends on the whole his-
tory of the null geodesics from the observation point up to the faraway region. Taking their
determinants yields the asymptotic behaviour for λ → ∞:

det WXX
A
B ∼

(
det BXX

A
B

)
λ2

det WXL
A
B ∼

(
det BXL

A
B

)
λ2.

(101)

In a generic situation we may assume that these determinants do not vanish. Then, according
to (87) and (97), Dang and Dpar have the following asymptotic behaviour:

Dang ∼ λ

Dpar ∼ const.
(102)

In other words, sufficiently far away Dang is almost a linear function, while Dpar approaches a
constant value. From the intermediate region analysis we know that Dpar is initially larger than
Dang. Therefore, in order to shrink to a fixed value, it must at some point match Dang. For this
reason the existence of the equidistant point is guaranteed for a generic geodesic.

The constancy of Dpar is surprising, but at the same time it is actually a rather generic fea-
ture of asymptotically flat spacetimes. In Minkowski spacetime, for a baseline of fixed length,
the parallax angle depends only on the position of the source. The further lies the source, the
smaller the parallax angle, and this angle is close to zero for infinitely distant objects. In the
general case, however, the trajectory of light will pass through a curved region and will be
deflected. Then the total parallax is the sum of parallax in relatively flat regions and the con-
tribution of light deflection in-between. Even if the parallax in the outer region can be made
arbitrarily small, the passing of light through a curved region leaves its imprint that does not
go away. The gravitational lensing best illustrates this: the position of an apparent image is
very sensitive to its proximity to the two-dimensional projection of the lensing body and its
parallax effect. The parallax of a nearby lens, such as the Schwarzschild black hole in our case,
combined with light deflection provides this way an additional parallax effect for very distant
objects. This in turn limits the effective parallax distance to these objects, as measured by the
observer.

It may happen that for some initial conditions that matrices BXX and BXL are degenerate.
In that case the asymptotic analysis of the behaviour of Dang and Dpar does not apply. For
example, in the Schwarzschild spacetime, radial null geodesics correspond to the principal
null directions and are shear free. The behaviour of distances then is analogous to the one in
flat space where both Dang and Dpar grow linearly and are both equal all along the geodesic.
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However, these situations require extreme fine-tuning of the initial data and do not represent
the generic behaviour.

5. Conclusion

In this paper, we have presented two exact methods of solving the GDE and deriving the BGOs.
The first method is based on the linear variation of the solution to the geodesic equation with
respect to initial data. It requires an expression for the general solution of the geodesic equation
in an explicit form or at least a sufficient number of implicit relations defining the geodesic. The
second method makes use of the conserved quantities generated by Killing vectors. Every such
quantity generates a conservation law for the GDE. In both cases, BGO’s can be read off by
taking partial derivatives of exact solutions or variations with respect to covariant perturbations
of the initial data. Then we apply both methods to obtain the BGOs in a four-dimensional
static spherically symmetric spacetime. In these spacetimes, a generic null geodesic is always
contained in a plane passing through the origin. This allows us to reduce the dimensionality of
the problem. Finally, to isolate physical effects, we project the BGOs onto a parallel-transported
SNT.

In the second part of the paper, we investigated the behaviour of distance measures such as
the angular diameter distance, the parallax distance and the distance slip in the Schwarzschild
spacetime. We considered cases where both the source and the observer are located outside of
the photon sphere. In the numerical study, we considered trajectories with a static observer and
four different impact parameters. We have noticed that as the impact parameter approaches the
value corresponding to the photon sphere, the occurrence and the strength of various nontrivial
optical effects increases. One can observe the formation of various special points where the
parallax distance diverges, parallax and angular distances become zero or equal to each other.
Another interesting feature of this spacetime is that the parallax distance of a source positioned
infinitely far away is finite.

In the last part, we provide a more general explanation for the observed phenomena. In the
absence of matter, the curvature effects appear at a relatively high order, which explains why
initially the distances are almost the same. In the intermediate region, the light is refocused to
a line, and the number of such events depends on the total deflection angle. All points where
this focusing happens lie on a line in the geodesic plane, which passes through the center of the
black hole. In the faraway region, light rays propagate in effectively flat spacetime. However, at
the same time, they carry the imprint of the previous regimes. We then show that in the faraway
region the generic behaviour of distance measures in the leading order is linear for the angular
diameter distance and constant for the parallax distance.
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Appendix A

A.1. Variations of the implicit solutions of the geodesic equation

A.1.1. Variation of conserved quantities. We want to find how variations of initial position
and direction affect (25)–(30). Due to the assumed symmetry, we can always choose aligned
coordinates, where Lx and Ly are zero. However, this does not have to hold for their variations.
The results are:

δLx|O = CO�φ
OδθO

δLy|O = COδ�θ
O

δLz|O =
C′

O
CO

LzδrO + COδ�φ
O

δE|O = −AOδ�t
O + E

A′
O

AO
δrO

δε|O =

[
−A′

O
E2

A2
O

+ B′
O
(
�r
O
)2

+ C′
O

L2

C2
O

]
δrO + 2Eδ�t

O + 2BO�r
Oδ�r

O

+ 2Lzδ�
φ
O.

(103)

Note that the variation of Lx is simply proportional to the variation of θO, and we may safely
substitute it everywhere by δθO . The remaining four variations of conserved quantities can be
used to parametrize the variations of the four components of the initial four-momentum �μ

O.
We also point out that even though ε here is arbitrary, eventually, we will set ε = 0 to limit
ourselves to null geodesics.

A.1.2. Variation of the implicit equations. Now we switch to the variation of solutions to
the geodesic equations. We begin with (34) which we vary and then evaluate in the aligned
coordinates:

δθ = cos φδθO + sin φ
δ�θ

O
�φ
O

. (104)

Next we use (26) and (27) to obtain �θ:
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�θ =
Ly cos φ − Lx sin φ

C
. (105)

In the aligned coordinates its variation yields:

δ�θ =
CO
C

(
cos φδ�θ

O − sin φ�φ
OδθO

)
. (106)

Note that variations of θ and �θ decouple from variations of other components of the geodesic.
This is a consequence of the existence of a plane containing the geodesic.

Next we will consider the variation of r. We choose λ to be our dependent variable to avoid
working with the formal solution r (λ). From the normalization condition (30) we get:

λ − λO = ⨏
rE

rO
±r

√
ABC

ACε + E2C − L2A
dr̃. (107)

From now on we set λO = 0 for convenience. We have that:

δλ =
δr
�r

− δrO
�r
O

+ LIBCδL − EIABδE − IB

2
δε. (108)

This can be easily solved for δr:

δr = �r

(
δλ +

δrO
�r
O

− IBCLδL + IABEδE +
IB

2
δε

)
. (109)

Variation of �r is straightforward:

δ�r =
1
�r

(
δε

2B
+

EδE
AB

− LδL
BC

)
− 1

�r

(
εB′

B2
+

E2

AB

(
A′

A
+

B′

B

)
− L2

BC

(
B′

B
+

C′

C

))
δr,

the prime denoting here A′(r) = A,r etc.
Similarly, for t and �t we have:

δt = δtO + E

(
δrO

AO�r
O

− δr
A�r

)
+ IABCL (LδE − EδL) + IAB

(
E
2

δε − εδE

)

δ�t = −δE
A

+
E
A2

A′δr.

(111)

In order to vary φ and �φ we start from (35) and (28). Here we have to recall that by (34), θ
depends on φ as well. However, in the aligned coordinates, θ variations simply drop out, and
we are left with the standard result:

30



Class. Quantum Grav. 39 (2022) 155002 J Serbenta and M Korzyński

δφ = δφO + Lz

(
δr

C�r
− δrO

CO�r
O

)
+ IABCE (EδLz − LzδE) + IBC

(
εδLz − Lzδε

2

)

δ�φ =
δLz

C
− Lz

C2
C′δr.

(112)

In order to find W operators, we use variations we have obtained so far together with (40).
Firstly, by reading off components for each variation, we obtain functions corresponding to
partial derivatives in (40). Then, we calculate Christoffel symbols and vectors tangent to the
geodesic and evaluate them at one of the endpoints as prescribed by (40).

A.2. Solution of GDE

Here we write down the solution of GDE using the method of conserved quantities.

