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Abstract

The emergence of quantum theory at the beginning of 20−th century has changed our

view of the microscopic world and has led to applications such as quantum teleportation,

quantum random number generation and quantum computation to name a few, that could

never have been realised using classical systems. One such application that has attracted

considerable attention lately is device-independent (DI) certification of composite quan-

tum systems. The basic idea behind it is to treat a given device as a black box that

given some input generates an output, and then to verify whether it works as expected

by only studying the statistics generated by this device. The novelty of these certification

schemes lies in the fact that one can almost completely characterise the device (up to

certain equivalences) under minimal physically well-motivated assumptions such as that

the device is described using quantum theory. The resource required in most of these

certification schemes is quantum non-locality.

A lot of work has recently been put into finding DI certification schemes for composite

quantum systems. Most of them are however restricted to lower-dimensional systems, in

particular two-qubit states. In this thesis, we consider the problem of designing general DI

schemes that apply to composite quantum systems of arbitrary local dimensions. First,

we construct a fully DI certification scheme, also known as self-testing, that allows us to

certify generalised Greenberger-Horne-Zeilinger (GHZ) states of arbitrary local dimension

shared among any number of parties from the maximal violation of a certain family of

Bell inequalities, for two parties, the generalised GHZ state represents the two-qudit

maximally entangled state. Importantly, this is the first instance where such states can

be certified using only two measurements per party which is in fact the minimal number

of measurements required to observe quantum non-locality.

While a substantial progress has been recently made in designing device-independent

certification schemes, most of these schemes are concerned with entangled quantum states.

At the same time the problem of certification of quantum measurements remains largely

unexplored. In particular, a general scheme allowing one to certify any set of incompat-

ible quantum measurements has not been proposed so far. As designing such a scheme

within the DI setting is certainly a difficult task, here we consider a relaxation of the Bell

scenario known as the one-sided device-independent (1SDI) scenario. In this scenario, we

have an additional assumption that one of the parties is trusted and the measurements

performed by this party are known. We propose a scheme for certification of a general

class of projective measurements, termed here “genuinely incompatible”. To this end, we

construct a family of steering inequalities that are maximally violated by any set of gen-

uinely incompatible measurements. Interestingly, mutually unbiased bases belong to this

class of measurements. Finally, in the 1SDI scenario, we construct a family of steering
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inequalities, whose maximal violation can be used to certify any pure entangled bipartite

state using the minimal number of two measurements per observer. Building on this re-

sult, we then provide a method to certify any rank-one extremal measurement, including

non-projective measurements on the untrusted side.

Interestingly, self-testing of entangled states and measurements can be harnessed to

propose schemes to certify that the outcomes of measurements performed on quantum

states are perfectly random in the sense that they can not be predicted by an external

party. This makes our scheme suitable for quantum cryptographic tasks. We first show

that one can generate randomness in a fully DI way using projective measurements from

composite quantum states of arbitrary local dimension. Later in the 1SDI scenario, we

construct a scheme to certify the optimal amount of randomness that can be generated

using a quantum system of any dimension and non-projective extremal measurements,

which is twice the amount one can generate using projective measurements.
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Streszczenie

Powstanie teorii kwantów na pocz ↪atku XX wieku zmieni lo nasz pogl ↪ad na świat

mikroskopowy i doprowadzi lo do powstania takich zastosowań efektów kwantowych jak

teleportacja kwantowa, kwantowe generowanie liczb losowych i obliczenia kwantowe. Żadne

z nich nie mog lo by zostać zrealizowane w ramach fizyki klasycznej. Jednym z takich za-

stosowań, które przyci ↪agn ↪e lo ostatnio wiele uwagi, jest certyfikacja z lożonych uk ladów

kwantowych w wersji niezależnej od urz ↪adzeń (ang. device-independent). Podstawow ↪a jej

ide ↪a jest traktowanie danego urz ↪adzenia jak czarn ↪a skrzynk ↪e, która po podaniu danych we-

j́sciowych generuje dane wyj́sciowe, a nast ↪epnie wykorzystane obserwowanych statystyk do

sprawdzenia, czy urz ↪adzenie to dzia la zgodnie z oczekiwaniami. Nowatorskość schematów

certyfikacji tego typu polega na tym, że można prawie ca lkowicie scharakteryzować urz ↪adze-

nie (z dok ladności ↪a do pewnych równoważności) przy minimalnych, dobrze umotywowanych

fizycznie za lożeniach, takich jak to, że urz ↪adzenie dzia la zgodnie z zasadami fizyki kwan-

towej. Zasobem kwantowym wykorzystywanym przez wi ↪ekszość tych schematów certy-

fikacji jest nielokalność Bella.

Wiele pracy w lożono ostatnio w stworzenie schematów certyfikacji w wersji niezależnej

od urz ↪adzeń dla z lożonych uk ladów kwantowych. Wi ↪ekszość z nich stosuje si ↪e jednak do

uk ladów o relatywnie niskich wymiarach lokalnych, w szczególności do stanów dwuku-

bitowych. W tej pracy rozważamy problem projektowania ogólnych schematów, które

maj ↪a zastosowanie do uk ladów kwantowych o dowolnych wymiarach lokalnych. Najpierw

konstruujemy w schemat certyfikacji, znany również jako samotestowanie, który pozwala

certyfikować uogólnione stany Greenbergera-Horne’a-Zeilingera (GHZ) o dowolnym wymi-

arze lokalnym dzielony przez dowoln ↪a liczb ↪e obserwatorów na podstawie maksymalnego

 lamania pewnej rodziny nierówności Bella; w szczególnym przypadku dwóch poduk ladów

stan GHZ sprowadza si ↪e do stanu maksymalnie spl ↪atanego dwóch kuditów. Co ważne,

jest to pierwszy przypadek, w którym takie stany kwantowe mog ↪a być certyfikowane przy

użyciu tylko dwóch pomiarów przez każdego z obserwatorów, co jest w rzeczywistości

minimaln ↪a liczb ↪a pomiarów wymagan ↪a do zaobserwowania nielokalności Bella.

Choć w ostatnich latach dokonano znacznego post ↪epu w projektowaniu schematów

certyfikacji w wersji niezależnej od urz ↪adzeń, wi ↪ekszość z nich dotyczy spl ↪atanych stanów

kwantowych. Jednocześnie problem certyfikacji pomiarów kwantowych pozostaje w dużej

mierze niezbadany. Brakuje w szczególności ogólnego schematu pozwalaj ↪acego na certy-

fikacj ↪e dowolnego zestawu niekompatybilnych pomiarów kwantowych. Ponieważ stworze-

nie takiego schematu w scenariuszu niezależnym od urz ↪adzeń jest trudnym zadaniem, w

rozprawie rozważamy pewien uproszczony scenariusz, znany jako scenariusz jednostron-

nie niezależny od urz ↪adzeń (1SDI). W tym scenariuszu czynimy dodatkowe za lożenie, że
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jedno z urz ↪adzeń pomiarowych jest w pe lni scharakteryzowane i wykonuje znane pomi-

ary kwantowe. Proponujemy schemat certyfikacji ogólnej klasy pomiarów rzutowych,

określanych tu jako prawdziwie niekompatybilne. W tym celu konstruujemy rodzin ↪e

nierówności sterowania (ang. steering inequalities), których maksymalna wartość kwan-

towa osi ↪agana jest przez dowolny zbiór prawdziwie niekompatybilnych pomiarów. Co

ciekawe, do tej klasy pomiarów kwantowych zaliczaj ↪a si ↪e te, które odpowiadaj ↪a bazom

wzajemnie niejednoznacznym. Wreszcie, w scenariuszu 1SDI, konstruujemy rodzin ↪e nie-

równości sterowania, których maksymalne  lamanie może być wykorzystane do certyfikacji

dowolnego czystego, spl ↪atanego stanu dwucz ↪astkowego przy użyciu minimalnej liczby

dwóch pomiarów wykonywanych przez obu obserwatorów. Opieraj ↪ac si ↪e na tym wyniku,

podajemy nast ↪epnie metod ↪e certyfikacji dowolnego ekstremalnego pomiaru kwantowego

rz ↪edu jeden, w l ↪aczaj ↪ac w to pomiary nierzutowe.

Co ciekawe, metody samotestowania stanów oraz pomiarów kwantowych mog ↪a być

wykorzystane do stworzenia schematów poświadczania, że wyniki pomiarów wykony-

wanych na stanach kwantowych s ↪a losowe w tym sensie, że nie mog ↪a być przewidziane

przez żadnego zewn ↪etrznego obserwatora. To sprawia, że nasze wyniki staj ↪a si ↪e użyteczne

w zadaniach kryptograficznych. Najpierw pokazujemy, że ze spl ↪atanych stanów kwan-

towych o dowolnym wymiarze lokalnym można generować losowość w scenariuszu nieza-

leżnym od urz ↪adzeń używaj ↪ac pomiarów rzutowych. Nast ↪epnie, w scenariuszu 1SDI,

konstruujemy schemat poświadczaj ↪acy optymaln ↪a ilość losowości, która może być wygen-

erowana przy użyciu uk ladu kwantowego o dowolnym wymiarze i nierzutowych pomiarów

ekstremalnych, która równa jest dwukrotności maksymalnej ilości losowości, któr ↪a można

wygenerować przy użyciu pomiarów rzutowych.
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Chapter 1

Introduction

The advent of quanta by Planck in 1900 for describing black-body radiation marked

as the beginning of “quantum era of theoretical physics”. With the increasingly precise

experiments on microscopic objects, it was soon realised that the structure of atom was

not describable with classical physics but required a new non-classical description. In this

pursuit, Schrödinger in 1923, using the ideas of Bohr and De-Broglie that microscopic ob-

jects might possess both wave and particle characteristics, came up with a wave equation

describing the microscopic world, which is now known as the Schrödinger’s equation. It

is excellently successful in predicting the results of the experiments performed till date.

However, the Schrödinger equation involves an object known as a wavefunction, whose

meaning was hugely debated and was believed to be just a mathematical object without

any physical significance. It was the work of Max Born that established that the wave-

function contains information about the probability of the system being at a particular

position in space. This can be considered as one of the biggest paradigm shifts in the hu-

man understanding of nature, as the microscopic world might be inherently unpredictable,

and the maximum information that can be gained is the probability of the system being at

a particular state. Many prominent physicists did not buy this idea and even led Einstein

to one of his famous quotes, “God does not play dice”. In fact, the unpredictable nature of

the microscopic world can be considered as the foundational philosophy behind “quantum

theory”.

With even more experiments probing the microscopic regime, it was soon realised

that quantum theory is the best description of this regime, even when the theory leads to

counter-intuitive phenomena and paradoxes. With later works of pioneers like Heisenberg,

Bohr, Von-Neumann and Dirac, to name a few, we arrive at four postulates on which

quantum theory is based on [cf. [1], [2]].

1. Any state of the system is represented by a density matrix ρ acting on some Hilbert

space H .
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2. The time evolution of the quantum system is generated by completely positive and

trace preserving (CPTP) maps.

3. A system composed of two subsystems A and B is described using a quantum state

belonging to the Hilbert space HA⊗HB where HA,HB are the Hilbert spaces asso-

ciated with the subsystems A,B respectively.

4. Any measurement to observe the state of the system ρ is represented by a set of

positive operators M = {Ek} that act on the Hilbert space H . Here k represents

the outcome of the measurement and ∑k Ek = 1H . The probability of observing the

the outcome k is denoted by p(k|M,ρ) and can be computed as,

p(k|M,ρ) = Tr(Ekρ). (1.1)

All the notions presented here will later be revisited again in details.

An important step towards the understanding of quantum theory was put forward by

Einstein, Podolski and Rosen in 1935 in their seminal paper [3], where it was claimed

that quantum theory is incomplete. It was later speculated by physicists like Bohm

and Von-Nuemann that an underlying classical-like theory would be able to predict all

the quantum effects and would remove all the counter-intuitiveness of the theory. This

remained only a theoretical idea until Bell’s pioneering work in 1964 [4]. He put forward

a way to test whether quantum theory is inherently different from classical physics. It

was later confirmed by experiments that any classical description is insufficient to explain

some quantum phenomena [5]–[8].

This led to the understanding that there can exist tasks in which strategies involving

quantum states and measurements would perform much better than classical strategies,

giving birth to the field of quantum information theory. In this thesis, we explore one of

the recently contrived areas in quantum information theory, namely device-independent

quantum protocols [9] focusing particularly on device-independent certification of quan-

tum states, measurements and intrinsic randomness that can be generated using quantum

systems.

The idea of device-independent certification has gained much attention lately, mainly

due to their implications in quantum cryptography as well as foundations of quantum

theory. Let us say that two spatially separated labs are given a device whose inner

mechanism is unknown and thus they can be treated as black boxes. If an input is provided

to this device, it produces an output. Based on various inputs and outputs, one can

construct the statistics. Assuming that these devices satisfy the rules of quantum theory,

any such statistics needs to be explained via quantum measurements acting on some

quantum state. The basic idea behind device-independent certification is that using only
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the statistics obtained by performing local measurements on a composite quantum system,

one can characterise this system and also the measurements up to certain equivalences.

The strongest device-independent certification scheme is known as self-testing where

no assumptions on the devices are made apart from the fact that they are governed by

quantum theory. The idea of self-testing was first introduced by Mayers and Yao in 1998

[10], [11] in the cryptographic context as a way of certifying that the parties share a

desired state. Since then, numerous self-testing schemes for composite quantum systems

and measurements have been introduced. For instance Refs. [12]–[21] provide schemes

for certification of pure bipartite entangled states that are locally qubits. Then, Refs.

[22]–[30] provide methods to certify multipartite states of local dimension two. A few

works Refs. [31]–[35] provide certification schemes of entangled states of local dimension

higher than two. In [32] (see also [33]) a strategy for certification of every pure bipartite

entangled state was introduced.

In Chapter 3 of this thesis, we provide a general scheme that self-tests the generalised

Greenberger-Horne-Zeilenger (GHZ) state [36] of arbitrary local dimension shared among

arbitrary number of parties. Restricting to two parties, the above state is, in fact, the

maximally entangled state of arbitrary local dimension. Unlike the previous self-testing

scheme [32] that allows for certification of arbitrary dimensional states, we use the mini-

mum possible number of measurements per party, that is, two. This is particularly useful

from an application point of view, as it reduces the experimental effort necessary to im-

plement our scheme. With the aim to self-test measurements, we generalise this scheme to

arbitrary number of measurements per party. An important application of our self-testing

scheme is towards device-independent certification of genuine randomness. Sources gen-

erating genuine randomness are useful in many areas such as numerical computation or

cryptography. We provide a scheme for certifying the maximum amount of randomness

that can be extracted from a quantum system of arbitrary local dimension using projec-

tive measurements. This chapter is based on two of our works, [37] and [38]. The first

one proves self-testing statement for the maximally entangled state of two qudits based

on the maximal violation of the SATWAP Bell inequality introduced in [39]. The second

paper generalises this result to the GHZ state shared among arbitrary number of parties

based on the maximal violation of ASTA Bell inequality introduced in [40].

Any quantum device consists mainly of two parts: a source that generates a quantum

state and a measuring device that performs a measurement on this state. While there

has been considerable progress in designing self-testing schemes for quantum states, the

avenue for certification of quantum measurements remains largely unexplored. Recently,

in [41] and [42], the authors introduced a way of self-testing the bases of the set of two-

outcome and three-outcome observables respectively. Apart from a few results [19], [31],

[32], [43]–[48], there is no general method allowing to certify any set of incompatible

3
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measurements.

To simplify the problem, depending on the physical scenario, one can make some

assumptions about the quantum devices. In this thesis, we consider a scheme in which

one of the parties is trusted, known as one-sided device-independent (1SDI) scenario.

The resource that one needs here to certify quantum states or measurements is known as

quantum steering, which is another form of quantum non-locality [49], [50]. The quantum

steering scenario is similar to the Bell scenario, apart from the fact that one of the parties

is trusted, or equivalently, that the measurement device of the trusted party performs

known measurements. The first 1SDI certification scheme was introduced in 2016 [51]

(see also [52]). Their scheme allows for certification of the two-qudit maximally entangled

state and two binary outcome measurements.

In Chapter 4 of this thesis, we provide the first certification scheme that applies to

a general family of incompatible projective measurements which we termed “genuinely

incompatible”. An important class of projective measurements that are well-studied in

quantum information theory are those corresponding to mutually unbiased bases. For

instance, they are crucial for the security of quantum cryptographic tasks [53]–[57]. Also,

there is a close link between mutually unbiased bases and quantum cloning [58]–[60] (see

[61], for a review on mutually unbiased bases). As a matter of fact, we show that mutually

unbiased bases are also genuinely incompatible, and thus we provide a certification scheme

of mutually unbiased bases of arbitrary dimension. For two observables corresponding to

mutually unbiased bases, we also find the robustness of our scheme against experimental

errors, which makes it relevant for practical applications. This chapter is based on our

work [62].

Recently, quantum non-locality has been realised as an effective way to generate gen-

uine randomness and device-independently verify that there is no intruder who has access

to it [63]–[65]. The maximum amount of randomness that one can, in principle, obtain

from a quantum system of a dimension d is 2log2 d bits. A long-standing question in

quantum information theory is whether one can find protocols that can be used to certify

this maximal amount of randomness.

In Chapter 5 of this thesis, we again consider the one-sided device-independent sce-

nario. We begin by devising a 1SDI scheme that can be used to certify any pure bipartite

entangled state. Importantly, our scheme utilises only two measurements per party, which

is the minimal number of measurements necessary to observe quantum steering. Moreover,

these measurements are independent of the state to be certified. This makes our scheme

much easier to implement in experiments. Using these results, we provide a scheme for

certification of any rank-one extremal generalised measurements. This allows us to finally

certify the maximal amount of randomness that one can generate from a quantum system

of any dimension. We further show for some dimensions that the amount of randomness is

4
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independent of the amount of entanglement in the quantum system.This chapter is based

on our work [66].

Before presenting the main results of this thesis, in Chapter 2 we introduce the relevant

technical concepts and notions which will be required throughout this thesis. The thesis

ends with concluding remarks and a list of open problems in Chapter 6.
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Chapter 2

Technical introduction

2.1 Basics of quantum information theory

Let us begin by elaborating on the four postulates of quantum theory presented in Intro-

duction.

2.1.1 States in quantum theory

Definition 1 (Pure quantum states). Pure quantum states are normalised vectors belonging

to a Hilbert space H and are denoted by |ψ⟩. The normalisation condition ensures that

⟨ψ|ψ⟩= 1. (2.1)

In general, the state |ψ⟩ can belong to Hilbert space of infinite dimension. However

in this work, we consider only finite-dimensional Hilbert spaces. Any pure quantum state

|ψ⟩ ∈ H such that the dimension of the Hilbert space is d, can be expressed using a set

of d linearly independent vectors, B = {|ei⟩}d−1
i=0 known as a basis. Now, any quantum

system belonging to a d−dimensional Hilbert space is known as qudit. A two dimensional

quantum system is known as qubit. An important basis that is widely used in quantum

information theory and will be extensively used in this work is known as the computational

or standard basis, represented by Bc = {|i⟩}i, where

|0⟩=



1
0
0
...

0


, |1⟩=



0
1
0
...

0


, . . . |d −1⟩=



0
0
0
...

1


. (2.2)
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Note that the elements in the basis Bc are orthogonal, that is, ⟨i| j⟩= δi, j where

δi, j =

1 if i = j

0 if i ̸= j
. (2.3)

In certain situations, considered also in this thesis, one needs to use density matrices

denoted by ρ to describe a quantum system. These are matrices acting on the Hilbert

space H that satisfy the following properties

Tr(ρ) = 1, ρ ≥ 0, and ρ = ρ
†, (2.4)

that is, they are normalised and positive semi-definite. For any pure state |ψ⟩, the corre-

sponding density matrix is given by ρp = |ψ⟩⟨ψ|.

Definition 2 (Mixed states). Quantum states that can be written as convex combination

of other quantum states, are known as mixed states, that is,

ρm = ∑
i

pi|ψi⟩⟨ψi|. (2.5)

For a note, a particular decomposition of ρm (2.5) is not unique.

Let us now consider the scenario when a system consists of two subsystems A and

B. Let HA and HB denote the Hilbert spaces of A and B respectively. According to

the postulates of quantum theory the Hilbert space of their joint system is given by

HAB = HA ⊗HB. In such composite systems, we can have two major classes of states,

separable and entangled. Let us begin with pure separable states also known as product

states.

Definition 3 (Product states). Consider a pure state |ψAB⟩ ∈ HA ⊗HB. We call it a

product state if it can be written as |ψ⟩AB = |ψ⟩A⊗|ψ⟩B where |ψ⟩A ∈HA and |ψ⟩B ∈HB.

Definition 4 (Separable States [67]). A mixed state ρsep acting on HA ⊗HB is called

separable if it can be written as convex mixture of product states.

Thus, any separable state can be written as

ρsep = ∑
i

pi|ψi⟩A⟨ψi|⊗ |φi⟩B⟨φi| (2.6)

where |ψi⟩A ∈ HA and |φi⟩B ∈ HB. Let us now look at a class of states that do not exist

in classical physics.

Definition 5 (Entangled States). Quantum states that are not separable as defined in Def.

4 are classified as entangled states.

7
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For example, when both the Hilbert spaces of A and B is C2, then the quantum state

|ψAB⟩=
1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) (2.7)

is entangled.

A convenient way to express any pure bipartite state, that is quantum systems consist-

ing of only two subsystems, |ψ⟩AB ∈ HAB is by using the Schmidt decomposition [2]. Let

us say Hilbert space of subsystem A, denoted by HA is of dimension m and Hilbert space

of subsystem B, denoted by HB is of dimension n, then any state |ψ⟩AB can be written as

|ψ⟩AB =
min{m,n}

∑
i=1

λi|ei⟩⊗ | fi⟩ (2.8)

such that λi ≥ 0 with ∑i λ 2
i = 1 and {|ei⟩}, {| fi⟩} are set of orthonormal vectors defined

on HA and HB respectively1.

Let us now consider quantum systems consisting of N subsystems where N is any

positive integer greater than two such that the local Hilbert spaces are denoted by Hi

for i = 1,2, . . . ,N. Then such a state is described by a density matrix ρN acting on

H1 ⊗H2 ⊗ . . .⊗HN . We can straightforwardly generalise the notion of separability and

entanglement to the multipartite states as done above. This completes the classification

of quantum states. We now move on to characterising dynamics in quantum theory.

2.1.2 Dynamics in quantum theory

Within quantum theory, any evolution in general is represented by completely positive

and trace preserving (CPTP) maps. However, in this work we restrict ourselves to a

family of maps that are known as unitary transformations or unitary matrices.

Definition 6 (Unitary transformation). A unitary transformation U is a mapping from a

Hilbert space H to H that preserves the distance between any two vectors belonging to

H .

A unitary matrix U acting on H is characterised by the following properties,

UU† = 1 or U−1 =U†, (2.9)

that is, the inverse of any unitary matrix is equal to its conjugate transpose. Interestingly,

any CPTP map can be realised as a unitary map acting on some higher dimensional system

1For ease of mathematical notation, most of the times the symbol “⊗” will be dropped.
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[68]. In fact, the dynamics of closed quantum systems are reproduced by unitary maps.

Another class of CPTP maps that is relevant for this work is known as isometry [69].

Definition 7 (Isometry). An isometry is generalisation of a unitary matrix, mapping one

Hilbert space H of lower dimension to some other Hilbert space H ′ of higher dimension

in a way that preserves the distance between any two vectors belonging the Hilbert space

H .

We now move on to characterising measurements in quantum theory.

2.1.3 Measurements in quantum theory

Any measurement M with m outcomes in quantum theory is defined by the set of positive

operators {Ek} that act on some Hilbert space H for k = 0,1,2, . . . ,m−1. These positive

operators are hermitian, that is, Ek = E†
k and sum up to identity ∑k Ek = 1H which is a

consequence of the fact that the probabilities of outcomes must sum up to 1. Due to this,

measurements in quantum theory are also referred to as positive-operator valued measures

or simply POVM’s. The probability of observing the outcome k if the measurement M

has been performed on a state ρ ∈ H is given by,

p(k|M,ρ) = Tr(Ekρ). (2.10)

It is clear to see from the above expression that ∑k p(k|M,ρ) = 1. Let us now try to

understand the idea of normalisation of the state as discussed in the previous subsection

2.1. Suppose that state of the quantum system is |ψ⟩. Now, we consider a two-outcome

measurement M2 with measurement elements

E0 = |ψ⟩⟨ψ|, and E1 = 1−|ψ⟩⟨ψ|. (2.11)

Then the probability of observing the system in the quantum state |ψ⟩ must be 1 or

equivalently, the measurement must always output the 0th outcome. Thus, we have that

p(0|M2, |ψ⟩⟨ψ|) = |⟨ψ|ψ⟩|2 = 1. (2.12)

Consequently, the quantum state must be normalised so that the total probability of

finding the system in any quantum state is one.

Quantum measurements for a given Hilbert space form a convex set. Now, we look at

a special class of POVM’s that lie at the boundary of this set.

Definition 8 (Extremal POVM’s). Any POVM that can not be written as a convex com-

bination of other POVM’s is called extremal.

9
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As was proven in [70], the measurement operators of any rank-one extremal POVM

can be written as Ek = λkΠk, where

Πk = |ψk⟩⟨ψk| (2.13)

and λk ≥ 0. Moreover, E ′
ks are linearly independent for all k. It was further proven in

[70] that for POVM’s that act on a Hilbert space H of dimension d, an extremal POVM

can have atmost d2 outcomes. Any other POVM can be written as convex combination

of extremal POVM’s. A special class of extremal POVM’s, are known as projective

measurements.

Definition 9 (Projective measurements). Projective measurements are POVM’s where the

measurement elements are represented by projectors Πi such that ΠiΠ j = δi, jΠi.

For any rank-one projective measurement, the corresponding measurement elements

are given by Ek = Πk = |ψk⟩⟨ψk|. Along with the condition that ∑k Πk = 1H and ΠiΠ j =

δi, jΠi, it can be concluded that {|ψk⟩} for all k′s form a complete basis of the Hilbert

space H which the measurement acts on. The state of the system after the measurement

is performed on it is known as the post-measurement state. For instance, let us consider

the measurement {Ek} and a quantum state ρ , then the post-measurement state ρa
pm after

the outcome a is observed is given by,

ρ
a
pm =

√
Eaρ

√
Ea

Tr(Eaρ)
∀a. (2.14)

An equivalent way to represent measurements in quantum theory is by using quantum

observables. Let us first consider the simplest scenario where the measurements have only

two outcomes and are projective. The quantum observable A corresponding to such a

measurement M = {Π0,Π1} is represented by,

A = Π0 −Π1. (2.15)

From the above expression, we can conclude that such quantum observables are hermitian

and unitary,

A = A†, and AA† = 1. (2.16)

One can define the expectation value of A in terms of the probabilities of obtaining

outcome 0,1 as

⟨A⟩ρ = Tr(Aρ) = p(0|M,ρ)− p(1|M,ρ). (2.17)

10
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The above construction of quantum observables can also be generalised to two-outcome

POVM’s where A = E0 −E1. However, such an observable is not unitary. This construc-

tion of quantum observables was generalised to arbitrary outcome POVM’s in [31]. We

refer them here as generalised observables. Consider a d−outcome measurement. One de-

fines generalised expectation values ⟨A(l)⟩ρ for l = 0,1, . . . ,d−1 as the Fourier transform

of the probabilities p(k|M,ρ) as,

⟨A(l)⟩ρ =
d−1

∑
k=0

ω
lk p(k|M,ρ) for l = {0,1, . . . ,d −1} (2.18)

where ω = e2πi/d is the d − th root of unity. Notice that using inverse Fourier transform,

we can obtain the probabilities from the expectation values as,

p(k|M,ρ) =
1
d

d−1

∑
l=0

ω
−lk⟨A(l)⟩ρ for k = {0,1, . . . ,d −1} (2.19)

Using the above definition (2.18), analogous to the two-outcome case, one can define the

following expression for the corresponding observables A(l) in terms of the measurement

elements Ek

A(l) =
d−1

∑
k=0

ω
lkEk for l = {0,1, . . . ,d −1}. (2.20)

Equivalently the measurement elements Ek can be obtained from the quantum observables

A(l) by considering the inverse Fourier transform,

Ek =
1
d

d−1

∑
l=0

ω
−lkA(l) for k = {0,1, . . . ,d −1}. (2.21)

Some relevant properties about the observable A(l) can be obtained from Eq. (2.20) such

as,

A(d) = 1, and A(d−l) = A(−l) = A(l)† (2.22)

along with

A(l)A(l)† ≤ 1, and A(l)†A(l) ≤ 1, (2.23)

where to obtain the relations (2.22) we used the fact that ∑k Ek = 1 and Ek = E†
k . The

relation (2.23) was proven in [31]. An important result about generalised observables that

are unitary was also proven in [31].
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Fact 1. Consider the generalised observables A(l) as defined in (2.20). These observables

are unitary, that is,

A(l)A(l)† = 1, and A(l) = Al ∀l (2.24)

if and only if the corresponding measurement is projective, that is, EkEk′ = δk,k′Ek for every

k,k′.