ξθ = κ1 sin φ +
Σx

Lz
cos φ

∇�ξ
θ = ξθ

(
cot φ�φ +

C′

2C
�r

)
− Σx

C sin φ

ξr = �r (κ2 − EΣTIAB + LzΣzIBC + BIB)

∇�ξ
r =

B − E∇�ξ
t − Lz∇�ξ

φ

B�r

ξt = κ3 + κ2E

(
1

AO
− 1

A

)
+ ΣT

(
E2 IAB

A
− L2

z IABC + εIAB

)

+ LzΣzE

(
IABC − IBC

A

)
+ EB

(
IAB − IB

A

)

∇�ξ
t =

A′�r

2A

(
κ3 + κ2

E
AO

+ LzIABC (ΣzE − ΣT Lz) + IAB (ΣTε + EB)

)

+
ΣT

A

ξφ = κ4 + κ2Lz

(
1
C

− 1
CO

)
+ Σz

(
L2

z
IBC

C
− E2IABC − εIBC

)

+ EΣTLz

(
IABC − IAB

C

)
+ LzB

(
IB

C
− IBC

)

∇�ξ
φ =

C′�r

2C

(
EIABC (ΣTLz − ΣzE) − IBC (Σzε + LzB) + κ4 − κ2

Lz

CO

)
− Σz

C
.
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A.3. BGO’s expressed in the coordinate tetrad

WXX
t
t = 1 +

1
2

A′
O�r

O

(
L2

z IABC − E2

A
IAB − εIAB

)

WXX
t
φ =

C′
O�r

O
2

ELz

(
IABC − IBC

A

)

WXX
t
r =

E
�r
O

(
1

AO
− 1

A

)
+

C′
OL2

z E
2CO

(
IBC

A
− IABC

)

+
A′

OE
2AO

(
L2

z IABC − E2

A
IAB − εIAB

)

WXX
r
t =

A′
O�r

O
2

E�rIAB WXX
r
φ =

C′
O�r

O
2

Lz�
rIBC

WXX
r
r =

� r

�r
O

+
�r

2

(
E2 A′

O
AO

IAB − L2
z

C′
O

CO
IBC

)

WXX
θ
θ = cosφ − C′

O�r
O

sinφ

2Lz

WXX
φ
t =

A′
O�r

O
2

LzE

(
IAB

C
− IABC

)

WXX
φ
φ = 1 +

C′
O�r

O
2

(
L2

z

C
IBC − E2IABC − εIBC

)

WXX
φ
r =

Lz

�r
O

(
1
C

− 1
CO

)
+

A′
O

2AO
E2Lz

(
IAB

C
− IABC

)

+
C′

O
2CO

Lz

(
E2IABC − L2

z

C
IBC + εIBC

)

WXL
t
t = E2

(
IAB − IB

A

)
+ AO

(
E2 IAB

A
− L2

z IABC + εIAB

)

WXL
t
r = EBO�r

O

(
IAB − IB

A

)

WXL
t
φ = ELz

(
IAB − IB

A
+ CO

(
IBC

A
− IABC

))
WXL

θ
θ =

CO
Lz

sinφ

WXL
r
t = E�r (IB − AOIAB) WXL

r
r = BO�r

O�rIB

WXL
r
φ = Lz�

r (IB − COIBC)

WXL
φ
t = ELz

(
AOIABC − IBC +

IB − AOIAB

C

)

WXL
φ
r = BO�r

OLz

(
IB

C
− IBC

)

WXL
φ
φ = L2

z

(
IB

C
− IBC

)
+ CO

(
E2IABC − L2

z

C
IBC + εIBC

)
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WLX
t
t =

1
2A

(
�rA′ − �r

OA′
O +

A′
O�r

OA′�r

2

(
L2

z IABC − εIAB

))

WLX
t
φ =

LzE
4A

A′�rC′
O�r

OIABC

WLX
t
r =

E
2AAO�r

O

(
A′�r − A′

O�r
O
)

+
EL2

z

4A
A′�r

(
A′

O
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− C′
O
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OE
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WLX
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E
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(
A′
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)
+

EL2
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4B
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(
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C
− A′

A

)
IABC

+
A′

O�r
OA′Eε

4AB
IAB

WLX
r
r =

E2
(
A′

O�r
O − A′�r

)

2ABAO�r�r
O

+
L2

z

(
C′�r − C′

O�r
O
)

2BCCO�r�r
O

+
E2L2

z

4B

(
A′

A
− C′

C

) (
C′

O
CO

− A′
O

AO

)
IABC

+
ε

4B

(
E2 A′

OA′

AOA
IAB − L2

z IBC
C′

OC′

COC

)

WLX
r
φ =

Lz

2BC�r

(
C′

O�r
O − C′�r

)
+

E2Lz

4B
C′

O�r
O

(
C′

C
− A′

A

)
IABC

+ε
LzC′

4BC
C′

O�r
OIBC

WLX
θ
θ =

cosφ
2C

(
C′�r − C′

O�r
O
)

−
(

Lz

C
+

C′�rC′
O�r

O
4CLz

)
sinφ

WLX
φ
t = −LzE

4C
C′�rA′

O�r
OIABC WLX

φ
r =

Lz

(
C′

O�r
O − C′�r

)

2CCO�r
O

+
LzE2

4C
C′�r

(
C′

O
CO

− A′
O

AO

)
IABC +

C′
OLzC′�r

4CCO
εIBC

WLX
φ
φ =

1
2C

(
C′�r − C′

O�r
O
)

− E2

4C
C′�rC′

O�r
OIABC

− εIBC

4C
C′�rC′
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O
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WLL
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E
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+
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2A

(
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z AOIABC + εIABAO
)

WLL
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ELz
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E
2B
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A′AOE
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O
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2CLz
C′�r sin φ

WLL
φ
t =

ELz
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O
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A.4. Optical tidal matrix in aligned coordinate tetrad

Rt
t =

E2 + εA
EB�r

Rt
r +
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Lz

2ABC
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A′C(AB)′ + AB

(
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(113)
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A.5. Optical tidal matrix in the semi-null tetrad (ε = 0)
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A.6. BGO’s in the semi-null tetrad
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Note that these relations take the simplest form in the intermediate SNT, as defined in
section 3.5, in which we simply have Ψ = 0.
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Chapter 4

Testing the null energy condition
with precise distance measurements

In this chapter, we present a very general and unexpected result about the distance measure-
ments based on light propagation in curved spacetimes. It states that if general relativity
holds, the matter satisfies the NEC and the light travels along null geodesics, then for a source
of light placed anywhere between the observer and the first focal point the parallax distance
measured by the observer cannot get smaller than the angular diameter distance. The result
is completely independent of any spacetime symmetries or motions of the source or the ob-
server. The result rests upon the projected GDE and the light ray bundle formalism, while
the techniques used are very similar to those found in standard focusing theorems.

In this paper we study the inequality with three different parallax distance definitions:
the determinant-averaged, the trace-averaged, and the directional parallax distances. The
result holds equally for the first two definitions, although the proof of the second one is more
technically involved than of the first one. On the other hand, the directional parallax distance
is shown not to satisfy the inequality if the ray encounters strong tidal forces. The paper
is concluded with a list of rough estimates of the positions of focal points and the distance
slip throughout and beyond the Milky Way. For this we assumed a certain continuous matter
distribution model. We conclude that direction averaging is crucial unless Weyl contribution
is on average negligible and uncorrelated with the direction of the baseline of observation.

Author’s contribution

The results were derived in collaboration with my supervisor prof. M. Korzyński. My contri-
bution includes:

• making the connection between the BGO and the lightray bundle formalisms, especially
the fact that µ is related to the lightray bundle with initially parallel rays;

• estimation of µ in Sec. IV;

• development of Taylor series expansion for BGOs and distance measures used in Sec.
III;

Meanwhile, the contribution of prof. M. Korzyński includes:

• the idea of the paper;

• the complete proof for the inequality of trace-averaged parallax distance and the coun-
terexample in the case of strong Weyl curvature in Sec. III.

The draft was written and published jointly by me and M. Korzyński.