This fact will be used extensively throughout this thesis. Often at times, the gen-

eralised observables A(l) would be referred to as measurements as they contain all the

information to reconstruct the actual measurement. Consider now a multipartite system

and on each subsystem a local measurement Mi = {Ei,k} is performed where i = 1,2, . . . ,N
denotes the subsystems. The probability to obtain outcomes k1,k2, . . .kN when the mea-

surements are performed on a state ρN acting on H1 ⊗H2 ⊗ . . .⊗HN ,

p(k1,k2, . . . ,kN |ρN) = Tr(E1,k1 ⊗E2,k2 ⊗ . . .EN,kN ρN) (2.25)

The notion for the observables can also be generalised to the multipartite case

A
(l1)
1 ⊗A

(l2)
2 ⊗ . . .⊗A

(lN)
N =

d−1

∑
k1,k2,...,kN=0

ω
l1k1+l2k2+...lNkN E1,k1 ⊗E2,k2 ⊗ . . .⊗EN,kN . (2.26)

for every l1, l2, . . . , lN .

An important distinction between any classical and quantum theories is the existence

of quantum measurements that are mutually incompatible. Two projective measurements

M1 and M2 are mutually incompatible, if these two measurements do not commute. For

example, consider the Pauli observables σz and σx corresponding to projective measure-

ments that acts on qubits in z and x direction respectively

σz =

(
1 0
0 −1

)
, and σx =

(
0 1
1 0

)
(2.27)

are incompatible. For a review of incompatibility of quantum measurements refer to [71],

[72].

2.1.4 Purification of quantum states and measurements

Another important concept for multipartite quantum systems is the extraction of the local

quantum state for each subsystem given some global quantum state. For simplicity, we

review it here for bipartite quantum systems but the concept can be straightforwardly
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generalised to the multipartite case. Let us suppose the global quantum state is given by

ρAB, then the local quantum states ρA and ρB are given by

ρA = TrB(ρAB) and ρB = TrA(ρAB) (2.28)

where TrB and TrA denote partial trace over the subsystem B and A respectively and are

computed as,

Trx(ρAB) = ∑
j
⟨ jx|ρAB| jx⟩ (x = A,B), (2.29)

where {| jx⟩} is any orthonormal basis than spans the Hilbert space Hx of the subsystem x

with x = A,B. For any separable state ρsep [cf. Def. 4] using Eq. (2.6), the local quantum

states of the subsystem A can be simply computed as

ρA = TrB(ρsep) = ∑
i

pi|ψi⟩A⟨ψi|⊗Tr (|φi⟩B⟨φi|) . (2.30)

Using the fact that Tr (|φi⟩B⟨φi|) = 1, we arrive at

ρA = TrB(ρsep) = ∑
i

pi|ψi⟩A⟨ψi|. (2.31)

Analogously, the local quantum state of the subsystem B is given by,

ρB = TrA(ρsep) = ∑
i

pi|φi⟩B⟨φi|. (2.32)

Computing the local quantum states of subsystem A and B when they are entangled is not

as straightforward as separable states. For an example, let us consider a pure bipartite

entangled state of local dimension d given by,

|ψ⟩AB =
d−1

∑
i=0

λi|i⟩A ⊗|i⟩B (2.33)

where {|i⟩} is the computational basis (2.3) such that λi > 0 and ∑i λ 2
i = 1. For a note,

any pure entangled bipartite state of local dimension d can be written as (2.33) up to some

local unitary transformation. The local quantum state corresponding to the subsystem

ρA and ρB are given by

ρA = ∑
i

λ
2
i |i⟩⟨i|A, and ρB = ∑

i
λ

2
i |i⟩⟨i|B. (2.34)
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Any mixed quantum state [cf. Def. 2] can be realised as a pure state by adding an

additional ancillary system to this quantum state. This is known as Stinespring’s dilation

[68]. A possible purification of any mixed quantum state ρ admitting the form given in

(2.5) can be written as,

|ψmA⟩= ∑
i

√
pi|ψi⟩m ⊗|ei⟩A (2.35)

where {|ei⟩A} is an orthonormal basis over the Hilbert space of the ancillary system A.

The mixed state ρm can be extracted from this purified state as

ρm = TrA (|ψmA⟩⟨ψmA|) . (2.36)

On similar lines, any POVM can be realised as a projective measurement that acts on

some higher dimensional system, known as Naimark’s dilation [73]. Any n-outcome POVM

M = {Ek} that acts on the Hilbert space H can be realised using a projective measurement

Πk and an isometry [cf. Def. 7] Viso : H →H ⊗HA where HA is some finite dimensional

Hilbert space corresponding to some ancillary system A [1], [74], as

Ek = VisoΠkV
†
iso ∀k. (2.37)

Here, the projectors Πk are given by

Πi = 1H ⊗|i⟩⟨i|A ∀i (2.38)

such that {|i⟩} is the computational basis and the isometry Viso is given by,

Viso =
n

∑
k=1

√
Ek ⊗|i⟩A. (2.39)

This completes the introduction of basic formalism of quantum information theory

that is relevant to this work. We now move on to introducing concepts more central to

this thesis.

2.2 Quantum non-locality

In the seminal work [3] published in 1935, Einstein, Podolsky and Rosen (EPR) pointed

out to one of the key features of quantum theory which makes it inherently different from

classical physics. In this work, two spatially separated quantum systems were considered

on which two parties named Alice, and Bob can perform local measurements. The joint
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quantum state of both the systems were considered to be entangled. It was concluded

in this work that quantum theory is incomplete. It was later hypothesised that there

could exist some hidden variables that can not be directly observed but the knowledge of

which would remove the paradoxes within quantum theory. In other words, these hidden

variables would provide a classical explanation of the observed quantum phenomenon. In

the subsequent years it was further noted by Schrödinger [49] from the EPR work, that

Alice can in fact affect the quantum state of the system which is spatially separated from

her by just performing measurements on her part of the system. The problem was debated

upon for decades but mostly from a philosophical perspective without much consensus.

We would elaborate on these ideas with details in the subsequent subsections.

The problem was revisited again by Bell in 1964 [4], [75]. With the improved tools of

quantum theory, Bell was able to devise a way that can put an end to the debate whether

there exist any hidden variables that can provide a classical description of quantum theory.

It turned out that there exist some set of joint probabilities that Alice and Bob can observe

that can not be reproduced by local hidden variables [see below]. It was later confirmed

in numerous experiments such as [5]–[8], that it is indeed the case that quantum theory

is intrinsically different from classical physics. This not just led to paradigm shift in

foundation of physics but also led to enormous development in the newly born field of

quantum information theory. We now proceed towards understanding Bell’s solution to

the EPR problem and the discovery of quantum non-locality also known as “Bell non-

locality”.

2.2.1 Bell non-locality

We begin by considering the arguments by Einstein, Podolsky and Rosen in details. Con-

sider two parties, namely Alice and Bob in two different spatially separated labs. Each of

them receive a subsystem corresponding to an entangled quantum state such that know-

ing the position or momentum of either of the subsystem gives the information about

the position and momentum of the counterpart. Now, Alice measures the position of her

subsystem and Bob measures the momentum of his subsystem. EPR argued that for each

of the subsystem one has information about its position as well as momentum which was

forbidden in quantum theory as position and momentum are non-commuting measure-

ments. This led them to conclude that there is an inherent inconsistency in quantum

theory and it is incomplete. They argued that such a phenomenon should not exist which

seems “non-local” in the sense that one can know the state of a far away system based on

the experiment done locally on its counterpart even when there is no interaction between

them. Due to this, in the subsequent years it was hypothesised by physicists like Bohm

and Von-Neumann that there might exist some hidden variables that would remove this
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Figure 2.1: Simplest Bell scenario: Two parties Alice and Bob are located at separated
labs. A source sends one subsystem to Alice and the other to Bob. Inside their labs, Alice
and Bob perform two two-outcome measurements each on the received subsystem. After
the experiment is complete, they compare their results to construct the joint probability
distribution p(a,b|x,y).

inconsistency and provide a local description of quantum theory.

Building on this idea, Bell in his original work [4] described a similar scenario. There

are two parties Alice and Bob in two different labs that are spatially separated from each

other. Both of them receive a quantum system from the preparation device. In their

respective labs, Alice and Bob can perform two local measurements on their part of the

system. During this operation they are not allowed to communicate among each other

or equivalently, they are not supposed to know each others measurement choice or the

outcomes of the measurements. The scenario is schematically depicted in Fig. 2.1. The

experiment is repeated enough number of times to gather statistics corresponding to the

joint probability distributions p⃗ = {p(a,b|x,y)} where p(a,b|x,y) denotes the probability

of obtaining outcome a,b when Alice and Bob perform x,y measurement respectively. One

usually refers p⃗ as “correlations”.

Let us now again consider the hypothesis that there might exist some hidden vari-

ables that would provide a consistent local description of quantum theory. Let us denote

those hidden variables by λ . In presence of such hidden variables the joint probability

distribution can be expressed as

p(a,b|x,y) = ∑
λ∈Λ

p(a,b|x,y,λ )p(λ ) (2.40)

where Λ denotes the set of the hidden variables λ , and p(λ ) denotes the probability with

which a particular λ occurs. Here, p(a,b|x,y,λ ) denotes the probability of occurrence of
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outcome a,b given the input x,y and the hidden variable λ . The above statement points

to the fact that we do not have access to λ and can only observe the probabilities averaged

over it.

Let us now concentrate on p(a,b|x,y,λ ). From rule of conditional probabilities p(a,b) =
p(b|a)p(a) where p(b|a) denotes the the conditional probability of occurrence of b given

a, we have

p(a,b|x,y,λ ) = p(a|x,λ )p(b|a,x,y,λ ). (2.41)

Now, the assumption of “locality” or “local realism” states that outcome of Bob does not

depend on the outcome of Alice or her measurement choice

p(b|a,x,y,λ ) = p(b|y,λ ). (2.42)

Thus, for any local hidden variable, we have that

p(a,b|x,y,λ ) = p(a|x,λ )p(b|y,λ ) ∀λ . (2.43)

Consequently, any joint probability distribution admitting a local hidden variable model

must be of the form

p(a,b|x,y) = ∑
λ∈Λ

p(a|x,λ )p(b|y,λ )p(λ ). (2.44)

Now, using these joint probabilities, one can construct a functional of the form

B = ∑
a,b,x,y

ca,b,x,y p(a,b|x,y) (2.45)

where ca,b,x,y are some real numbers. For ease of understanding we refer here to a functional

presented by Clauser, Horne, Shimony and Holt (CHSH) [76] in which the cofficients in

(2.45) are chosen as

c(a,b,x,y) =

1 if a⊕2 b = x.y

−1 otherwise
(2.46)

where a⊕2 b represents a+b modulo 2. Usually the CHSH Bell functional is represented

in the expectation value picture as

BCHSH = ⟨A0 ⊗B0⟩+ ⟨A0 ⊗B1⟩+ ⟨A1 ⊗B0⟩−⟨A1 ⊗B1⟩. (2.47)
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Assuming that the joint probabilities can be described by a local hidden variable model

(2.44), one arrives at an upper bound of the CHSH expression (2.47) given by

BCHSH ≤ 2. (2.48)

The maximum value that one can achieve for a Bell expression using local hidden variable

models is usually referred to as the “classical bound” or the “local bound” and is denoted

by βL. It turns out that there exist some states and measurements in quantum theory

that violate this bound. To give an example let us consider that the preparation device

in Fig. 2.1 prepares the two-qubit maximally entangled state

|ψ⟩AB =
1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) . (2.49)

Assume then that on her share of their state Alice and Bob perform the following mea-

surements

A0 = σz and A1 = σx, (2.50)

and,

B0 =
σz +σx√

2
and B1 =

σz −σx√
2

. (2.51)

respectively. It follows that for this choice of the state and measurements, the value of

the CHSH expression (2.47) is

BCHSH = 2
√

2. (2.52)

One thus concludes that there exist joint probability distributions in quantum theory

that violate the notion of local realism. Contrary to EPR, Bell showed that even if there

exists some hidden variables that can not be observed directly, they are insufficient to

give a local explanation of some predictions of quantum theory. This is known as “Bell

non-locality”.

As a matter of fact, the value 2
√

2 in Eq. (2.52) is the maximum value attainable

using quantum state and measurements. This was proven by Tsirelson in [77], and is

referred as “Tsirelson bound” or simply “quantum bound” and is denoted by βQ.

An additional constraint in the above experiment as mentioned before is that there is

no communication between Alice and Bob during the experiment. This restricts the joint
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probability distributions to be “no-signalling” [78], that is,

p(a|x) = ∑
b

p(a,b|x,y) = ∑
b

p(a,b|x,y′) ∀y,y′ (2.53)

and

p(b|y) = ∑
a

p(a,b|x,y) = ∑
a

p(a,b|x′,y) ∀x,x′. (2.54)

Assuming that the joint probability distributions are no-signalling, one can even outper-

form quantum theory, that is,

BCHSH = 4 (2.55)

which is also the algebraic bound of the Bell functional BCHSH . This is also known as the

“no-signalling bound” and is denoted by βNS.

The above scenario can be straightforwadly generalised to the multipartite scenario

where there is a preparation device, that sends subsystems to N spatially separated parties

denoted by Ai for i = 1,2, , . . . ,N. Each of the parties can now perform m−measurements

each of which are d−outcome where m,d are arbitrary positive integers strictly greater

than 1. The scenario is depicted in Fig. 2.2.

The joint probability distributions in such a scenario is denoted by

p⃗ = {p(a1,a2, . . . ,aN |x1,x2, . . . ,xN)}, (2.56)

where ak = {0,1, . . . ,d−1} denotes the outcome when Ak performs the measurement xk =

{1,2, . . . ,m}. It is important to note here that

p⃗ ∈ R(md)N
, (2.57)

where R(md)N
denotes the real vector space of dimension (md)N . The Bell functional in

the multipartite case can be written as

Bm,d,N = c⃗ · p⃗ (2.58)

where c⃗ = {ca1,a2...aN ,x1,x2,...,xN} and c⃗ ∈ R(md)N
.

The collection of joint probability distributions that admit a local hidden variable are

known as the “set of local correlations” or simply “local set” denoted by Lm,d,N . Similarly,

one can define “set of quantum correlations” or simply “quantum set” denoted by Qm,d,N

and “set of no-signalling correlations” or “no-signalling set” denoted by Nm,d,N referring to
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Figure 2.2: Generalised Bell scenario: N parties denoted by Ai for i = 1,2, . . . ,N are located
at separated labs. A source sends one subsystem to each of the labs. Inside their labs, each
party performs m number of d−outcome measurements on the received subsystem. After
the experiment is complete, they compare their results to construct the joint probability
distribution p(a1,a2, . . . ,aN |x1,x2, . . . ,xN).

joint probability distributions that admit a quantum and no-signalling models respectively.

One can understand Bell’s non-locality arising from the fact that the local set lies strictly

inside the quantum set. All these sets are convex in nature, that is, convex combination

of different elements of the set is also an element belonging to this set. Elements of the set

that can not be written as a convex combination of other elements are known as ”extremal

points” of the set and any other element in the set can be written as a convex combination

of these extremal points. By definition, the local set lies inside the quantum set that lies

inside the no-signalling set [79],

Lm,d,N ⊆ Qm,d,N ⊆ Nm,d,N . (2.59)

It follows from the work of Bell [4] and then Popescu and Rohrlich [78] that these inclusions
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Figure 2.3: A two-dimensional representation of the set of correlations. The local set is a
subset of the quantum set which is a subset of the no-signalling set. The no-signalling and
local set are polytopes, that is, every point inside these sets can be written as a convex
combination of the vertices of the polytope. On the other hand, the quantum set is not a
polytope but convex.

are strict in the minimal scenario [m=d=N=2]. This is schematically represented in Fig.

2.3. Now, Bell inequalities can be understood as a hyper plane that cuts the quantum set

into two different parts. The first part consists of correlations that admit a local model

and the second part consists the rest. We now move on to a different notion of non-locality

known as quantum steering.

2.2.2 Quantum steering

The idea of quantum steering was conceived by Schrödinger in 1935 but was formalised

after almost 70 years in 2007 by Wisemen et. al. [50]. We begin by describing the simplest

quantum steering scenario described in [80] that consits of two spatially separated parties

Alice and Bob. A preparation device sends one subsystem to Alice and another subsystem

to Bob. Alice sends input y = 0,1 to Bob based on which Bob performs a measurement

on his subsystem and gets an outcome b = 0,1 which is sent back to Alice. Contrary to

Bell scenario, Alice is trusted which means that Alice has full control of her lab and can
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Figure 2.4: Simplest quantum steering scenario: Two parties Alice and Bob are located
at separated labs. A source sends one subsystem to Alice and the other to Bob. Bob
performs two two-outcome measurements on the received subsystem which might change
the state of the subsystem of Alice. Alice is trusted and can perform a tomography on
her subsystem and reconstruct the assemblage (the set of unnormalised states) and can
figure out whether the assemblage is steerable or not.

perform a tomography on her subsystem. The experiment is repeated enough number of

times such that Alice can reconstruct the state of the subsystem σb|y that acts on Alice’s

Hilbert space HA for every y,b. As a matter of fact these states are un-normalised and

they form a set known as an assemblage, denoted by {σb|y}. The scenario is schematically

represented in Fig. 2.4.

Similar to the idea of local hidden variables in Bell non-locality, one can define a notion

which every classical description of the experiment must abide. In the quantum steering

scenario presented above, the classical notion corresponds to the assemblage {σb|y} ad-

mitting a local hidden state model. One can understand this as, the assemblage observed

by Alice only depends on some local state ρλ that might be classically correlated with

Bob,

σb|y = ∑
λ∈Λ

p(λ )p(b|y,λ )ρλ . (2.60)

Here p(b|y,λ ) represents the probability of obtaining outcome b by Bob given input y and

hidden variable λ and p(λ ) denotes the probability distribution of the hidden variables.

If the assemblage admits a local hidden state model then it is non-steerable from Bob

to Alice. On the other hand, the assemblage is called steerable from Bob to Alice if no

hidden state model can be constructed to express {σb|y} as in (2.60). The way to detect
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whether the assemblage is steerable or not, is to use a steering functional of the form

W = ∑
b

∑
y

Tr(Fb|yσb|y). (2.61)

where the coefficients Fb|y are some positive semi-definite operators acting on HA.

Let us now consider the first steering inequality proposed in [80]. The scenario con-

sidered there is minimal in the sense that there are only two parties and Bob performs

only two measurements. The matrices Fb|y of the steering functional were chosen as,

F0|0 = |0⟩⟨0|, F1|0 = |1⟩⟨1| (2.62)

and

F0|1 = |+⟩⟨+|, F1|0 = |−⟩⟨−|, (2.63)

where |+⟩= |0⟩+|1⟩√
2

and |−⟩= |0⟩−|1⟩√
2

. Consequently, the simplest steering functional can

be represented as

W2,2,2 = Tr
(
|0⟩⟨0|σ0|0

)
+Tr

(
|1⟩⟨1|σ1|0

)
+Tr

(
|+⟩⟨+|σ0|1

)
+Tr

(
|−⟩⟨−|σ1|1

)
. (2.64)

For assemblages that admit a local hidden state model, one can find an upper bound to

the steering functional (2.61) as

W2,2,2 ≤ 1+
1√
2

. (2.65)

This is known as “local hidden state bound” or simply “local bound” and is again

denoted by βL. The quantum bound βQ of the steering inequality W2,2,2 is 2 and for

instance can be achieved when the preparation device prepares the maximally entangled

state (2.49) and Bob performs the Pauli z and Pauli x measurements

B0 = σz, B1 = σx. (2.66)

The scenario can be straightforwardly generalised to the case when Bob performs arbitrary

number of measurements m with arbitrary number of outcomes d. The steering functional

in this case admits a form

Wm,d,2 =
m

∑
y=1

d−1

∑
b=0

Tr(Fb|yσb|y). (2.67)

Comparing Bell scenario to quantum steering scenario, in Bell scenario one obtains joint
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probability distributions from the experiment and constructs the Bell functional by suit-

ably choosing the real coefficients ca,b,x,y. In quantum steering scenario the experiment

generates the assemblage and the steering functional is constructed by suitably choosing

the positive semi-definite matrices Fb|y. However, it is always possible to map quantum

steering to the Bell scenario and express the steering functional in terms of expectation

values of joint observables or equivalently joint probability distributions p⃗ similar to Bell

functional. This idea will be particularly useful for this thesis.

Let us consider the steering functional Wm,d,2 (2.67) with the coefficients Fb|y being

positive, Hermitian and summing up to the identity for all y, that is,

Fb|y ≥ 0, Fb|y = F†
b|y, ∑

b
Fb|y = 1. (2.68)

Consequently, {Fb|y} is a valid quantum measurement. As discussed in subsection 2.1.3,

one can equivalently represent a quantum measurement by using d generalised observables

Ak|y (2.21), that is,

Fb|y =
1
d

d−1

∑
b=0

ω
−bkAk|y (2.69)

with k = 0, . . . ,d − 1 and ω = exp(2πi/d). Let us now consider that Bob performs the

measurements {Nb|y} on some state ρAB. Then, the assemblage σb|y can be expressed as

σb|y = TrB[(1A ⊗Nb|y)ρAB]. (2.70)

Again, we represent the measurements {Nb|y} using d generalised observables Bl|y as

Nb|y =
1
d

d−1

∑
b=0

ω
−blBl|y. (2.71)

Now, we are ready to express the steering functional (2.67) in terms of expectation values.

First using the observation (2.70), the steering functional (2.67) can be written as

Wm,d,2 = ∑
b

∑
y

Tr(Fb|yσb|y)

= ∑
b

∑
y

Tr(Fb|y ⊗Nb|yρAB). (2.72)

Now, using observations (2.69) and (2.71), we arrive at

d−1

∑
b=0

N

∑
y=1

Tr(Fb|yσb|y) =
1
d

d−1

∑
k=0

N

∑
y=1

〈
Ak|y ⊗B−k|y

〉
. (2.73)
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For a detailed review on quantum steering, refer to [81]. In the next part, we briefly

discuss the applications of quantum non-locality.

2.2.3 Applications of quantum non-locality

Apart from the foundational aspects, quantum non-locality has has given rise to enormous

number of applications in computation, communication and information theory. Here we

first give a brief account of various applications of Bell non-locality and then quantum

steering.

Suppose, Alice and Bob are spatially separated and both of them receive n−bit strings

denoted by x,y and Bob wants to compute a function f (x,y). The minimum amount of

information needed by Bob from Alice to compute f (x,y) is known as communication com-

plexity of f (x,y). It has been shown that for certain functions f (x,y), Bell non-locality

reduces the communication complexity when compared to classical communication be-

tween Alice and Bob [82]. Another important application of Bell-nonlocality is in the

field of quantum cryptography. The earliest connection between quantum non-locality

and cryptography was realised by Herbert in 1975 [83]. However, the breakthrough was

achieved by Ekert in his seminal paper in 1991 [84] that showed that Bell-nonlocality

serves as a way to generate secure key among two spatially separated parties. The pro-

tocol was based on the maximal violation of CHSH inequality which makes it physically

impossible for some external attacker to know the key shared between Alice and Bob. As

a consequence this protocol can be realised in a device-independent way, that is, without

assuming any details about the inner working of the device apart from the fact that it

is governed by quantum theory. In fact device-independent quantum key distribution

(DIQKD) has been one of the key applications of quantum non-locality [9], [63], [85]–[93].

Using Bell inequalities one can even find the minimum dimension of a quantum system re-

quired for obtaining certain correlations [94]. Since Bell inequalities can be violated using

only entangled states, they serve as an important tool to detect entanglement [95]–[98].

Bell non-locality has been identified as a way to generate genuine randomness [41], [64],

[65], [99]–[110].

Mayers and Yao in [10], [11] realised that correlations obtained by performing local

measurements on spatially separated systems can used for device-independent certification

of quantum states and measurements. This was termed as self-testing. It was later realised

that in fact Bell-nonlocality allows one to self-test quantum states and measurements

[12], [13], [16], [22], [23], [32], [43], [45]. In the subsequent sections, we discuss device-

independent certification and randomness generation in details.

Quantum steering is also useful in quantum cryptography as was realised in [111],

[112]. In a practical scenario where one of the parties is trusted, for instance, in a bank-
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client relationship where the bank can be considered to be trusted, one can construct

one-sided device-independent protocols. Since, then there have been numerous protocols

for quantum key distribution using quantum steering [113]–[117]. Quantum steering is

also useful in tasks like secret sharing, where a referee sends an encrypted message to

multiple players which can be decoded only if the players work together [118]–[121]. Also,

randomness can be certified using quantum steering to be secure and genuine [122]–[125].

Quantum steering has also shown advantage in tasks like subchannel discrimination, that

is, how well one can distinguish different branches of a quantum channel [126], [127]. Fur-

ther, quantum steering can be used for certification of quantum states and measurements

[51], [52], [128], [129].

This completes the analysis of quantum non-locality relevant to this thesis. In the

next section we introduce the idea of device-independent certification and in particular

self-testing and one-sided device certification.

2.3 Device-independent certification

In recent years, the field of device-independent schemes has gained a lot of interest. The

novelty of such schemes lies in the fact that one can predict some properties about the

system by looking only at the statistics generated by this system. For instance, consider

that we are given a device that is promised to produce entangled photons. The natural

question is how we verify that the device works as promised and whether we should trust

the manufacturer. One way is to break the device and check the source. Another way is

not to break the device but perform a quantum tomography on the state generated by

the device. But one needs the knowledge of quantum optics and also would have to trust

his measurement device to infer the state. However, using Bell inequalities, we can verify

the device without breaking it or without trusting any other device. For this, as depicted

in Fig. 2.5, the entangled subsystems are allowed to be far enough such that they are

spatially separated. Now, two local measurements are performed on each of these arms.

Here the verifiers do not have any knowledge about the measurement device but choose

two inputs freely corresponding to the two measurements and record their outputs. The

experiment is repeated enough number of times to collect joint probability distribution

for different inputs and outputs. If this distribution violates some Bell inequality, it can

be concluded that the device generates entangled photons.

Thus, quantum nonlocality serves as a way to infer properties about a device without

knowing the inner workings of it apart from the fact that it is governed by quantum

theory. Such device-independent schemes provide maximum security in cryptographic

scenarios where there might be some hidden mechanisms that are uncontrollable or the
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(a) (b)

Figure 2.5: (a) Device-dependent scenario: To verify the device, one has to assume the
inner workings of the device. Here, if it is known that the device consists a photon source
that passes through a χ2 crystal, then the device can produce entangled photons. (b)
Device-independent scenario: The inner workings of the device are unknown. To verify
whether the device generates entangled photons, one needs to perform a Bell test by
measuring the joint correlation statistics p(a,b|x,y).

device leaks out some information that can be used by some external attacker. However,

in practical scenarios one can make some well justified assumptions on the device. In

this thesis, we focus on two different types of device-independent certification, first, fully

device-independent certification or self-testing and second, one-sided device independent

certification.

2.3.1 Self-testing

Let us now consider the following task: Instead of detecting some property about the state

such as entanglement, we want to characterise the state and measurement which generates

the observed statistics with the device being treated as a black box. This is the strongest

form of device-independent certification and is known as self-testing. The idea of fully

device-independent certification or self-testing was first introduced by Mayers and Yao in

1998 [10], [11]. The scenario for self-testing is same as Bell scenario Fig. 2.1. There are two

independent observers Alice and Bob who are spatially separated from each other and can

freely choose their inputs. Also, they are not allowed to communicate among each other

during the experiment. However, the natural assumption here is that the device behaves

according to quantum theory, that is, every statistics is generated by some quantum

measurement acting on some quantum state. Another important assumption here is that

the preparation device always prepares the same state and there is no correlation between

the measurement device and the preparation device. From the experiment Alice and Bob

obtain the joint probability distribution {p(a,b|x,y)} where a,b denote the outcomes when

they choose the measurements labelled by x,y, respectively.

Now, consider that the preparation device generates the state ρ and the measurements

performed by Alice and Bob in the observable picture as Aa|x and Bb|y [see Sec. 2.1.3]
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respectively for all a,b,x,y. For simplicity, from here on we refer the observables Aa|x

and Bb|y as measurements. Using the joint probability distribution {p(a,b|x,y)}, Alice

and Bob want to characterise the state ρ sent by the preparation device and also their

measurements represented in the observable picture as Aa|x and Bb|y for all a,b,x,y. It is

important here to note that one can identify such quantum realisations only up to the

equivalences under which the probability distribution remains invariant. Also, notice that

in the scenario presented above, one can not certify the source to be producing a unique

mixed state. The reason being that any mixed state can be decomposed in terms of pure

states. Let us say that the target or the ideal state that is expected to be produced by the

source is denoted by |ψ̃⟩ and the target measurements that are expected to be performed

are denoted in the observable form as Ãa|x for Alice and B̃b|y for Bob. Then, there are two

major equivalences under which the probability remains invariant,

1. An additional state might be attached to the target state on which the measurements

act trivially, that is, the actual state and measurements in the device can be

ρ = |ψ̃⟩⟨ψ̃|⊗σ (2.74)

such that σ acts on some unknown but finite dimensional Hilbert space H ′′ and,

Aa|x = Ãa|x ⊗1′′ Bb|y = B̃b|y ⊗1′′. (2.75)

2. The actual state and measurements might be unitarily rotated with respect to the

target state, that is,

ρ =UA ⊗UB |ψ̃⟩⟨ψ̃| U†
A ⊗U†

B , (2.76)

and

Aa|x =UAÃa|xU
†
A , Bb|y =UBB̃b|yU

†
B (2.77)

where UA : HA → HA, UB : HB → HB are local unitary transformations on the sub-

system of Alice and Bob respectively.

Given these two equivalences, we now present the self-testing definition that is relevant

for this thesis.