56



Testing the null energy condition with precise distance measurements

Mikołaj Korzyński * and Julius Serbenta †

Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

(Received 29 November 2021; accepted 2 March 2022; published 11 April 2022)

We present an inequality between two types of distance measures from an observer to a single light
source in general relativity. It states that for a given source and observer the distance measured by the
trigonometric parallax is never shorter than the angular diameter distance provided that the null energy
condition holds and that there are no focal points in between. This result is independent of the details of the
spacetime geometry or the motions of the observer and the source. The proof is based on the geodesic
bilocal operator formalism and on well-known properties of infinitesimal light ray bundles. Observation of
the violation of the distance inequality would mean that on large scales either the null energy condition does
not hold or that light does not travel along null geodesics.
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I. INTRODUCTION

Measuring the distance to a given light source is one of
the fundamental problems of astronomy. Many methods
have been developed for that purpose depending on the
nature of the source and the distance. The three probably
most straightforward ones are the trigonometric parallax
measurement, the determination of the angular size of an
extended source of known size (i.e., a standard ruler) and
the measurement of the energy flux from an isotropic
source with known absolute luminosity (i.e., a standard
candle). By definition, all three methods must give the same
result in a flat spacetime and in the absence of relative
motions between the source and the observer. However, in
the presence of spacetime curvature and relative motions
the three methods are inequivalent. Therefore, in general
relativity (GR) we distinguish the angular diameter distance
Dang, also known as the area distance, defined via the solid
angle occupied by the image of a standard ruler, the
luminosity distance Dlum, defined by the measured energy
flux from a standard candle, and the parallax distance Dpar,
defined via the apparent displacement of the image given
the displacement of the observer along a baseline [1,2].
Note that in the presence of curvature the trigonometric
parallax may depend on the baseline orientation. However,
it is possible to define a baseline-averaged quantity,
combining the parallax effects from two orthogonal
directions [2].
Dang, Dlum and the redshift z measured between a fixed

source and observer are related by the well-known
Etherington’s reciprocity relation Dlum ¼ ð1þ zÞ2Dang

independently of the spacetime geometry [1,3–10]. In case

of the baseline-averaged parallax distance Dpar the relation
to other distance measures is more complicated and
depends on the curvature tensor along the line of sight.
In fact, for short distances the relative difference between
Dang and Dpar, called the distance slip μ, depends only on
the matter content along the line of sight: the leading order
correction is given by an integral of the component Tμνlμlν

of the stress-energy tensor, where lμ is the tangent vector to
the null geodesic connecting the observer and the source.
Namely, for short distances we have

μ ¼ 1 −
D2

ang

D2
par

¼ 8πG
Z

λE

λO

TμνlμlμðλE − λÞdλþOðRiem2Þ;

ð1Þ

where λ is the affine parameter of the connecting null
geodesic, λO corresponds to the observation point and λE to
the source, whileOðRiem2Þ denotes terms involving higher
powers of the curvature [2,11].
In this paper we show that the sign of the difference

between Dpar and Dang for a given source and a given
observer is directly related to the null energy condition
(NEC). On the perturbative level this already follows from
(1): the leading, linear term in curvature is obviously
nonnegative if the NEC condition holds, because in this
case we have 0 ≤ Rμνlμlν ¼ 8πGTμνlμlν for any null lμ.
The main theorems of this paper extend this inequality to
the non-perturbative level: we show that if the NEC is
satisfied then Dpar ≥ Dang at least up to a well-defined,
finite distance between the observer and the light source.
More precisely, for a fixed observation point and variable
source position along a null geodesic the inequality is
guaranteed to hold from the observation point up to the so-
called focal point, where the parallax distance reaches
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infinite value. Note that this blow-up may happen for a
finite value of the affine parameter. Past that point,
however, Dpar becomes finite again and it is possible that
Dpar < Dang there even if the NEC holds globally [12]. This
restriction means that the distance inequality is not global.
Stated in a more physical language, the inequality means
that both the matter along line of sight, resulting in Ricci
focusing of the null geodesics, and the tidal forces,
producing their shear, can only increaseDpar in comparison
with Dang, at least up to the first focal point.
Recall that the null energy condition (NEC) for all null

vectors lμ reads

Tμνlμlν ≥ 0: ð2Þ

It is one of the weakest classical pointlike energy conditions
with relatively simple and important applications. In gen-
eral relativity, it is equivalent to the null convergence
condition (NCC)

Rμνlμlν ≥ 0; ð3Þ

which ensures that at every point light rays experience
gravity as an attractive force. This property implies that any
light ray bundle eventually has to reach a caustic over a
finite distance provided that suitable initial condition holds.
More precisely, the standard focusing theorem states that
the ray bundle must reach a point where its expansion
diverges provided that the expansion is negative at a single
point, and NCC holds [13]. Surprisingly, this simple result
is necessary for proving such basic black hole properties
like formation of event horizons and singularities under the
gravitational collapse, some of the black hole laws, various
no hair theorems, and some versions of the positivity of
ADM mass [14].
As we have already noted, if we assume the Einstein

equations then the NEC is equivalent to the NCC. It is
satisfied for most reasonable types of matter like dust,
radiation, fluid, or classical electromagnetic fields [15]. It is
also insensitive to the presence of cosmological constant.
The validity of the NEC can also be used to put bounds on
various properties of the FLRWUniverse [16]. On the other
hand, it has also been noted that quantum effects tend to
violate the NEC as well as its even weaker averaged version
[17]. The NEC can also fail in the presence of nonstandard
matter fields [14,17,18], including fluids with barotropic
index w < −1 or for holographic dark energy models with
even smaller barotropic index [19].
In modified theories of gravity NEC and NCC are in

general not equivalent. The NCC can fail even in presence
of standard matter if the field equations contain additional
terms, like in the case of fðRÞ gravity [20,21] or other
extended metric theories [22–24]. Moreover, light propa-
gation may also work differently than in GR: outside the
Riemannian geometry regime the light may follow null

curves which are neither autoparallel nor extremal, and this
implies that the optical equations contain additional geo-
metric terms, effectively acting as additional, nonclassical
matter fields [25–27]. These terms affect the focusing and
defocusing properties of the spacetime and, consequently,
the relation between NEC and the properties of light rays.
In this paper we assume that standard general relativity

holds. Therefore, we will assume NEC, which we in turn
treat as equivalent to NCC. However, the reasoning should
still apply to any metric theory in which light travels along
null geodesics and NCC holds.
The main result of this paper, i.e., the distance inequality,

provides a method to test the NEC using sufficiently
precise, simultaneous distance measurements by parallax
and angular (or luminosity) to a number of light sources.
The observation of the violation of the NEC would require
a serious reevaluation of the fundamentals of physics. We
point out, however, that the precision required seems
beyond what is currently possible.
The proof of the main theorem of the paper, that is,

Theorem III.1, makes use of the bi-local approach to light
propagation in curved spacetimes, developed in [2,12], and
of the standard infinitesimal ray bundle formalism [1],
closely related to the null congruence formalism. We first
show that the distance slip μ between the observation point
O and any source located along a past-directed null
geodesic fromO is related to the ratio of the cross-sectional
areas of a particular infinitesimal bundle of null rays, with
cross sections taken at O and at the source. We then show
that this cross-sectional area cannot increase along the null
geodesic as we move away from the observation point in
the past direction, at least up to the first focal point, which
completes the proof. The main argument is similar to the
reasoning used in the proof of the standard focusing
theorem.

A. Notation and conventions

Greek letters ðα; β;…Þ run from 0 to 3, lowercase Latin
indices run from 1 to 3 and uppercase Latin indices run
from 1 to 2. They all enumerate tensor components in the
coordinate tetrad. Boldface versions of indices cover the
same range but denote components in a parallel transported
tetrad. The dot stands for the derivative with respect to the
affine parameter along the null geodesic. SubscriptO and E
denote evaluation of the quantity at respectively the point of
observation and emission, i.e., fO ≡ fðλOÞ. We assume the
speed of light c ¼ 1 throughout the paper.

B. Structure of the paper

In Sec. II, we briefly review the bilocal geodesic operator
(BGO) formalism and relate these operators to the mag-
nification and parallax matrices as well as angular diameter
and parallax distances. Then we introduce the notion of the
infinitesimal ray bundle and present two types of bundles
which we will use later. Finally, we recall Sachs optical

MIKOŁAJ KORZYŃSKI and JULIUS SERBENTA PHYS. REV. D 105, 084017 (2022)

084017-2



equations and their connection to the BGOs. In Sec. III we
present our main results. In the first part we prove the
inequality for the parallax distance Dpar with baseline
averaging performed using the determinant of the parallax
matrix. In the second part we show that a similar conclusion
follows for the parallax distance with the baseline averag-
ing via trace, as proposed earlier by a number of authors.
Lastly, we explain why our result cannot be extended to
single baseline parallax measurements. We gather our final
remarks in Sec. IV, including a short discussion of the
prospects for measurement.