Definition 10 (Self-testing). Consider the above Bell experiment with Alice and Bob per-

forming measurements Aa|x and Bb|y on a state ρAB and observing correlations {p(a,b|x,y)}.
The state ρAB and measurements Aa|x and Bb|y are certified to be the target state |ψ̃⟩ and
target measurements Ãa|x and B̃b|y from {p(a,b|x,y)} if:
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1. The Hilbert space of Alice and Bob decompose as

HA = HA′ ⊗HA′′ , HB = HB′ ⊗HB′′ (2.78)

where the target state |ψ̃⟩ belongs to HA′ ⊗HB′ and HA′′ and HB′′ represents the

auxiliary Hilbert space of Alice and Bob respectively.

2. There exists a unitary UB : HB → HB and UA : HA → HA such that the state is

UA ⊗UB ρAB U†
A ⊗U†

B = |ψ̃⟩⟨ψ̃|A′B′ ⊗σA′′B′′ , (2.79)

where σA′′B′′ is some state acting on the Hilbert space HA′′ ⊗HB′′.

3. The measurements are certified as

UA Aa|xU†
A = Ãa|x ⊗1A′′ , UB Bb|yU†

B = B̃b|y ⊗1B′′ . (2.80)

for all a,b,x,y. Here, 1A′′ ,1B′′ are identities acting on the Hilbert space HA′′ and

HB′′ respectively.

One natural assumption that we make in the above definition is that the local states

of Alice and Bob are full-rank. This comes from the fact that Alice and Bob can only

characterise the part of the quantum measurements that act on the quantum state. Notice,

that in general the unitaries appearing in the second equivalence can be replaced by

isometries [see Def. 7]. Another important equivalence pointed out in [130], that is not

stated above is that the actual quantum state and measurements can not be distinguished

from the conjugate of the target state and measurements, that is,

ρ = |ψ̃⟩⟨ψ̃|∗, Aa|x = Ã∗
a|x, Bb|y = B̃∗

b|y. (2.81)

However, this equivalence is not relevant for this thesis (it will be clarified when analysing

the results of this thesis). For other definitions of self-testing refer to [131].

As discussed before, the set of joint probability distributions is convex. It is important

to note here that one can only certify quantum states and measurements from probability

distribution that lie at the boundary of this set, that is, extremal probability distributions

[132]. The reason is that any point inside this set can be represented as convex combination

of the extremal points which does not correspond to a unique probability distribution and

thus can not be achieved by only a particular state and measurements.

Now, It turns out that if one utilises the maximal violation of the Bell inequalities, then

the desired self-testing of quantum state and measurements can be achieved by collecting

less statistics compared to the case when one uses tomography. For instance, both Alice
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and Bob are required to choose at least four inputs corresponding to a tomographically

complete set of measurements to certify any two qubit state. However, employing Bell

inequalities one can certify two qubit states using only two measurements per party. The

maximal violation of a Bell inequality is achieved by the joint probability distributions

lying at the boundary of the quantum set as shown in Fig. 2.6. However, it might happen

that the Bell functional touches the boundary of the quantum set at more than one point

and one can have some weaker self-testing statement where one certifies a family of states

or measurements [133]–[135]. To certify some particular quantum state and measurements,

the Bell violation should point to a unique probability distribution. As a consequence,

to self-test any quantum realisation, we need to ensure the maximum violation of the

Bell inequality and then we need to show that the probability distribution that gives the

maximum violation is generated by unique quantum state and measurements up to the

equivalences as suggested before. Thus, in the definition of self-testing [cf. Def. 10],

we can replace the statement “observing correlations {p(a,b|x,y)}” with “observing the

maximal violation of a Bell inequality B”.

In a physical experiment, we can never achieve the maximal violation of a Bell inequal-

ity but some value which is close to this violation. From an experimental perspective, it is

thus necessary to understand self-testing in the presence of noise and whether the proposed

certification schemes are robust against experimental imperfections.

Definition 11 (Robust self-testing). Consider the above Bell experiment with Alice and Bob

performing the measurements Aa|x and Bb|y respectively on a quantum state ρAB. Assume

that the value of a given Bell expression B for the observed correlations satisfy

B ≥ βQ − ε . (2.82)

Alice and Bob can robustly certify a target state |ψ̃⟩ and target measurements Ãa|x and B̃b|y

from the observed Bell value, if there exists a unitary UB : HB → HB and UA : HA → HA

such that the state is∣∣∣∣∣∣UA ⊗UBρABU†
A ⊗U†

B −|ψ̃⟩⟨ψ̃|A′B′ ⊗σA′′B′′

∣∣∣∣∣∣
2
≤ f1(ε), (2.83)

where σA′′B′′ is some state acting on the Hilbert space HA′′ ⊗HB′′ and the measurements

are

||UA Aa|xU
†
A − Ãa|x ⊗1A′′||2 ≤ f2(ε), and

||UB Bb|yU†
B − B̃b|y ⊗1B′′||2 ≤ f3(ε). (2.84)

for all a,b,x,y and 1A′′ ,1B′′ are identities acting on to the support of Alice’s and Bob’s
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subsystem ρA,ρB respectively. Further, when ε goes to 0, the functions f1(ε), f2(ε) and

f3(ε) must vanish.

For a note, the ||X ||2 denotes the Hilbert-Schmidt norm of an operator X , and is

defined as ||X ||2 =
√

Tr(X†X). For two unitary matrices A and Ã, we have that

||A− Ã||2 = 2
[
Tr(1)−ReTr(AÃ†)

]
. (2.85)

The above statement can be understood as, if one observes a value ε lower than the

maximal violation in a Bell experiment, then overlap between the state shared between

the parties and the target state up to some equivalences is bounded from below by a

function of ε . One can arrive at a similar conclusion for the measurements.

Ways to do self-testing

There are several works that provide self-testing statements using numerical approaches

based on semi-definite programs [27], [28], [34], [35]. However, these methods can not be

used to provide self-testing statements for higher dimensional states due to computational

requirements. In other words, there does not exist any numerical scheme that can certify

entangled states of arbitrary local dimension in an efficient way. Due to this, in this work

we focus on analytical methods of self-testing.

There are a few analytical techniques that have been explored for the task of self-

testing but most of these techniques work when the state to be certified is a two-qubit

state. For instance, the initial self-testing schemes [21], [23], [30] were based on Jordan’s

lemma [63], [136] that says that if two Hermitian matrices with eigenvalues ±1 act on a

Hilbert space H , then these matrices decompose as a direct sum of matrices acting on

Hilbert space of dimension less than or equal to two. Another such method is using the

swap gate that serves as an isometry that maps the non-ideal state to the target state

[12], [13], [15], [16], [25], [32].

In this thesis, we follow another approach to derive self-testing statements that is based

on “sum of squares (SOS) decomposition” of the Bell operator. This involves decomposing

the Bell operator in terms of some positive operators. This method was first explored for

self-testing of any pure entangled two-qubit state in [14]. Based on this method, some self-

testing schemes were provided in [24], [41], [133] that can be used to certify multi-qubit

states and subspaces. A scheme to self-test two-qutrit maximally entangled state was

proposed in [31] that employed the method of SOS decomposition of the Bell operator.

In [31], [39] family of Bell inequalities were constructed using this technique, the maximal

violation of which was achieved by maximally entangled state of arbitrary local dimension.

Let us now elaborate on the SOS decomposition of a Bell operator. Any Bell operator
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Figure 2.6: The CHSH functional BCHSH = 2 represents a facet of the local set of correla-
tions L2,2,2. In other words, CHSH functional is a hyperplane that represents one of the
face of the local polytope. Interestingly, the CHSH functional BCHSH = 2

√
2 touches the

quantum set at a single extremal point making it particularly useful for self-testing.

(2.45) can be represented as

B̂ = ∑
a,b,x,y

ca,b,x,yMa|x ⊗Nb|y (2.86)

where Ma|x,Nb|y are measurement operators corresponding to the input x and output a

of Alice and input y and output b of Bob respectively. If βQ is the quantum bound of

the Bell expression ⟨B̂⟩ where B̂ is given in (2.86), then let us assume that the positive

semi-definite operator βQ1− B̂ can be decomposed in the following way

βQ1− B̂ = ∑
i

P†
i Pi. (2.87)

Note that the right hand side of the above equation consists of positive operators P†
i Pi

composed of the operators Ma|x,Nb|y. Given a generic Bell operator, it is not that straight-

forward to find such decompositions. One can numerically find it using the Navascués-

Pironio-Aćın (NPA) hierarchy [137]–[139] which is based on semi-definite programming.

Let us now consider that the state |ψ⟩ achieves the maximal violation of a Bell inequality,
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then the left hand side of (2.87) vanishes and thus

∑
i
||Pi|ψ⟩||2 = 0. (2.88)

All the terms are positive in the above sum which allows to conclude that ||Pi|ψ⟩||= 0 for

all i. Thus,

∀i Pi|ψ⟩= 0. (2.89)

This simple expression contains all the information about the state and measurements

that give rise to the maximal violation of the corresponding Bell inequality. Often, these

relations can be used to derive self-testing results.

Since, this technique is central to the results presented in this thesis we would provide

a simple example of self-testing based on SOS decomposition. Before proceeding let us

state an important fact that was proven in Ref. [31] which is central to some of the results

presented in this thesis.

Fact 2. Consider two unitary matrices R0,R1 that act on a finite-dimensional Hilbert

space H satisfying Rd
0 = Rd

1 = 1. If R0 and R1 satisfy the relation R0R1 = ωR1R0, then

dim(H ) = d.t for some positive integer t and there exists a unitary U : H → H such

that

UR0U† = Zd ⊗1, and UR1U† = Xd ⊗1, (2.90)

where Zd ,Xd are the d−dimensional generalisation of the Pauli matrices σz,σx (2.27) given

by,

Zd =
d−1

∑
i=0

ω
i|i⟩⟨i|, Xd =

d−1

∑
i=0

|i+ 1⟩⟨i|. (2.91)

Let us now consider the CHSH inequality (2.47), which for our convenience is scaled

down by the factor 1√
2
, and consider its operator form

B̂CHSH =
1√
2
(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1) . (2.92)

We assume here that the measurements of Alice and Bob are projective and thus, A2
x =

B2
y = 1 for all x,y. The local and quantum bound of this Bell inequality is

√
2 and 2

respectively (2.52) and thus the SOS decomposition of the corresponding shifted Bell
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operator is given by

21− B̂CHSH =
1
2

(
P†

0 P0 +P†
1 P1

)
(2.93)

where,

P0 = 1−A0 ⊗
B0 +B1√

2
and P1 = 1−A1 ⊗

(B0 −B1)√
2

. (2.94)

Let us now suppose that a state ρAB attains the quantum bound of the above Bell operator.

Then, we can always add an ancillary system E to purify this state. Let us denote this

purified state by |ψABE⟩ such that ρAB = TrE(|ψ⟩⟨ψ|ABE). Then, from Eq. (2.94) the

following relations must hold,[
A0 ⊗

B0 +B1√
2

⊗1E

]
|ψABE⟩= |ψABE⟩ (2.95)

and, [
A1 ⊗

B0 −B1√
2

⊗1E

]
|ψABE⟩= |ψABE⟩ (2.96)

Using the fact that A0 are unitary and Hermitian, we have from Eq. (2.95) that

B0 +B1√
2

⊗1AE |ψABE⟩= A0 ⊗1BE |ψABE⟩ (2.97)

Let us recall that the measurements can be characterised only on the support of the local

reduced states ρA and ρB and consequently, in the proof we assume that the local states

of Alice and Bob are full-rank. Also, From here on, for convenience we drop the term 1E .

Now, multiplying by A0 ⊗1B on both the sides of Eq. (2.97) , we have that[
1A ⊗

B0 +B1√
2

]
A0 ⊗1B|ψABE⟩= A2

0 ⊗1B|ψABE⟩ (2.98)

where we used the fact that measurements acting on subsystem A and B commute. Using

(2.97) and the fact that A2
0 = 1, we have that

1⊗
[

B0 +B1√
2

]2

|ψABE⟩= |ψABE⟩. (2.99)
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Taking a partial trace over the subsystems A,E, we have that[
B0 +B1√

2

]2

ρB = ρB. (2.100)

The fact that ρB is full-rank and thus invertible allows us to conclude from the above

equation that [
B0 +B1√

2

]2

= 1B. (2.101)

Similarly, one obtains from (2.96) that[
B0 −B1√

2

]2

= 1B. (2.102)

Expanding the the above two equations (2.101) and (2.102), we have that

B2
0 +B2

1 +
{

B0,B1
}
= 21B, and B2

0 +B2
1 −
{

B0,B1
}
= 21B (2.103)

where
{

B0,B1
}
= B0B1+B1B0 denotes the anti-commutator of B0,B1. Now, using the fact

that B2
0 = B2

1 = 1B, we obtain that

{
B0,B1

}
= 0. (2.104)

Now, as stated in Fact 2, for two unitary matrices B0,B1 with the additional property

that B2
i = 1B for i = 0,1 and satisfy the condition (2.104), there exist local unitary trans-

formation VB : HB → HB such that

VB B0 V †
B = σz ⊗1B′′ , and VB B1 V †

B = σx ⊗1B′′ (2.105)

where 1B′′ acts on the auxiliary Hilbert space HB′′ of some finite dimension and σz,σx

are Pauli matrices (2.27). This also shows that the Hilbert space of Bob decomposes

as HB = C2 ⊗HB′′ . Now, consider a unitary matrix W = W ′⊗1B′′ such that W ′ is also

unitary and can be expressed as a matrix written in the 2−dimensional computational

basis {|0⟩, |1⟩} as

W ′ =

(
cos
(

π

8

)
sin
(

π

8

)
sin
(

π

8

)
−cos

(
π

8

)) . (2.106)

The unitary matrix W ′ transforms the Pauli observables σz,σx to the ideal ones (2.51)
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and thus from Eq. (2.105) we arrive at

UBB0U†
B =

σz +σx√
2

⊗1B′′ and UBB1U†
B =

σz −σx√
2

⊗1B′′ , (2.107)

where UB = WVB. Now, to find Alice’s observables Ai we consider an analogous SOS

decomposition of the CHSH operator given by

21− B̂CHSH =
1
2

(
Q†

0Q0 +Q†
1Q1

)
(2.108)

where,

Q0 = 1− A0 +A1√
2

⊗B0 and Q1 = 1− A0 −A1√
2

⊗B1. (2.109)

Again, for any state |ψABE⟩ that maximally violates the CHSH inequality, from Eq. (2.109)

the following relations must hold,

A0 +A1√
2

⊗B0 ⊗1E |ψABE⟩= |ψABE⟩ (2.110)

and

A0 −A1√
2

⊗B1 ⊗1E |ψABE⟩= |ψABE⟩. (2.111)

As concluded for Bob’s observables, the Hilbert space of Alice decomposes as HA =

C2 ⊗HA′′ and there exist local unitary transformation UA : HA → HA such that

UA A0 U†
A = σz ⊗1A′′ , and UA A1 U†

A = σx ⊗1A′′ (2.112)

where 1A′′ acts on the auxiliary Hilbert space HA′′ .