II. PRELIMINARIES

Let ðM; gÞ be a Lorentzian spacetime, with signature
ð−;þ;þ;þÞ. Let O; E ∈ M be points contained in a
geodesically convex set. O will denote the observation
point, lying in the causal future of the emission point E. Let
γ0∶½λO; λE � → M be the unique geodesic connecting O and
E, and we assume here that γ0 is null. By convention we
assume that the affine parameter λ runs backwards in time,
i.e., λO < λE . Let NO; NE ⊂ M be locally flat neighbor-
hoods of O and E respectively extending in all four
dimensions. Let lμ be the vector tangent to γ0. Let ξμ

denote the deviation vector (Jacobi field) along γ0, satisfy-
ing the first order geodesic deviation equation (GDE):

∇l∇lξ
μ ¼ Rμ

llνξ
ν; ð4Þ

where the optical tidal tensor Rμ
llν is defined as

Rμ
llν ≡ Rμ

αβνlαlβ. This is a linear, second order ordinary
differential equation for ξμ. It is possible to rewrite it as an
equation for four bitensors, forming together the formal
resolvent of the GDE [2]. In this language the general
solution to (4) can be expressed as

ξμðλÞ ¼ WXX
μ
νðλÞξνðλOÞ þWXL

μ
νðλÞ∇lξ

νðλOÞ
∇lξ

μðλÞ ¼ WLX
μ
νðλÞξνðλOÞ þWLL

μ
νðλÞ∇lξ

νðλOÞ; ð5Þ

where WXX, WXL, WLX and WLL are 4 bitensors, or two-
point tensors, acting from the observation point O to the
point λ on the geodesic, called the bilocal geodesic
operators (BGO’s). The BGO’s are functionals of the
curvature along γ0 defined via appropriate ordinary differ-
ential equations involving the components of the optical
tidal tensor as coefficients [2,28].
We introduce the seminull tetrad (SNT) of the form

ðuμ; eμA; lμÞ, parallel propagated along γ0. It comprises the
null tangent vector lμ, two orthonormal spacelike vectors
eμA, A ¼ 1, 2, orthogonal to lμ, spanning a spacelike two-
dimensional subspace called the screen space or transverse
space, and a normalized timelike vector uμ orthogonal to
eμA. u

μ is commonly identified with the 4-velocity of an
observer measuring the position and the direction of the
propagation of photons. It satisfies uμlμ ¼ Q, where Q is a

positive constant. Given the fixed observation point O, the
equations for the transverse components of WXX and WXL
expressed in the SNF read [2]:

ẄXX
A
B − RA

llCWXX
C
B ¼ 0

WXX
A
BðλOÞ ¼ δAB

_WXX
A
BðλOÞ ¼ 0 ð6Þ

and

ẄXL
A
B − RA

llCWXL
C
B ¼ 0

WXL
A
BðλOÞ ¼ 0

_WXL
A
BðλOÞ ¼ δAB: ð7Þ

With this machinery we may introduce the parallax
matrix, the magnification matrix and the optical distance
measures. Suppose we project the BGOs onto the SNT,
with the timelike vector corresponding to the observer’s 4-
velocity uμO. Their projection onto the screen space spanned
by eμA is related to the matrices.
The magnification matrix MA

B relates the transverse
vectors representing the spatial extent of a luminous body
to the vectors on the screen space representing the angular
size on an observer’s sky [2] (in the gravitational lensing
theory this quantity is usually defined using angular
variables, and therefore rescaled with respect to MA

B as
defined here). We have

MA
B ¼ 1

ðuμOlOμÞ
ðWXL

−1ÞAB; ð8Þ

see [2]. The submatrix WXL
A
B, whose inverse appears in

the formula above, is also known as the Jacobi matrix.
The parallax matrix on the other hand relates the trans-

verse displacement of an observer with the apparent change
of the position of a body on the observer’s sky [2] and is
given by

ΠA
B ¼ 1

ðuμOlOμÞ
ðWXL

−1ÞACWXX
C
B: ð9Þ

In a flat spacetime both linear operators are proportional to a
unit matrix. Therefore both the trigonometric parallax and
the magnification do not depend on the direction of the
baseline or the orientation of the source’s shape.However, in
the general case the direction in the transverse space is
important. Both linear operators can be used to define
direction-averaged distances to the observed source of light.
In the BGO formalism it is natural to do this as follows: the
angular diameter distance, or the area distance, is defined via
the determinant of MA

B:

Dang ¼ j detMA
Bj−1=2 ¼ ðuμOlOμÞj detWXL

A
Bj1=2: ð10Þ
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In a more operational language, it is given by the ratio of the
cross-sectional area of a luminous object and the solid angle
taken by its image. It is a well-known quantity in relativistic
geometrical optics. The parallax distance averaged by
determinant has been introduced in [2]:

Dpar ¼ j detΠA
Bj−1=2

¼ ðuμOlOμÞj detWXL
A
Bj1=2j detWXX

A
Bj−1=2: ð11Þ

Both distance measures depend on the state of motion of the
observer, given by uμO, and the spacetime geometry along the
line of sight. However, they do not depend on the state of
motion of the light emitter.
Finally, we recall the definition of the main quantity of

this work, i.e., the distance slip μ [2]:

μ ¼ 1 − σ
D2

ang

D2
par

¼ 1 −
detΠA

B

detMA
B
; ð12Þ

where σ ¼ �1 is a sign correction given by
σ ¼ sgn detΠA

B=sgn detMA
B. It is independent of the

states of motion of both the observer and the source. It
vanishes in a flat spacetime, but not necessary in a
curved one.
From (8)–(11) we can rewrite the equations above as

μ ¼ 1 − detWXX
A
B ð13Þ

and

σ ¼ sgn detWXX
A
B: ð14Þ

A. Infinitesimally thin bundles

The infinitesimally thin ray bundle formalism is a
complementary method to describe light propagation
between two points. We make use of it in this paper,
because the propagation equations describing the bundles
can be easily used to prove inequalities involving observ-
able quantities. We will briefly review the infinitesimally
thin ray bundle formalism, as described in [1].
By an infinitesimal ray bundle with an elliptical cross

section we mean the set

S ¼ fcIξAI jc1; c2 ∈ R; cIcJδIJ ≤ 1g ð15Þ

where ξA satisfies the GDE in the SNT:

̈ξAI ¼ RA
llBξ

B
I ; ð16Þ

and the index I enumerates linearly independent solutions
not proportional to lμ. Note that we take into account only
the two transverse components of the vectors. This is
possible because we may impose the condition ξ0 ¼ 0, or
equivalently

ξμlμ ¼ 0; ð17Þ

along the whole γ0, and because the component ξ3 does not
couple with the other three. ξ3 is also irrelevant from the
point of view of geometric optics [2,29]. The cross section
of S by the screen spanned by eμA is spacelike and Lorentz-
invariant everywhere along the geodesic. Especially impor-
tant for the main result is its cross-sectional area:

A ¼ πϵABξ
A
1 ξ

B
2 ; ð18Þ

where ϵAB is the area two-form [30] and ξAI are the two
linearly independent solutions of (16) projected on the
screen space. The area defined by (18) is a signed quantity
which may change sign when the bundle degenerates to a
point or to a line. We assume throughout the work that the
initial value of A is chosen to be positive, i.e.,

AðλOÞ≡AO > 0: ð19Þ

It is customary to rewrite the GDE (16) for the two
generators of an infinitesimal bundle in terms of the so-
called kinematical bundle variables. We first need to
decompose the transverse part of the optical tidal tensor
into the trace and the traceless part as follows:

RA
μνBlμlν ¼ −

1

2
Rllδ

A
B þ CA

μνBlμlν; ð20Þ

where Rll ¼ Rμνlμlν denotes the l − l component of the
Ricci tensor and Cα

μνβ is the Weyl tensor. This decom-
position holds even though we are taking the trace only
with respect to the two-dimensional subspace of the tangent
space, see for example [2,31].
The bundle evolution along the null geodesic is most

conveniently described in terms of the deformation tensor
BA

B [32–34], defined via

_ξAI ðλÞ ¼ BA
BðλÞξBI ðλÞ ð21Þ

for both I ¼ 1, 2. The infinitesimal bundle can always be
extended to a full congruence of null geodesics. In that case
we have the relation

BA
B ¼ ∇BlA; ð22Þ

where lμ denotes the vector field generating the
congruence.
BA

B decomposes into the kinematical variables (also
known as the optical scalars), i.e., the scalar expansion θ,
traceless symmetric shear σAB, and antisymmetric twist
ωAB, according to

BAB ¼ 1

2
θδAB þ σAB þ ωAB: ð23Þ
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Each of them satisfies an appropriate ODE along the null
geodesic, known as the null Raychaudhuri equations, Sachs
optical equations or transport equations. Here we only
consider twist-free (or surface-forming) bundles, for which
ωAB ¼ 0 along the whole γ0. In this case the equations for θ
and shear σAB read [33]

dθ
dλ

¼ −
θ2

2
− σABσ

AB − Rll ð24Þ

dσAB

dλ
¼ −θσAB þ CAllB; ð25Þ

where CAllB ¼ CAμνBlμlν. These equations are sometimes
written in a different form, using a set of complex scalars,
but we prefer the tensorial representation. The area of the
cross section satisfies its own evolution equation, given in
terms of the expansion:

dA
dλ

¼ Aθ: ð26Þ

In this paper we mainly consider two examples of
infinitesimal ray bundles. The first one is the infinitesimal
ray bundle parallel at O, or the parallel bundle at O for
short, see Fig. 1. As the name suggests, it satisfies the
condition of being strictly parallel at O, i.e.,