After determining the form of the measurements, we can finally certify the quantum

state |ψABE⟩ that achieves the maximum violation of the CHSH Bell inequality. Since,

HA = C2 ⊗HA′′ and HB = C2 ⊗HB′′ , we can decompose the state |ψABE⟩ as

UA ⊗UB|ψABE⟩= |ψ̃ABE⟩= ∑
i, j=0,1

|i⟩A′| j⟩B′|ψi j⟩A′′B′′E (2.113)

where |ψi j⟩A′′B′′E ∈ HA′′ ⊗HB′′ ⊗HE . For convenience, we drop the subscripts from the

state. Now, plugging in the certified measurements (2.107) and (2.112) in the SOS relation

(2.95)

σz ⊗σz ⊗1A′′B′′E |ψ̃ABE⟩= |ψ̃ABE⟩. (2.114)
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Substituting the general form of the state (2.113) and simplifying, we obtain that

∑
i, j=0,1

(−1)i j|i⟩A′| j⟩B′|ψi j⟩A′′B′′E = ∑
i, j=0,1

|i⟩A′| j⟩B′|ψi j⟩A′′B′′E . (2.115)

By projecting the above equation on to ⟨i|A′⟨ j|B′ for all i, j such that i ̸= j, we arrive at

the following condition

|ψi j⟩A′′B′′E = 0 s.t. i ̸= j (2.116)

and thus the state that achieves the maximal violation of the CHSH inequality simplifies

to

|ψ̃ABE⟩= |0⟩A′|0⟩B′|ψ00⟩A′′B′′E + |1⟩A′|1⟩B′|ψ11⟩A′′B′′E . (2.117)

Now, we consider the other SOS relation (2.96) and plug into it the certified measurements

(2.107) and (2.112). This gives us

σx ⊗σx ⊗1A′′B′′E |ψ̃ABE⟩= |ψ̃ABE⟩. (2.118)

Now, substituting the simplified state (2.117), we obtain that

|1⟩A′|1⟩B′|ψ00⟩A′′B′′E + |0⟩A′|0⟩B′|ψ11⟩A′′B′′E = |0⟩A′|0⟩B′|ψ00⟩A′′B′′E + |1⟩A′|1⟩B′|ψ11⟩A′′B′′E .
(2.119)

Again projecting the above equation on to ⟨0|′A⟨0|
′
B, we arrive at the condition that

|ψ00⟩A′′B′′E = |ψ11⟩A′′B′′E . (2.120)

Thus, the state which achieves the maximal violation of the CHSH inequality is given by

UA ⊗UB|ψABE⟩=
1√
2
(|0⟩A′|0⟩B′ + |1⟩A′|1⟩B′)⊗|aux⟩A′′B′′E (2.121)

where |aux⟩A′′B′′E =
√

2|ψ00⟩A′′B′′E . This completes the proof that the maximal violation

of CHSH Bell inequality can be used to certify the two-qubit maxmally entangled state.

In Chapter 3, we generalise this proof to self-test maximally entangled state of arbitrary

local dimension. We now move on to presenting the idea of one-sided device independent

certification.

2.3.2 One-sided device independent certification

Let us now consider the following task inspired from a real-world scenario consisting of

a bank that wants to securely send information to its clients. The security of the Bank
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can be considered to be strong and chances of attack directly on the bank is much lower.

However, individual clients are prone to intruders who want to steal their information. In

such a situation, bank can be considered to be trusted and the clients are untrusted.

Based on the above example, let us consider a scenario where there are two parties

Alice and Bob and a preparation device which sends one system to Alice and other to

Bob. Here Alice is trusted, that is, she can perform a full tomography on her subsystem.

Bob now performs measurements on his subsystem which might steer or affect Alice’s

subsystem. This scenario is in fact the quantum steering scenario. Observing some

specific joint probability distribution {p(a,b|x,y)} allows one to certify the preparation

device as well the measurements performed by the untrusted Bob up to the equivalences

as discussed in the previous subsection.

Definition 12 (One-sided device independent certification (1-SDI certification)). Consider

the above experiment with Alice and Bob performing measurements Aa|x and Bb|y on a state

ρAB and observing correlations {p(a,b|x,y)} along with the fact that Alice’s measurements

Aa|x are known and act on Hilbert space HA. The state ρAB and measurements Bb|y are

certified to be the target state |ψ̃⟩ and target measurements B̃b|y from {p(a,b|x,y)} if:

1. The Hilbert space of Bob decomposes as

HB = HB′ ⊗HB′′ (2.122)

where the target state |ψ̃⟩ belongs to HA ⊗HB′ and HB′′ represents the auxiliary

Hilbert space of Bob.

2. There exists a unitary UB : HB → HB such that the state is

(
1A ⊗UB

)
ρAB

(
1⊗U†

B

)
= |ψ̃⟩⟨ψ̃|AB′ ⊗σB′′ , (2.123)

where σB′′ is some state acting on the Hilbert space HB′′.

3. The measurements are certified as

UB Bb|yU†
B = B̃b|y ⊗1B′′ . (2.124)

where 1B′′ is identity acting on the Hilbert space HB′′.

Analogous to self-testing, any correlation that can be used for 1SDI certification must

belong to the boundary of the quantum set. As discussed before, the quantum correla-

tions that achieve the maximal violation of a steering inequality are extremal or lie at

the boundary of the quantum set. If one employs the maximum violation of a steering
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inequality to certify the quantum realisations, one needs to measure much lesser number

of correlations than the standard procedure of observing at least the full tomographi-

cally complete set of correlations. One can thus provide an analogous definition of 1SDI

certification by replacing the line “observing correlations {p(a,b|x,y)}” by “observing the

maximal violation of a steering inequality” in Def. 12. Again, we can define robust 1SDI

analogously to Def. 11 imposing that Alice is trusted.

Ways to do 1SDI certification

The first results on 1SDI certification were derived in [51], [52] where the idea of swap

isometry was employed to certify the maximally entangled state and Pauli observables.

In [129] any pure bipartite entangled state was certified by using the subspace method as

was done in [32]. There is also a numerical method [140] that aims to characterise the

steering assemblages but again the limitation being that higher dimensional assemblages

can not be certified in an efficient way using this method.

In chapter 4 in this thesis, we develop an analytical method for 1SDI certification. We

explore the fact that the algebraic bound of the steering inequality gives some relations

which can be solved to find the desired certification. Here we give a short proof to highlight

this idea using the simplest steering inequality (2.61).

Let us consider the simplest steering functional (2.61) and express it in the correlation

picture (2.73) as discussed above

W2,2,2 = ⟨σz ⊗B0⟩+ ⟨σx ⊗B1⟩. (2.125)

Note that for convenience, we scaled the inequality (2.61) by a factor of 2 and also removed

the term corresponding to 1A ⊗1B. Achieving the maximal quantum value implies that

⟨σz ⊗B0⟩+ ⟨σx ⊗B1⟩= 2. (2.126)

Since, B0 and B1 are valid observables, both the terms in the above expression are up-

per bounded by 1. Consequently, one can achieve the quantum bound iff each of the

expectation value in the above expression (2.126) is 1,

σz ⊗B0 ⊗1E |ψABE⟩= |ψABE⟩ (2.127)

and,

σx ⊗B1 ⊗1E |ψABE⟩= |ψABE⟩. (2.128)

Here, as done for self-testing, we introduce an external system E to purify the state shared
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between Alice and Bob. For convenience, we will drop 1E from further calculations. Let

us recall that the measurements can be characterised only on the support of the local

reduced states ρA and ρB. Thus, without loss of generality we assume that these local

states are full-rank. Now multiplying (2.127) with σx ⊗B1 on both the sides and then

using (2.128), we arrive at

σxσz ⊗B1B0|ψABE⟩= σx ⊗B1|ψABE⟩= |ψABE⟩. (2.129)

Similarly, multiplying (2.128) with σz ⊗B0 on both the sides and then using (2.127), we

arrive at

σzσx ⊗B0B1|ψABE⟩= σz ⊗B0|ψABE⟩= |ψABE⟩. (2.130)

Now, using the fact that σzσx +σxσz = 0 in the above equation, we have that

σxσz ⊗B0B1|ψABE⟩= −|ψABE⟩. (2.131)

Now, adding (2.129) and (2.131), we have that

σxσz ⊗ (B0B1 +B1B0) |ψABE⟩= 0. (2.132)

Since, σx,σz are invertible we get

1A ⊗ (B0B1 +B1B0) |ψABE⟩= 0. (2.133)

Now, tracing over the subsystems A,E we have

(B0B1 +B1B0)ρB = 0. (2.134)

Again, ρB is full-rank and thus invertible which finally gives us the desired relation

B0B1 +B1B0 = 0. (2.135)

Now, using Fact 2 we can conclude that the Hilbert space of Bob decomposes as HB =

C2 ⊗HB′′ and there exist a local unitary transformation UB : HB → HB such that

UBB0U†
B = σz ⊗1B′′ , and UBB1U†

B = σx ⊗1B′′ . (2.136)

Now, we find the state |ψABE⟩ that gives the maximum violation of the steering inequality

(2.125). As was done for self-testing, we consider a general state of the form remembering
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that Alice is trusted

1A ⊗UB|ψABE⟩= |ψ̃ABE⟩= ∑
i, j=0,1

|i⟩A′| j⟩B′|ψi j⟩B′′E . (2.137)

where |ψi j⟩B′′E ∈HB′′⊗HE . Now, using this state and the certified measurements (2.136),

we solve the relations (2.127) and (2.128), that is,

σz ⊗σz ⊗1B′′ ⊗1E |ψ̃ABE⟩= |ψ̃ABE⟩ (2.138)

and,

σx ⊗σx ⊗1B′′ ⊗1E |ψ̃ABE⟩= |ψ̃ABE⟩. (2.139)

Following exactly the same approach, as the one used for self-testing from Eq. (2.115) to

Eq. (2.121), we find that up to a local unitary transformation UB we have that

1A ⊗UB|ψABE⟩=
1√
2
(|00⟩+ |11⟩)⊗|aux⟩B′′E (2.140)

This completes our analysis of one-sided device independent certification. Now, we pro-

ceed towards another important avenue for device-independent protocols namely device-

independent certification of genuine randomness.

2.3.3 Randomness certification

One of the central requirements for any cryptographic task is access to devices that can

generate outputs not predictable by any attacker. Within classical framework, the secu-

rity of such cryptographic tasks relies majorly on the idea that some functions can not be

efficiently computed by a classical computer. For instance, the security of the RSA proto-

col [141] relies on the fact that large numbers can not be factored efficiently using classical

computers. It was shown by Shor in 1994 [142] that one could efficiently factorise large

numbers using quantum resources. Consequently, with the advent of quantum technolo-

gies, many such classical protocols have been shown to be prone to attackers possessing

quantum computers. Thus, it is a matter of time when the classical cryptosystems would

fail and we need better protocols that are secure against quantum attacks. This is the

basis for the origin of the field of quantum cryptography.
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One of the inferences that one can make about quantum theory is that it is inherently

unpredictable. For instance, consider a source that generates the quantum state

|ψA⟩=
1√
2
(|0⟩+ |1⟩) . (2.141)

Now, if a measurement is performed by Alice on this state in the z−basis, that is, M =

{|0⟩⟨0|, |1⟩⟨1|}, then the outcomes occur with equal probability and are unpredictable.

However, here we require that the state and measurements are exactly same as the ideal

ones. This is device-dependent generation of randomness, that is, one has to completely

trust his devices to generate this randomness. However, let us say that the source generates

the maximally entangled state

|ψAE⟩=
1√
2
(|0⟩A|0⟩E + |1⟩A|1⟩E) (2.142)

instead of the state (2.141) such that some attacker Eve has access to subsystem E. Again,

the measurement is performed on the subsystem A in the z−basis. Even if the outcomes

seems unpredictable to Alice, if Eve also performs a measurement in the z−basis then

she is able to guess the outcome of Alice with certainty as depicted in Fig. 2.7. Further,

Eve might also have access to Alice’s measurement device. Thus, it is necessary to find

protocols for randomness generation in which one does not has to trust the device used to

produce randomness. This is known as device-independent certification of randomness.

The idea of DI randomness certification schemes relies on the premise that there is some

attacker who has access to the devices that are used to generate randomness. However, the

attacker can only guess the outcome of the devices randomly. For instance, if the device

generates two outputs, then we say that these outputs are perfectly random if chances

that the attacker can guess them is never more than fifty percent. On the other hand, if

the attacker can guess the outcome with certainty then the outputs are not random.

Let us now elaborate on this problem in a more formal way. Let us say that Alice

performs a measurement M on a system S and observes an outcome a. Now, the at-

tacker Eve can perform some measurement {Ze} on her subsystem and gets an outcome

e. The outcome e is the guess that Eve makes about Alice’s outcome. Then the best

average probability of guessing by Eve pguess(E|S) has to be maximised over all possible

measurements z, and thus we arrive at the following expression as suggested in Ref. [79],

pguess(E|S) = max
z ∑

e
p(e|z)p(e = a|a,z) (2.143)

where the above quantity p(e = a|a,z) denotes the probability of Eve’s outcome e to be
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Figure 2.7: Alice locally in her lab gets perfectly random outcomes. However, her subsys-
tem can be correlated with another subsystem possessed by an intruder Eve. Thus, locally
to Alice her outcomes seem perfectly random but Eve can perfectly guess her outcome
based on her results.

the same as Alice’s outcome a and S denotes the system of Alice. When Alice and Eve

posses quantum resources, that is, let us say that the state shared between Alice and Eve

is given by ρAE and Alice performs a measurement {Ma} and Eve performs a measurement

{Ze} then the above guessing probability can be written as

pguess(E|ρA) = max
Z

∑
a

Tr(ρAEMa ⊗Za) (2.144)

where Z = {Za} and ρA = TrE(ρAE). The amount of randomness that can be generated

by Alice is quantified by the min-entropy of the of the guessing probability [143], that is,

Hmin(E|S) = − log2 pguess(E|S). (2.145)

Note that the above quantity is 0 if Eve can perfectly guess Alice’s outcome. Interest-

ingly, the maximum amount of randomness that in principle can be generated from a

d−dimensional quantum system is of amount 2log2 d bits.

Let us now discuss how quantum non-locality, in particular, self-testing serves as a

tool in designing methods for randomness certification. Consider again the Bell scenario

but now with an additional party Eve (the intruder) who has access to the preparation

device as well as the measurement devices of Alice and Bob. The scenario is depicted in

Fig. 2.8. Now, Eve wants to guess the measurements outcome of one of the parties, let

us say, Alice. In this case, Eve has the following information or strategies to guess the

outcomes:
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Figure 2.8: Bell scenario with an intruder Eve: In the simplest Bell scenario, we consider
an additional party Eve who represents an attacker who wants to guess Alice’s and Bob’s
outputs. She can receive some subsystem from the source correlated with the subsystem
of Alice and Bob. She also might know the inputs of Alice and Bob. She uses all these
information to guess their outputs by performing measurements on her received subsys-
tem.