θðλOÞ ¼ 0 ð27Þ

σABðλOÞ ¼ 0 ð28Þ

ωABðλOÞ ¼ 0: ð29Þ

It is related to the transverse components of WXX:
namely, we have

ξAI ðλÞ ¼ WXX
A
BðλÞξBI ðλOÞ ð30Þ

for this bundle. Due to the orthogonality condition (17) ξμI
has only transverse components plus a component propor-
tional to lμ. The latter is irrelevant from the point of view of
the geometry of cross sections, see the Sachs shadow
theorem [30], so it is the two transverse components of ξμI
given by (30) that define the distance measures. Finally,
Eqs. (30) and (18) give

AðλÞ ¼ ðdetWXX
A
BÞAO: ð31Þ

From this and (13) we see that

μ ¼ 1 −
AðλÞ
AO

; ð32Þ

where μ is calculated for the emission point at λ and the
observation point at O.
The other bundle we consider in this paper is the

infinitesimal ray bundle with a vertex at point E, or simply
the vertex bundle from E. It satisfies the condition of
vanishing at E, i.e., ξ̃AI ðλEÞ ¼ 0 for I ¼ 1, 2, see Fig. 2(a).
Let W̃XL

A
BðλÞ denote the transverse components of the

bitensor defined just like WXL
A
BðλÞ, but with the initial

point taken at E instead of O. The vertex bundle is then
related to this bitensor via:

ξ̃AI ðλÞ ¼ W̃XL
A
BðλÞ _ξ̃BI ðλEÞ: ð33Þ

FIG. 1. A bundle of rays that runs parallel at O. Its shape undergoes a deformation under the spacetime curvature. Along the fiducial
geodesic a shape of cross section that is circular at O changes its size and becomes increasingly elliptical. In the generic case it
eventually degenerates either to a line or to a point. The point on the geodesic where this degeneracy happens is called the focal point.
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The asymptotic behavior of the infinitesimal bundle near E
is described by the Taylor expansion

W̃XL
A
BðλÞ ¼ ðλ − λEÞδAB þOððλ − λEÞ2Þ; ð34Þ

see equations (7) with E as the base point. It follows that the
expansion θ̃ has a simple pole at λE [1]:

θ̃ðλÞ ¼ 2ðλ − λEÞ−1 þOð1Þ: ð35Þ

This is an example of a singular point of an infinitesimal
ray bundle. In the next section we will define this notion
more precisely.

By analogy we may also consider an infinitesimal ray
bundle with a vertex at O, related to the bitensor WXL

instead of W̃XL.

B. Singular points of a bundle

The description of a ray bundle using the shear and
expansion can break down at isolated points even though
the perturbed geodesics constituting the bundle are per-
fectly regular there. This typically happens when the
bundle collapses along one or two directions, forming a
self-intersection. In the language of the Sachs frame this
happens if the determinant of the two transverse solutions
of the GDE vanishes, i.e., detðξA1 ; ξB2 Þ ¼ 0. The expansion
diverges in this case to �∞ and changes sign.

FIG. 2. (a) A bundle of rays that forms a vertex at E. Its shape undergoes a deformation under the spacetime curvature. Along the
fiducial geodesic a shape of cross section that is circular at E changes its size and becomes increasingly elliptical. (b) The same bundle of
rays that forms a vertex at E. At a larger distance it may eventually degenerate either to a line or to a point. The point on the geodesic
where this degeneracy happens is called the conjugate point.
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We introduce the following definition:
Definition II.1. Point P along a null geodesic γ0 is a

regular point of a ray bundle iff θðλÞ, ωABðλÞ and σABðλÞ are
smooth atP. A point that is not regular will be called singular.
We fix the null geodesic γ0 and the observer’s positionO

along γ0. We can now introduce two types of singular
points along a null geodesic, defined by the properties of
the vertex and initially parallel ray bundles.
We call P a conjugate point with respect to O iff the

vertex bundle fromO refocuses back at P at least along one
transverse direction. This property is equivalent to the
existence of a Jacobi field along γ0, satisfying the GDE and
vanishing at O and P, but not identically zero [1]. It is easy
to check that this happens iff detWXL

A
B ¼ 0 between O

and P. Conjugate points correspond to the intersection of
the fiducial geodesic with a caustic and are points of infinite
magnification of images of objects located at P as seen
in O.
We call P a focal point iff an infinitesimal bundle of rays

running parallel at O refocuses at P along at least one
direction. This happens when detWXX

A
B ¼ 0, see Fig 1.

The reader may check that at both the focal point and the
conjugate point the expansion θ of the corresponding
bundle has a singularity.

C. Integral formula for the cross-sectional area

The ODE (26) can be integrated exactly assuming that
θðλÞ is a regular function. Namely, if there are no singular
points between O and λ, the solution simply reads

AðλÞ ¼ AO exp

�Z
λ

λO

θðλ0Þdλ0
�
: ð36Þ

This formula will play an important role in the proof of the
main result. Let us stress that the condition of regularity of
θðλÞ is crucial here, because Eq. (36) may break down after
a singular point such as a focal point. This is evident if we
note that AðλÞ may switch sign past a focal point, which is
obviously inconsistent with Eq. (36), in which the signs of
AO and AðλÞ must be the same.

III. THE MAIN THEOREMS

Definition We say that the null energy condition (NEC)
holds at a set O ⊂ M iff at every point in O we have
Rμνlμlν ≥ 0 for all null vectors lμ.
Theorem III.1 Let O and E be two points along a null

geodesic γ0 such thatO lies in the causal future of E and let
the NEC hold along γ0 between O and E. Assume also that
between O and E there are no singular points of the
infinitesimal bundle of rays parallel at O. Then we have

μ ≥ 0 ð37Þ

for an observer at O and a source at E. Moreover, μ ¼ 0 iff
the transverse components of the optical tidal tensor
RA

μνBlμlν vanish along γ0 between O and E.
Proof We begin with the inequality. The right-hand side

of the Eq. (24) for the derivative of θ is obviously non-
positive. Since initially θðλOÞ ¼ 0 we see that θðλÞ ≤ 0
everywhere between O and E:

Z
λE

λO

θðλÞdλ ≤ 0: ð38Þ

From the integral formula (36) we see that AðλÞ ≤ AO, so
from (32) we have μ ≥ 0. This completes the proof of the
first part of the theorem.
Assume now μ ¼ 0 between O and E. It follows from

(32) that AðλÞ ¼ AO. Substituting this to the integral
formula (36) we obtain

exp

�Z
λE

λO

θðλÞdλ
�

¼ 1; ð39Þ

or equivalently
Z

λE

λO

θðλÞdλ ¼ 0: ð40Þ

By the regularity assumption θðλÞ is continuous on the closed
interval between λO and λE and we have also shown that
θðλÞ ≤ 0 on this interval. ThereforeEq. (40) is only possible if
θðλÞ ¼ 0 everywhere on this interval. Substituting this
condition to (24) we obtain −σABσAB − Rll ¼ 0, which
implies that both σAB ¼ 0 and Rll ¼ 0 everywhere between
O and E. Finally, we substitute the former relation to (25) to
obtain CAμνBlμlν ¼ 0.
We have thus proved that both the contracted Ricci tensor

and the transverse components of the contracted Weyl
tensor vanish. It follows that all transverse components
of the optical tidal tensor must vanish between O and E,
see (20). This completes the proof of the second part of the
theorem.
This theorem does not automatically imply an inequality

between the distance measures because of the sign ambi-
guity in the definition of μ, see the rhs of Eq. (12). We
therefore need one more result regarding the sign-defining
factor σ in (12):
Proposition III.2. Under the assumptionsofTheoremIII.1

we have σ ¼ 1.
Proof. From (36) we see easily that AðλÞ > 0.

Therefore from (31) we have detWXX
A
B>0. Then σ ¼ 1

follows from (14).
The following result follows now Theorem III.1, Eq. (12)

and Proposition III.2
Corollary III.3. Under the assumptions of Theorem III.1

we have

Dpar ≥ Dang ð41Þ
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for any observer at O and any light source at E. Moreover,
Dpar ¼ Dang iff the transverse components of the optical tidal
tensor RA

μνBlμlν vanish along γ0 between O and E.
Proof. From Proposition III.2 and (12) we have

μ ¼ 1 − D2
ang

D2
par
. Together with the positivity of Dang and

Dpar, this implies that the inequality μ ≥ 0 is equivalent
to Dpar ≥ Dang and the equality μ ¼ 0 is equivalent to
Dpar ¼ Dang. The Corollary follows then trivially from
Theorem III.1.

A. Trace-based baseline-averaged parallax distance

In Räsänen [35], Rosquist [36] as well as Ellis et al. [7]
(republished as [8]), Jordan et al. [37] (republished as [38])
a different method of baseline averaging for the parallax
distance has been proposed. Effectively it differs from Dpar
by using the trace of the parallax matrix instead of the
determinant for baseline direction averaging. We will
now prove a result analogous to Theorem III.1 and
Corollary III.3 for the parallax distance averaged by trace.
Let D̃par denote the trace-based parallax distance:

D̃par ¼
2

jΠA
Aj

: ð42Þ

This can be expressed also as

D̃par ¼ 2ðlOμu
μ
OÞjθ̃j−1; ð43Þ

where θ̃ is the expansion of the vertex bundle emanating
from E, evaluated at O, see Fig. 2(a). If we rescale the
parametrization λ to fit the observer’s frame, ensuring
lOμu

μ
O ¼ 1, this expression simplifies to

D̃par ¼ 2jθ̃j−1: ð44Þ

We prove now the following theorem:
Theorem III.4. Let O and E be two points along a null

geodesic γ0 such thatO lies in the causal future of E and let
the NEC hold along γ0 between O and E. Assume also that
between O and E there are no singular points of the
infinitesimal bundle of rays with the vertex at E, except the
point E itself, and that its expansion θ̃ does not vanish
between O and E. Then we have

D̃par ≥ Dang ð45Þ

for an observer at O and a source at E. Moreover, D̃par ¼
Dang iff the transverse components of the optical tidal
tensor RA

μνBlμlν vanish along γ0 between O and E.
Proof. The proof uses the properties of an infinitesimal

bundle with a vertex at E in a similar way as the proof of
Theorem III.1 uses the infinitesimal bundle parallel at O.

We begin by relating the angular diameter distance to the
properties of this bundle.
The angular diameter distance is related to the determi-

nant of the Jacobi matrix at E, with the vertex positioned at
O, see (10). However, it can be easily related to the Jacobi
map with the roles of O and E reversed.
Let W̃XL

A
BðλÞ denote the Jacobi map with the vertex at

E, i.e., satisfying

d2

dλ2
W̃XL

A
B − RA

llCW̃XL
C
B ¼ 0 ð46Þ

W̃XL
A
BðEÞ ¼ 0 ð47Þ

d
dλ

W̃XL
A
BðEÞ ¼ δAB: ð48Þ

From the symplectic property of the GDE we have a simple
relation between the Jacobi matrix from E up to O and the
one calculated the other way round:

WXL
A
BðλEÞ ¼ −W̃XLB

AðλOÞ; ð49Þ

i.e., the two matrices are the transpose of each other, with a
sign flip [1,10]. Therefore we can replace detWXL

A
B by

det W̃XL
A
B in (10):

Dang ¼ ðlOμu
μ
OÞj det W̃XL

A
Bj−1=2; ð50Þ

where W̃XL
A
B is the Jacobi map from E to O [39].

W̃XL
A
BðλÞ, on the other hand, can be related by another

ODE to the deformation tensor B̃A
B of the bundle with

vertex at E:

d
dλ

W̃XL
A
B ¼ B̃A

CW̃XL
C
B; ð51Þ

The bundle is twist-free, so it decomposes into expansion θ̃
and shear σ̃AB according to B̃A

BðλÞ ¼ 1
2
θ̃δAB þ σ̃AB. It

follows from (51) that

d
dλ

det W̃XL
A
B ¼ θ̃ðdet W̃XL

A
BÞ: ð52Þ

We now define an auxiliary function fðλÞ in the
following way: we fix the emission point E and vary the
observation point, corresponding to the affine parameter
value λ. We then take the ratio of the distances squared,
measured between E and the point λ:

fðλÞ ¼ D2
ang

D̃2
par

: ð53Þ

From (50) and (43) we get an expression for fðλÞ in terms
of quantities related to the vertex bundle at E:
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fðλÞ ¼ θ̃2j det W̃XL
A
Bj

4
: ð54Þ

We will now derive an integral formula for fðλÞ. We begin
by differentiating Eq. (54) and applying (52):

df
dλ

¼ 1

4

�
2θ̃

dθ̃
dλ

j det W̃XL
A
Bj þ θ̃3j det W̃XL

A
Bj
�

ð55Þ

In the first term use the propagation equation (24) for θ̃ to
obtain

df
dλ

¼ 1

4
θ̃j det W̃XL

A
Bjð−σ̃ABσ̃

AB − RllÞ; ð56Þ

or, equivalently,

df
dλ

¼ f

θ̃
ð−σ̃ABσ̃

AB − RllÞ: ð57Þ

This equation can be solved by separation of variables, but
we need the initial data. Recall that in the bundle with the
vertex at E we have asymptotic expansions (34) and (35).
The reader may check using (54) that this implies that f →
1 as λ → λE . With this knowledge we may integrate the
ODE (57) to

fðλÞ ¼ exp

�
−
Z

λ

λE

θ̃−1ðσ̃ABσ̃
AB þ RllÞdλ0

�
: ð58Þ

The integrand contains the expansion θ̃ in the denominator,
but the integral is regular at E and everywhere along the
interval considered because of our assumptions regarding
the behavior of θ̃ (i.e., no zeros and a pole at E). Moreover,
we note that θ̃ < 0 inside the interval we consider, because
it is negative near λE due to (35) and from the assumptions
we know that it cannot vanish or change sign in the interval
we consider. It also follows that we can write θ̃ ¼ −jθ̃j. The
integration in the formula above proceeds from larger λE
down to smaller λ, so we swap the integration limits and
absorb this way the minus sign from θ̃ to obtain:

fðλÞ ¼ exp

�
−
Z

λE

λ
jθ̃j−1ðσ̃ABσ̃

AB þ RllÞdλ0
�
: ð59Þ

Now, the last steps of the proof proceed just like in the
proof of Theorem III.1: the integrand is manifestly non-
negative if NEC holds. Therefore we have f ≤ 1, with the
equality happening only if and only if both Rll and σ̃AB
vanish between E and λ. The vanishing of the shear tensor
σ̃AB implies that the transverse components of the Weyl
part of the optical tidal matrix CAllB must also vanish
because of (25).

B. Single baseline parallax distance

While it may not be obvious from the proofs we
presented above, the baseline averaging of the trigonomet-
ric parallax effect is necessary for the distance inequality to
work. Obviously it is possible to define a type of parallax
distance defined through measurements with a single
baseline. Let the transverse unit vector nA denote the
baseline direction, with nAnA ¼ 1. As the simplest exam-
ple we consider here

Dn
par ¼ jΠABnAnBj−1; ð60Þ

definition considered for example in [40]. Dn
par coincides

with the baseline-averaged parallax distances in flat space-
times, in whichΠA

B ¼ D−1δAB,D denoting the distance in
the observer’s frame. However, it turns out Dn

par does not
have to obey the inequality Dang ≤ Dn

par even if the NEC is
satisfied. As an example consider the situation when we
have a vacuum solution (Rll ¼ 0), but nonvanishing Weyl
tensor CAllB causing shear of null geodesics along γ0.
Obviously the NEC holds in a vacuum spacetime. The most
general Taylor expansions for WXX

A
B and WXL

A
B around

λO read [12]:

WXX
A
B ¼ δAB þ ðλ − λOÞ2

2
RA

llB þOððλ − λOÞ3Þ ð61Þ

WXL
A
B ¼ðλ− λOÞδAB þ ðλ− λOÞ3

6
RA

llB þOððλ− λOÞ4Þ;
ð62Þ

with RA
llB evaluated at O. It follows that the parallax

matrix has the Taylor expansion

ΠAB ¼ ðlOμu
μ
OÞ−1ðλ − λOÞ−1

�
δAB þ ðλ − λOÞ2

3
RAllB

�

þOððλ − λOÞ2Þ; ð63Þ

while the expansion for Dn
par reads

Dn
par ¼ ðlOμu

μ
OÞðλ − λOÞ

�
1 −

ðλ − λOÞ2
3

RAllBnAnB
�

þOððλ − λOÞ4Þ: ð64Þ
We compare the latter expression with the Taylor series
for Dang:

Dang¼ðlOμu
μ
OÞðλ−λOÞ

�
1−

ðλ−λOÞ2
12

Rll

�
þOððλ−λOÞ4Þ:

ð65Þ

Assuming vacuum we have Rll ¼ 0 and RAllB ¼ CAllB and
hence
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Dn
par¼Dang

�
1−

ðλ−λOÞ2
3

CAllBnAnB
�
þOððλ−λOÞ3Þ:

ð66Þ

Obviously we have Dn
par < Dang near O provided that

CAllBnAnB > 0, i.e., nA is chosen such that the images
undergo stretching by the tidal forces in its direction.