1. Eve can posses some subsystem E that is correlated with the state sent by the

preparation device. As a consequence, the state shared among the parties is defined

by ρAB = TrE(ρABE), where ρABE ∈HA⊗HB⊗HE denotes the state shared between

Alice, Bob and Eve. There can not be any restriction on the dimension of the

local Hilbert spaces of any of the parties. This also allows one to consider that the

state shared among the parties to be pure as we can always add additional ancillary

systems with Eve and purify the state.

2. Eve might have control over Alice’s and Bob’s measurement devices in the sense

that the measurements might be performed on some auxiliary system of Alice and

Bob which can interfere with their observations.

3. Eve might perform a measurement on her subsystem given by POVM Z = {Za}
that acts on HE . As discussed above, the probability of obtaining outcome a from

measurement performed by Eve on her share of the joint state ρABE is the best guess
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of Alice’s outcome a.

It is also necessary for Eve to remain undetected during the attack otherwise Alice and

Bob can discard those runs and start over again. Thus, the joint as well as local statistics

of Alice and Bob should remain equivalent to the ideal statistics as expected by them,

that is,

⟨ψABE |Aa|x ⊗Bb|y ⊗1E |ψABE⟩= ⟨ψ̃AB|Ãa|x ⊗ B̃b|y|ψ̃AB⟩ (2.146)

where |ψ̃AB⟩ is the ideal state that is expected to be be sent by the preparation device and

Ãa|x and B̃b|y represent the ideal measurement effects that are expected to be performed

by the respective parties. Note that there is no constraint on Eve’s measurement as Alice

and Bob do not know about Eve and the statistics are averaged over Eve’s outcomes. Let

us denote the set of strategies as Sp that are employed by Eve such the constraint (2.146)

is satisfied. Thus, the probability of Eve to guess Alice’s outcome for some input x is

given by,

G(x,P) = sup
Sp

∑
a
⟨ψABE |Aa|x ⊗1B ⊗Za|ψABE⟩. (2.147)

This is also known as local guessing probability [110], [144]–[146]. Here P denotes the set

of observed correlations.

Now, suppose that Alice wants to generate randomness in her lab by performing the

measurements Ax on the state ρA = TrBE(|ψABE⟩⟨ψABE |). Now, Alice and Bob perform a

Bell state using the state |ψABE⟩ and measurements Ax and By respectively, and observe

the maximal violation of a Bell inequality. For simplicity of argument, we assume here

that the measurements are projective. Let us say that the state and measurements can

be self-tested from this violation to be the ideal ones, that is,

UA ⊗UB|ψABE⟩= |ψ̃A′B′⟩⊗ |aux⟩A′′B′′E (2.148)

and the measurements on the local support of the state are certified to be the ideal

measurements as

UA AxU†
A = Ãx ⊗1A′′ , UB ByU†

B = B̃y ⊗1B′′ . (2.149)

Then the guessing probability of Eve (2.147) is given by

G(0,E) = sup
ρE ,Za

∑
a

Tr(Ãa|0ρA′)Tr(ZaρE). (2.150)
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where ρE = TrAB(|ψABE⟩⟨ψABE |). Using the fact ∑a Za = 1, we conclude that

G(0,E) ≤ max
a

Tr(Ãa|0ρA′). (2.151)

Thus, Alice can securely generate at least

Hmin(E) ≥− log2(max
a

Tr(Ãa|0ρA′)) (2.152)

amount of randomness. Notice that this bound is independent of any strategy of Eve.

Thus, self-testing allows one to locally generate randomness in a highly secure way even

in the presence of an intruder. This completes the subsection on randomness and the

section on technical introduction. We now move onto the main results of this thesis.
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Chapter 3

Certification of multipartite entangled

states of arbitrary local dimension

3.1 Introduction

The strongest form of device-independent certification or self-testing has attracted con-

siderable attention lately as it allows to obtain maximal information up to certain equiv-

alences about a concerned quantum system with minimal assumptions. For instance, in

Refs. [12]–[21], self-testing schemes have been proposed for certification of pure bipartite

entangled states that are locally qubits. There are a few results that allow for certification

pure bipartite entangled states of local dimension three [31], [34], [35]. A scheme for self-

testing of pure bipartite states of arbitrary local dimension was proposed in [32]. However

this scheme relies on self-testing of two-qubit states [12]–[14] by considering different two-

dimensional subspaces of the local state of both the parties. In their scheme, one party

has to perform three and the other has to perform four measurements on their respective

subsystems. As far as the experimental implementation of self-testing schemes is con-

cerned, it is thus a question of utmost importance as to whether one can design schemes

exploiting the minimal number of measurements necessary to observe non-locality which

is two per observer.

Self-testing schemes were also designed for multipartite states, in particular the tripar-

tite ones, which are states shared among three parties and are locally qubits [26]–[30]. The

problem to certify states shared among arbitrary number of parties has not been much

explored with a few exceptions [22]–[24] that provide a scheme to self-test N−qubit graph

states and the Dicke states. A scheme that applies to states of arbitrary local dimension

and shared among arbitrary number of parties was proposed in [25]. This scheme again

adapts the procedure of Ref. [32] to the multiparty scenario that relies on the self-testing
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technique for the two-qubit states. Here again, one party has to perform three and the

other parties have to perform four measurements. In Ref. [147], the authors show a proof-

of-principle demonstration that every pure entangled state can be certified. However, in

this scheme all the parties have to perform at least d2 measurements where d is the local

dimension of the state. Each of the measurements have 2s outcomes where s is chosen

such that 2s is the smallest integer larger than d. All these limitations make this scheme

practically difficult to implement in experiments.

It is thus a problem of key interest to find device-independent certification schemes that

are experimentally friendly in the sense that they require minimal resources and effort for

their practical implementation. We consider the general problem to design a scheme for

self-testing of pure entangled states of arbitrary local dimension shared among arbitrary

number of parties using Bell inequalities composed of truly d−outcome measurements

where d is any positive integer. Further, each party must perform the minimal number of

measurements possible to observe a Bell violation, which is, two.

In this Chapter, we provide a method to self-test one of most studied multipartite

states, namely the N-partite Greenberger–Horne–Zeilinger (GHZ) states of local dimension

d, or simply, generalised GHZ state

|GHZN,d⟩=
1√
d

d−1

∑
i=0

|i⟩⊗N (3.1)

with N and d being arbitrary integers such that N,d ≥ 2. Notice that the generalised

GHZ state (3.1) reduces to the two-qudit maximally entangled state (3.5) when N = 2.

For this, we utilise the Bell inequalities proposed [40] which is a generalisation of the

Bell inequalities proposed in [39]. In this scheme, every party needs to perform only two

measurements. With the view to self-test measurements we generalise this result when

each party performs arbitrary number of measurements. The results presented below are

based on our works [37], [38].

3.2 Family of Bell inequalities

We consider the most general Bell scenario as depicted in Fig. 2.2. It involves N parties in

spatially separated labs. Each of them receives a subsystem from a source and performs

one of m d−outcome measurements on it. After the experiment is complete, they combine

their results to reconstruct the joint probability distribution. Let us now say that we

want to certify that the source generates the desired state and the parties perform the

desired quantum measurements. Then, the first step to achieve this goal is to find a Bell

inequality that is maximally violated by these quantum realisations. For this, we consider
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two recently derived Bell inequalities.

3.2.1 SATWAP Bell inequalities

Let us first recall the Salavrakos-Augusiak-Tura-Wittek-Aćın-Pironio (SATWAP) Bell

inequality [39] in the simplest scenario where each party performs only two measurements.

When expressed in the observable picture (cf. Chapter 2) SATWAP Bell inequality reads

as

B2,d,2 =
d−1

∑
k=1

(
ak⟨Ak

1Bd−k
1 ⟩+ a∗kω

k⟨Ak
1Bd−k

2 ⟩+ a∗k⟨Ak
2Bd−k

1 ⟩+ ak⟨Ak
2Bd−k

2 ⟩
)
≤ β

2,d,2
C , (3.2)

where

ak =
1√
2

ω
2k−d

8 =
1− i

2
ω

k/4 =
1− i

2
e

πik
2d , (3.3)

where ω = e2πi/d is the d − th root of unity. The classical bound of the SATWAP Bell

inequality β
2,d,2
C was computed in [39] to be

β
2,d,2
C =

1
2

[
3cot

(
π

4d

)
− cot

(
3

π

4d

)]
−2. (3.4)

It is worth noting that for d = 2 the SATWAP Bell inequality reduces to the well-known

CHSH inequality (2.47) introduced in Chapter 2.

Sum of Squares (SOS) decomposition

The maximal quantum value of B2,2,d turns out to be β
2,d,2
Q = 2(d−1) and can be attained

by the two-qudit maximally entangled state

|φ+
d ⟩= 1√

d

d−1

∑
i=0

|ii⟩ (3.5)

and d-outcome measurements referred as Collins-Gisin-Linden-Massar-Popescu (CGLMP)

measurements [148], [149]. These measurements have been experimentally realised in

[150]. In the next subsection, we provide the explicit form of these measurements. As

discussed in Chapter 2, to compute the quantum bound one can find the SOS decom-

position of the corresponding Bell operator of SATWAP Bell inequality (3.2). To prove

that β
2,d,2
Q is indeed the maximum quantum value of the SATWAP Bell inequality, the

following SOS decomposition was derived in [39]:

β
2,d,2
Q 1− B̂2,2,d =

1
2

d−1

∑
k=1

(
P†

1,kP1,k +P†
2,kP2,k

)
, (3.6)
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with

Pi,k = 1−Ak
i ⊗C(k)

i (3.7)

for i = 1,2 and k = 1, . . . ,d −1 such that

C(k)
1 = akB−k

1 + a∗kω
kB−k

2 , C(k)
2 = a∗kB−k

1 + akB−k
2 . (3.8)

Note from (3.3) that ad−k = a∗k and thus C(d−k)
i = [C(k)

i ]† for all i,k.

3.2.2 ASTA Bell inequalities

The SATWAP Bell inequalities were later generalised to an arbitrary number of measure-

ments per party and also to arbitrary number of parties in [40], which from here on will

be referred to as Augusiak-Salavrakos-Tura-Aćın (ASTA) Bell inequalities. As a matter

of fact, ASTA Bell inequalities are the tilted version of Bell inequality proposed in [151].

The ASTA Bell inequalities can be expressed in the observable picture (cf. Chapter 2) as

Bm,d,N :=
m

∑
α1,...,αN−1=1

d−1

∑
k=1

〈(
akAk

1,α1
+ a∗kAk

1,α1+1

)
⊗

N⊗
i=2

A(−1)i−1k
i,αi−1+αi−1

〉
≥ β

m,d,N
C (3.9)

where,

ak =
ω

2k−d
4m

2cos(π/2m)
. (3.10)

and Ai,x is the x−th measurement of Ai−th party, where αN = 1. The classical bound of

the above Bell inequality when N =m= 2 is given in (3.4). For some cases, such as N = 3,4
and m = 2,3 the classical bound was computed numerically in [40]. For all the other cases

it is difficult to obtain the classical bound due to computational constraints. However,

it was proven in [40] that the Svetlichny bound [152] of the above Bell inequalities is

strictly lower than quantum bound (written below). At the same time the Svetlichny

bound is known to be an upper bound to the classical bound which implies that ASTA

Bell inequalities are non-trivial for any N,m,d. Recall that the Svetlichny bound is the

maximal value of a Bell expression over all correlations that are convex combination of

correlators that are local with respect to all possible non-trivial bipartitions.

Sum of Squares (SOS) decomposition

The maximal quantum value of Bm,d,N turns out to be β
m,d,N
Q = mN(d − 1) and can be

achieved by the generalised GHZ state (3.1) and the following measurements written in
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the observable form as,

O1,x =UxFd ΩdF†
d U†

x , O2,x = VxF†
d ΩdFdV †

x , (3.11)

for the first two parties, and for parties indexed by odd numbers as

Oodd,x =WxFd ΩdF†
d W †

x (3.12)

and parties indexed by even numbers as

Oev,x =W †
x F†

d ΩdFdWx (3.13)

for all other parties Ai such that (i = 3, . . . ,N). In the above formulas

Fd =
1√
d

d−1

∑
i, j=0

ω
i j|i⟩⟨ j|, Ωd = diag[1,ω , . . . ,ωd−1] (3.14)

with ω = exp(2πi/d). Then, the unitary operations Ux, Vx and Wx are defined as

Ux =
d−1

∑
j=0

ω
− jγm(x)| j⟩⟨ j|, Vx =

d−1

∑
j=0

ω
jζm(x)| j⟩⟨ j|, Wx =

d−1

∑
j=0

ω
− jθm(x)| j⟩⟨ j|, (3.15)

where

γm(x) =
x
m
− 1

2m
, ζm(x) =

x
m

, and θm(x) =
x−1

m
. (3.16)

The above observables can also be written in the matrix form as

O1,x =
d−2

∑
i=0

ω
γm(α)|i⟩⟨i+ 1|+ω

(1−d)γm(α)|d −1⟩⟨0|,

O2,x =
d−2

∑
i=0

ω
ζm(α)|i+ 1⟩⟨i|+ω

(1−d)ζm(α)|0⟩⟨d −1| (3.17)

for the first two parties, and

Oodd,x =
d−2

∑
i=0

ω
θm(α)|i⟩⟨i+ 1|+ω

(1−d)θm(α)|d −1⟩⟨0|,

Oev,x =
d−2

∑
i=0

ω
θm(α)|i+ 1⟩⟨i|+ω

(1−d)θm(α)|0⟩⟨d −1| (3.18)
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for the remaining parties. When m = 2, the measurement of the first two parties are the

previously discussed CGLMP measurements. Further on, we would refer to the above

measurements as generalised CGLMP measurements.