IV. CONCLUSIONS

The two main results of this paper, i.e., Theorems III.3
and III.4, mean that any observation of a systematic
difference between the angular diameter distance and the
baseline-averaged parallax distance with Dang > Dpar
would be difficult to reconcile with general relativity and
the theory of light propagation as we understand them
today. In particular, the effects of shear of the ray bundle
due to tidal fields along the line of sight could not explain
away a result of this kind. One would have to give up either
the null energy condition or the assumption that light
travels along null geodesics. Therefore, systematic com-
parison of both distance measurements may be considered
an experimental test of the null energy condition, assuming
that the general relativity and the geometric optics approxi-
mation for light propagation hold. Since Dang is related to
Dlum and the redshift through the Etherington’s reciprocity
relation, it is in principle possible to perform the measure-
ment of distance slip μ using standard candles for which
we have also precise redshift and trigonometric parallax
measurements.
We note, however, that the measurements of the differ-

ence between the two distance measures seem impossible
today, because the annual parallax effects are too small over
the distances in which we can measure the trigonometric
parallax. We can provide an order-of-magnitude estimate of
the distance slip from the integral formula (1): for the mass
density comparable with the mass density in the thin disc of
the Milky Way ρ ¼ 1 M⊙ pc−3 [41], negligible pressure
terms in Tμν and the distance of 20 kpc, comparable to the
largest distance measured by trigonometric parallax [42],
we get μ ≈ 2 × 10−4. A successful measurement of μ for a
single source would then require the determination of both
distance measures and the redshift with relative error not
greater than 10−4, way below current limitations [43–45].
This problem could possibly be overcome with a suffi-
ciently large sample of sources. However, it would still
require very precise standardization of the standard candles,
good control of all possible sources of systematics as well
as very precise redshift measurements.
Another type of parallax measurement has been pro-

posed by Kardashev [46]. The measurement would use the
displacement due to the motion of the Solar System with
respect to the CMB rest frame as the baseline. The baseline
grows in this case linearly in time and the signal is
measured as secular variations of angular separations

between distant sources. Longer baseline should in prin-
ciple allow for parallax measurements on cosmological
distances, although the signal seems still too low for
modern instruments. Moreover, the foreground signal
due to the Galactic aberration drift needs to be removed
first [47]. The idea of cosmic parallax was also developed
by many other authors [11,35,36,40,47–52]. Interestingly,
the estimates for the distance slip on cosmological dis-
tances in the standard ΛCDM model (satisfying the NEC)
yield fairly large values, reaching for example μ ¼ 0.2 near
z ¼ 1 [11]. Measurements of μ on such distances and
determination its sign could test for the NEC violation
by dark energy, an obvious sign of physics beyond the
ΛCDM model.
We also point out three caveats regarding the distance

inequality. The first two are related to the limitations of the
mathematical approach. In the proofs we have used the first
order geodesic deviation equation around a null geodesic.
This means that we assume that the linear, curvature term in
the geodesic deviation equation describes very well the
behavior of all relevant light rays. This may fail, for
example, if light passes through a region of very quickly
varying gravitational potential across the null ray bundle
considered (physical width of around 1 AU). In particular, it
may fail in case of a microlensing event, i.e., a small
massive body passing through the line of sight. It can also
fail if light rays undergo significant nongravitational
bending, for example due to the presence of ionized
medium of variable density along the line of sight, or if
the geometric optics approximation is not applicable.
Second, the inequality works only up to the first focal

point, whose position in a given direction is not known
beforehand. However, focal points between the Earth and
galactic sources should be very rare, confined to rather
special, fairly strongly lensed rays. Assuming that the line
of sight is filled uniformly with mass density of
100 M⊙ pc−3, scale of the density inside the bulge of the
Milky Way, and ignoring the Weyl tensor contribution, we
may predict the first focal point to appear at around
140 kpc. For uniform mass density comparable with the
thin disc (1 M⊙ pc−3) the distance to the focal point grows
to over 1 Mpc, while the density of the dark matter halo of
10−2 M⊙ pc−3 yields 14 Mpc, the mass density estimates
taken again from [41]. The assumption of uniform mass
density along the light of sight makes these estimates very
conservative. We conclude that we should not expect the
formation of such points anywhere around galactic dis-
tances. Moreover, sinceWXX

A
B usually changes sign of the

determinant at the focal point, we may expect the parallax
matrix ΠA

B past the focal point to deviate far from
proportionality to the unit matrix. This in turn may lead
to unusual dependence of the two-dimensional parallax
angles on the Earth’s position, an effect that is in principle
observable. Therefore sources past focal point could in
principle be detected and removed from the data.
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Third, as we have seen in Sec. III B, if the parallax is
measured only along one baseline then the test is prone to
errors in the presence of strong shear induced by the Weyl
tensor. Therefore, if shear is not negligible then the baseline
averaging step is crucial: we must be able to measure the
parallax in two orthogonal directions for the measurement
to yield a reliable NEC test. In case of the annual parallax
due to Earth’s motion this requirement excludes sources too
close to the ecliptic. The problem is obviously even more
serious for the cosmic parallax, in which only one baseline
is available for all sources. Tests on cosmological distances
require therefore prior estimation of the Weyl tensor
contribution to the parallax matrix over large distances.
Note, however, that even in the presence of moderate shear
this problem might in principle be overcome if the single-
baseline parallax and angular diameter distance have been
measured for a sufficiently large sample of sources at
different positions on the sky. Since the Weyl tensor along
the line of sight depends on the position of the source, it
varies relatively quickly across the sky and it is

uncorrelated with the fixed baseline direction. We may
expect that its impact will average to 0, at least in the linear
order given a large sample of sources. What is left from the
averaging is thus the bare, baseline-independent effect of
the Ricci tensor. Quantification of the impact of shear on
the NEC test, its error budget and the question of feasibility
are beyond the scope of this paper. We stress here that
unlike the full baseline-averaged measurement, this type of
single-baseline measurement relies on additional assump-
tions about the metric tensor, i.e., either the vanishing of the
Weyl contribution to the parallax matrix or the random,
uncorrelated nature of the Weyl tensor over the whole sky.
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Chapter 5

Conclusion

In this thesis I present the theory and applications of general relativistic transfer matrices for
null geodesics known as the bilocal geodesic operators. The transfer matrix method is well
known in studies of linear systems. In General Relativity the Jacobi propagators play the
role of transfer matrices for deviations of null and timelike geodesics. However, the transfer
matrix theory for the propagation of light as presented in the literature seems incomplete, as
it cannot accommodate either redshift or position drift effects. The formalism presented here
allows to consider all possible lowest-order nontrivial optical effects.

The bilocal geodesic operator formalism was originally presented as a resolvent operator
for the geodesic deviation equation. In this thesis I present a different representation of the
problem. Instead of working with the null geodesics on the base manifold, I consider their
lifts to the tangent bundle. Then the dimensionality of the resolvent operator becomes twice
as big, but the governing differential equations reduce from the 2nd order to the 1st order.
Furthermore, the metric structure of the base manifold permits a covariant splitting of vector
fields on the tangent bundle into two invariant parts – the horizontal and the vertical subspace.
It can be shown that each subspace is isomorphic to a copy of the tangent space to the base
manifold. This implies that the resolvent operator can be decomposed into four distinct bilocal
operators on the base manifold, known as the BGOs.

In the first paper we presented expressions for an analytic form of the BGOs for 4D static
spherically symmetric spacetimes and applied them to the Schwarzschild spacetime. The
solution was obtained in two ways. The first method requires differentiation of the solution to
the geodesic equation with respect to its initial conditions. The result then needs to be updated
for the final result to be fully covariant. The fix is based on the standard decomposition into
the horizontal and vertical subspace of the tangent bundle. This decomposition is coordinate-
invariant by construction.

The second approach involves a direct integration of the GDE. Symmetries of the spacetime
together with the symplecticity of the GDE give rise to the first integrals, or quadratures. The
next step involves expressing the BGOs in a parallel-transported semi-null tetrad. It turns
out that after the projections the expressions simplify dramatically, especially in the screen
space. The results are then applied to the Schwarzschild spacetime to study the behaviour
of the angular diameter and parallax distance measures as well as their associated distance
slip. Depending on the impact parameter of the fiducial null geodesic we expect a formation
of special points along the fiducial light ray, where distance measures either vanish or diverge.

In the second paper we prove an inequality between the parallax distance and angular
diameter distance under rather general conditions. Namely, if we assume the validity of General
Relativity, the null energy condition, and the propagation of light in vacuum, then it can be
shown that for any given source of light the parallax distance defined by arithmetic or geometric
mean cannot grow larger than the angular diameter distance. Averaging of the parallax effect
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over both linearly independent baselines is crucial in order to avoid contributions of the Weyl
tensor at linear order, which break the inequality for certain directions of the baseline. The
result is blind to the symmetries of spacetime, while the proof shares some of its methods with
the well-known focusing theorems. However, experimental confirmation of this inequality
seems to be too difficult. The measurement in the Milky Way requires precise measurements
of distances to 105 sources on the opposite side of the disk together with good modeling of
the matter distribution in the galaxy. It is also possible to consider the cosmological parallax
due to the motion of the solar system with respect to the CMB. Again, the expected signal
with current technologies is too low, but the secular growth of the effect makes it in principle
measurable.

Future directions

The topic can be extended in several different ways. Firstly, in comparison with the number
of exact solutions of Einstein equations, there is only a handful of metrics with general exact
solutions to the geodesic deviation equation (see appendix B). Therefore, it would be inter-
esting to find the BGOs for other spacetimes with symmetries and classify them by various
optical effects.

Secondly, position [63, 65, 64, 66] and redshift [133, 134, 95, 125, 38] drift effects have
been considered only for a few models of the Universe. At the moment there are several
observatories under construction [11, 47, 102], which will enable the measurement of redshift
drift effects for the first time. A better understanding of drift effects and conditions under
which they vanish is welcome.

Thirdly, some of the BGOs so far have been considered only formally, i.e. as a part of the
total resolvent operator. It is still not clear whether they or their combinations correspond
to any observable effects. Moreover, it is known that the Jacobi map satisfies Etherington’s
duality relation which holds for all Lorentzian spacetimes with Levi-Civita connection [126].
One may wonder if there are more duality relations expressible in terms of all the BGOs.

In practice, the spacetime geometry of the Universe cannot be expressed as an exact solu-
tion to Einstein’s equations or their modifications. Instead, we have to assume a parametrized
model and find the best fit with the least possible errors. Any statement about a well-fitted
model has to be corroborated with an appropriate statistical analysis of the observational data
[89, 24, 116, 78, 127, 33]. Nonetheless, the lowest-order perturbation theory and its statisti-
cal analysis both in the context of cosmological perturbations and weak gravitational lensing
provide an extremely good agreement between the theory and observations. An equivalent
perturbative and statistical study of new optical effects, such as the drifts, and their connec-
tions to the standard observables could make it easier to bring the formalism to practice. The
robustness of data interpretation can be further increased by reducing its dependence on the
model assumption and enforcing covariant formulation of the formalism. Recent studies sug-
gest that redshift drift cosmography admits a metric-independent cosmological data analysis
[50, 103, 3, 2, 1]. Extension of these ideas to other observables, such as the position drift,
could be interesting.

The applicability of the formalism relies heavily on the measurability of new optical ob-
servables. The spatial resolution of individual light sources is possible only in the immediate
vicinity of the Solar system and during strong lensing scenarios. On the other hand, the time
of arrival of emitted particles can be measured with much higher precision. This serves as the
motivation for the local surface of communication introduced in [61]. In this article, the BGOs
are replaced by a different set of operators mapping position perturbations at both endpoints
to their vector perturbations, but both sets of operators are equivalent in the sense that they
involve the same functionals and variables. Even so, not all properties of the BGOs have been
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translated to the properties of the local surface communication. Particularly intriguing is
the connection between the tangent bundle structure in the BGO formalism and the product
manifold structure in [61].

Finally, the BGO formalism only describes the linear geodesic deviation equation. The full
geodesic deviation is much more involved due its nonlinearity in terms of curvature tensors
[9, 10]1 and path deviations as well as its non-locality. Still, the geometrical picture presented
in Ch.2 could work as a starting point to generalize the geodesic deviation beyond the normal
convex neighbourhood in a covariant manner [128, 114, 49, 21, 20]

1Motivation for this can be given by taking a difference of integral curves of G(p,Xp) evaluated at positions
differing by a vector Yp and expanding the difference around the reference integral curve, which yields
Ẏ i =

∑∞
k=1

1
k!
Gi,j1...jkY

j1 . . . Y jk .
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[13] V. Červenỳ. Seismic ray theory. Cambridge university press, 2001.
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Appendix A

Derivation of GDE from geodesic flow

In this section we give a more precise derivation of Eq. (2.36) from Eq. (2.35). Recall that in
the basis {fi} = {fx,α, fv,β} (Eq. (2.8)) the geodesic spray reads

(
Gi
)

=

(
vα

−Γβµν (xρ) vµvν

)
. (A.1)

On the tangent bundle we have the induced coordinate system
(
χi
)

=
(
xκ, vδ

)
. We choose the

ordering of the partial derivatives to match the ordering of the coordinates. Then the partial
derivatives of Gi can be listed as

(
Gi,j
)

=

(
0 δαδ

−Γβµν,κ (xρ) vµvν −2Γβµδ (xρ) vµ

)
. (A.2)

Now return to Eq.(2.35) and write out the ODEs for Y i expressed in the associated basis {fi}:



d

dλ
Y α
x

d

dλ
Y β
v


 =




Y α
v

−Γβµν,κvµvνY κ
x − 2Γβµδv

µY δ
v


.

As it was explained in Sec. 2.4, the splitting can be made invariant with respect to
coordinate transformations (2.13) by the change of variables (2.21). After a bit of calculation
and term rearranging the equations can be rewritten as




d

dλ
Y α
H + ΓαµνY

µ
Hv

ν

d

dλ
Y β
V + ΓβµνY

µ
V v

ν


 =




Y α
V

Rβµνρv
µvνY ρ

H


,

where Rβµνρ is a collection of Christoffel symbols and their derivatives constituting the com-
ponents Riemann tensor on the base manifold. Note that the terms on the left-hand side
cannot be yet reduced to the covariant derivatives, because these expressions are components
of a vector in T(p,Xp)TM , and TM has not been supplied either with a metric or a connection.

The final step of reduction is the utilization of the isomorphisms isoH and isoV (2.24).
This way we can make the following identifications:

T(p,Xp)TM 3 Y α
H eHα −→ Ỹ α

H

∂

∂xα
∈ TpM

dY α
H

dλ
+ Γαµνv

µY ν
H −→

dỸ α
H

dλ
+ Γαµν l

µỸ ν
H ≡ ∇lỸ α

H ,

(A.3)
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where ỸH is a vector field along the geodesic γ, whose components are equal to those of
YH , i.e. Ỹ α

H = Y α
H . A similar construction can be used for the vertical part. Therefore the

isomorphisms allow us to regard the equations for horizontal and vertical parts as proper
expressions on the spacetime M . M , on the other hand, is equipped with a metric tensor and
a covariant derivative. As a result, we end up with a system of equations on the base manifold

{
∇lỸ α

H = Ỹ α
V

∇lỸ β
V = Rβµνρl

µlν Ỹ ρ
H .

(A.4)

(recall that vµ = γ̇µ, because we are dealing with a lift of a geodesic, and we have introduced
the notation lµ = γ̇µ). This system is equivalent to the GDE for Ỹ α

H . We can check that by
substituting ỸV in the second equation with the expression from the first one, obtaining this
way ∇l∇lỸ α

H = Rαµνρl
µlν Ỹ ρ

H .
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Appendix B

List of exact solutions to GDE

The geodesic deviation equation constitutes a set of coupled linear second order ordinary
differential equations. Although the analysis of ODEs is simpler than that of partial differential
equations, finding a compact solution to a system of ODEs is not an easy task [12, 23].
However, most contemporary articles contain a very limited list of examples of exact solutions.
In this appendix we provide a list of spacetimes for which the corresponding GDE has been
integrated analytically.

• Constant curvature spacetimes: [122, 123, 84]

• Spherically symmetric spacetimes (without deriving the full BGOs): [82]

• Static spherically symmetric spacetimes: [51, 26, 34, 35, 46, 117, 118, 119, 120]

• Schwarzschild spacetime: [83, 77, 25, 73, 86, 15, 101, 100, 76, 58, 92]

• Newtonian gravity with oblate Earth: [44]

• Reissner–Nordström spacetime: [4, 96, 119]

• Kerr spacetime: [87, 81, 12]

• FLRW spacetime: [83, 17, 74, 29, 75]

• conformally flat spacetime [85]

• plane symmetric cosmological models: [56, 57]

• Bianchi cosmological models: [104, 98, 106]

• pp-wave: [4]

• rotating disk spacetime: [67]

• miscellaneous: [80, 97, 36, 87, 105, 23, 124]

This compilation consists of solutions for null or timelike trajectories for either general or
special trajectories. The solution methods vary greatly, ranging from direct integration to
application of Newman-Penrose scalars. Nevertheless, derivation of BGOs for these spacetimes
is still an open problem, which is alleviated by the existence of these solutions.
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