To prove that β
m,d,N
Q is maximal quantum value of the ASTA Bell expression, the

authors of [40] constructed the followig sum-of-squares decomposition of the Bell operator

B̂m,d,N ,

β
m,d,N
Q 1− B̂m,d,N =

1
2

m

∑
α1,...,αN−1=1

d−1

∑
k=1

(
P(k)

α1,...,αN−1

)†
P(k)

α1,...,αN−1 +
mN−2

2

m−2

∑
α=1

d−1

∑
k=1

(
R(k)

α

)†
R(k)

α

(3.19)

with

P(k)
α1,...,αN−1 = 1−A(k)

1,α1
⊗

N⊗
i=2

A(−1)i−1k
i,αi−1+αi−1 (3.20)

and,

R(k)
α = µ

∗
α ,kAk

1,2 +ν
∗
α ,kAk

1,α+2 + τα ,kAk
1,α+3 (3.21)

for k = 1, . . . ,d −1 and all α1, . . . ,αN and α = 1,2, . . . ,m−2, where

A(k)
1,α1

= akAk
1,α1

+ a∗kAk
1,α1+1. (3.22)

The coefficients µα ,k,να ,k and τα ,k are given by

µα ,k =
ω (α+1)(d−2k)/2m

2cos(π/2m)

sin(π/m)√
sin(πα/m) sin[π(α + 1)/m]

,

να ,k = − ω (d−2k)/2m

2cos(π/2m)

√
sin[π(α + 1)/m]√

sin(πα/m)
,

τα ,k =
1

2cos(π/2m)

√
sin(πα/m)√

sin[π(α + 1)/m]
(3.23)

for all k and α = 1,2, . . . ,m−3. For α = m−2, we have

µm−2,k = − ω−kω−(d−2k)/2m

2cos(π/2m)
√

2cos(π/m)
,

νm−2,k = − ω (d−2k)/2m

2cos(π/2m)
√

2cos(π/m)
,

τm−2,k =

√
2cos(π/m)

2cos(π/2m)
. (3.24)

Note from (3.3) that ad−k = a∗k and thus A(d−k)
i = [A(k)

i ]† for all i,k. For our considerations,

we also construct several analogous sum-of-squares decomposition parametrized of the Bell

52



CHAPTER 3. CERTIFICATION OF MULTIPARTITE ENTANGLED STATES OF
ARBITRARY LOCAL DIMENSION

operator B̂m,d,N given by

βQ1− B̂N,m,d =
1
2 ∑

α1,...αN=1,2

d−1

∑
k=1

P(k)
n,α1,...αN P(k)†

n,α1,...αN +
mN−2

2

m−2

∑
α=1

d−1

∑
k=1

(
R(k)

n,α

)†
R(k)

n,α , (3.25)

where n = 2,3, . . . ,N. In the above decomposition (3.25), we have that

P(k)
n,α1,...,αN = 1−A(k)

1,α1
⊗A(k)

n,αn−1+αn−1 ⊗
N⊗

i=2
i̸=n

A(−1)i−1k
i,αi−1+αi−1. (3.26)

For odd n, A(k)
n,αn−1+αn−1 and R(k)

n,α are defined as

A(k)
n,αn−1+αn−1 = akAk

n,αn−1+αn−1 + a∗kAk
n,αn−1+αn

(3.27)

and,

R(k)
n,α = µ

∗
α ,kAk

n,2 +ν
∗
α ,kAk

n,α+2 + τα ,kAk
n,α+3, (3.28)

whereas, if n is even then

A(k)
n,αn−1+αn−1 = akA−k

n,αn−1+αn−1 + a∗kA−k
n,αn−1+αn−2 (3.29)

and,

R(k)
n,α = µα ,kA−k

n,2 +να ,kA−k
n,α+2 + τα ,kA−k

n,α+3. (3.30)

It is important to note here that An,α+m = ωAn,α and An,0 = ω−1An,m for all n,α . Further,

the coefficients µα ,k, να ,k and τα ,k appearing in conditions (3.28) and (3.30) are given in

Eq. (3.23) and Eq. (3.24).

Before moving on to the proof of self-testing, let us introduce the following unitary

matrices which are essential for our considerations. The first matrix is the d−dimensional

generalisation of the Pauli-z matrix

Zd =
d−1

∑
i=0

ω
i|i⟩⟨i| (3.31)
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and second,

Td,m =
d−1

∑
i=0

ω
i+ 1

m |i⟩⟨i|− 2i
d

sin
(

π

m

) d−1

∑
i, j=0

(−1)δi,0+δ j,0ω
i+ j

2 − d−2
2m |i⟩⟨ j|. (3.32)

Notice that the above matrices represent valid observabales, that is, they are unitaries

with eigenvalues 1,ω , . . . ,ωd−1. Also notice that when d = m = 2, the second matrix is

proportional to Pauli-x matrix, that is, T2,2 = −σx.

3.3 Self-testing

Here, we demonstrate how achieving the maximal value of the ASTA Bell inequalities

(3.9), that is, Bm,d,N = βQ, can be used for self-testing of generalised GHZ states (3.1)

and the generalised CGLMP measurements (3.11),(3.12) and (3.13). Let us first recall

that we can only characterise the observables on the support of the local states ρAi .

Thus, without loss of generality we can assume them to be of full rank. The main result

comprises of one long proof and is very technical. To make it easier to follow, we shift

some parts of the proof to Appendix and refer them here as Lemmas.

Theorem 3.1. Assume that all the parties Ai perform the Bell experiment and observe

that the Bell inequality (3.9) is maximally violated, that is, β
m,d,N
Q = mN(d − 1) where

N is number of parties, d denotes the number of outcomes of each measurement and

m is the number of measurements performed by each party. Let us now say that the

maximal quantum bound is achieved using the state ρN acting on HA1 ⊗ . . .⊗HAN and

unitary observables Ai,α for all i and α ∈ {1,2, . . . ,m} acting on HAi. Then, the following

statements hold true:

1. The Hilbert space HAi of all the parties Ai admits a decomposition into a d−dimensional

Hilbert space Cd and an auxiliary Hilbert space of unkown but finite dimension HA′′
i
,

HAi = (Cd)A′
i
⊗HA′′

i
. (3.33)

2. A local unitary transformation UAi : HAi → HAi can be applied on each side, such

that

(U1 ⊗ . . .⊗UN)ρN

(
U†

1 ⊗ . . .⊗U†
N

)
= |GHZN,d⟩⟨GHZN,d|A′

1A′
2...A

′
N
⊗ρ

aux
A′′

1A′′
2 ...A

′′
N

(3.34)

where |GHZN,d⟩ is the generalised GHZ state (3.1) and

∀i,α , Ui Ai,α U†
i = Oi,α ⊗1′′i (3.35)
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where A′′
i denotes the auxiliary system of every party on which the measurements

act trivially and 1′′i acts on the Hilbert space HA′′
i
.

Proof. The proof consists of two major steps. The first one is divided into two sub-steps.

In the first of them, we concentrate on the first party and prove that in HA1 one can

identify a qudit in the sense of Eq. (3.33). Then, the observables A1,x can be certified

up to local unitary to be the generalised CGLMP measurement (3.11). In the next sub-

step, we extend the above proofs to the remaining parties. For our convinience, in the

proof we consider a purification of the state ρN by adding an ancillary system E and

|ψN⟩ ∈ H1 ⊗ . . .⊗HN ⊗HE such that ρN = TrE(|ψ⟩⟨ψ|N).
In the second major step of the proof, we use the obtained observables to certify that

|ψN⟩ is unitarily equivalent to the generalised GHZ state (3.1).

The Hilbert space structure and characterization of observables

The first party

To begin, as discussed in Chapter 2, we notice that any state |ψ⟩N ∈HA1 ⊗ . . .⊗HAN ⊗HE

that maximally violates the Bell inequalities (3.9) must satisfy the following relation due

to the SOS decomposition (3.19),

P(k)
α1,...,αN ⊗1E |ψN⟩= 0 (3.36)

for k = 1,2, . . . ,d−1 and αi = 1,2, . . . ,m for i = 1,2, . . . ,N −1 and αN = 1. Expanding the

above term with the aid of Eq. (3.20), this implies that

A(k)
1,α1

⊗
N⊗

i=2

A(−1)i−1k
i,αi−1+αi−1 ⊗1E |ψN⟩= |ψN⟩ (3.37)

for all k and αi. From here on, for simplicity we drop the term 1E . Since Ai,αi are unitary

for all i and αi, we have that

A(k)
1,α1

⊗1A2A3...AN |ψN⟩= 1A1 ⊗
N⊗

i=2

A(−1)ik
i,αi−1+αi−1|ψN⟩. (3.38)

After applying 1A1 ⊗
⊗N

i=2 A(−1)i−1k
i,αi−1+αi−1 to the above condition and taking into account Eq.

(3.38) for k → d − k, we arrive at

A(k)
1,α1

A(d−k)
1,α1

⊗1A2A3...AN |ψN⟩= |ψN⟩. (3.39)
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Taking then the partial trace over the subsystems A2,A3, . . . ,AN ,E we obtain

A(k)
1,α1

A(d−k)
1,α1

ρA1 = ρA1 , (3.40)

where ρA1 =TrA2,A3,...,AN ,E(|ψ⟩⟨ψ|N). Since, ρA1 is full-rank and thus invertible, we conclude

from the above formula that

A(k)
1,α1

A(d−k)
1,α1

= 1. (3.41)

Now, using the relation (3.38) for k = 1, and then applying A(1)
1,α1

recursively to it, we also

obtain that

A(k)
1,α1

=
[
A(1)

1,α1

]k
(3.42)

for all k,α1. Recall that A(d−k)
1,α1

= A(k)†
1,α1

for any k = 1, . . . ,d−1. The other term in the SOS

decomposition (3.19) yields the following relation,

R(k)
α |ψN⟩= 0 ∀k,α . (3.43)

Note that R(k)
α is composed of only A′

1s observables and thus acts only on the first party’s

subsystem ρA1 . Taking a partial trace over the subsystems A2,A3, . . . ,AN ,E, the above

condition is equivalent to R(k)
α ρA1 = 0. Again, taking into account that ρA1 is full-rank

and thus inevertible, we have that

R(k)
α = 0 (3.44)

for all k and α . The conditions (3.41), (3.42) and (3.44) are solely composed of the A′
1s

observables and as a matter of fact, enough to characterise the observables A1,α1 for all

α1 up to local unitary operations.

From here on, for simplicity we denote HA1 as H1 and HA′′
1

as H ′′
1 . Let us first give

short overview of the idea behind the proof. First, we show that the Hilbert space of first

party can be written as a direct sum of d−dimensional Hilbert space, that is,

H1 = Cd ⊗H ′′
1 , (3.45)

where H ′′
1 is a Hilbert of unknown but finite dimension. For this purpose, using the

conditions (3.41) and (3.42) for α1 = 2, we show in Lemma 3.1 which is stated below that

Tr(An
1,2) = Tr(An

1,3) = 0 (3.46)

for any n that is a divisor of d such that n < d. Then using (3.44), we can also conclude
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the same result for the rest of the observbales, that is, Tr(An
1,α) = 0 for all α = 1,2, . . . ,m

and any n that is a divisor of d such that n < d. Notice that for a unitary matrix M

with eigenvalues mi, we have that Tr(Mn) = ∑
d−1
i=0 mn

i for any n. Thus from (3.46), we can

conclude that

Tr(An
1,2) = ∑

i
λiω

in = 0 (3.47)

for any n that is a divisor of d, where λi is the multiplicity of the eigenvalue ω i. Now

using Fact 3 stated below, whose proof can be found in [37], we can conclude that the

multiplicities of these eigenvalues are equal, that is, λ0 = λ1 = . . .= λd−1.

Fact 3. Consider a real polynomial

W (x) =
d−1

∑
i=0

λixi (3.48)

with rational coefficients λi ∈Q. Assume that ωn with ω = e2πi/d is a root of W (x) for any

n being a proper divisor of d, i.e., n ̸= d such that d/n ∈ N. Then, λ0 = λ1 = . . .= λd−1.

This allows us to conclude that the observables of A1 act on a Hilbert space H1 of

dimension d ×D where D is positive integer. Moreover, one can always rotate one of

A′
1s observables to some observable that acts on Cd tensored with identity acting on H ′′

1

(3.45). Precisely one can find a unitary transformation V1 : H1 → H1 such that

V1 A1,2V †
1 = Zd ⊗1′′1 , (3.49)

where Zd is defined in Eq. (3.32). Then in Lemma 3.2, using the above form of A1,2, we

show that A1,3 is also unitarily equivalent to an observable acting on a Cd tensored with

identity acting on H ′′
1 , that is,

V1A1,3V †
1 = Td,m ⊗1′′1 (3.50)

with Td,m defined in Eq. (3.32). Next, we find a unitary transformation U1 : H1 → H1

stated in Fact 3.3 of Appendix B, that rotate these observables to the ideal ones, that is,

U1 A1,α1 U†
1 = O1,α1 ⊗1′′1 for α1 = 2,3. (3.51)

Finally, using the derived observables and the condition (3.44) we find the rest of the

observables A1,α1 . For this, we first consider the relation (3.44) for k = 1 and α = 1. After
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plugging the explicit form of R(1)
1 from (3.21) we have that

µ
∗
1,1A1,2 +ν

∗
1,1A1,3 + τ1,1A1,4 = 0. (3.52)

Plugging the observables A1,2 and A1,3 from (3.51), we find that

U1 A1,4U†
1 = O1,4 ⊗1′′1 . (3.53)

The above statement is easy to conclude based on the fact that the ideal observables

satisfy the condition (3.44) derived from the maximal violation of the Bell inequalities.

Continuing this procedure recursively for the remaining values of α1, we see that

U1 A1,α1 U†
1 = O1,α1 ⊗1′′1 ∀α1. (3.54)

Now let us prove the two lemmas which were used to arrive at the desired form of the

observables (3.54).

Lemma 3.1. Consider two unitary observables A1,2 and A1,3 with eigenvalues {1,ω , . . . ,ωd−1}
that act on a finite-dimensional Hilbert space and satisfy the conditions (3.41) and (3.42).

Then for any n that is a divisor of d such that n < d we have that,

Tr(An
1,2) = 0, and Tr(An

1,3) = 0. (3.55)

Proof. To begin the proof, let us consider the relations (3.41) for α1 = 2, in which we

substitute the explicit form of A1,2 (3.22),(
akAk

1,2 + a∗kAk
1,3

)(
a∗kA−k

1,2 + akA−k
1,3

)
= 1. (3.56)

Simplifying the above expression and then plugging in the value of ak from (3.10) leads

us to the following condition,

ω
2k−d

2m Ak
1,2A−k

1,3 +ω
− 2k−d

2m Ak
1,3A−k

1,2 = 2cos
(

π

m

)
1. (3.57)

We multiply the above equation (3.57) by Ak
1,3 and then take the trace to obtain

ω
2k−d

2m Tr(Ak
1,2)+ω

− 2k−d
2m Tr(A2k

1,3A−k
1,2) = 2cos

(
π

m

)
Tr(Ak

1,3). (3.58)

Let us again consider the second relation (3.42) for α1 = 2 where we substitute A1,2 and
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ak from (3.22) and (3.10) respectively, to obtain,

a2kA2k
1,2 + a∗2kA2k

1,3 =
(

akAk
1,2 + a∗kAk

1,3

)(
akAk

1,2 + a∗kAk
1,3

)
(3.59)

for k = 1, . . . ,
⌊d

2

⌋
where ⌊x⌋ is the largest integer smaller than x. A simple calculation

using the explicit form of ak and some trigonometric identities leads us to

ω
k/mA2k

1,2 +ω
−k/mA2k

1,3 = Ak
1,2Ak

1,3 +Ak
1,3Ak

1,2. (3.60)

We then multiply the above equation (3.60) by A−k
1,2 and take the trace to get

ω
k/mTr(Ak

1,2)+ω
−k/mTr(A2k

1,3A−k
1,2) = 2Tr(Ak

1,3). (3.61)

After substituting the term Tr(A2k
1,3A−k

1,2) from (3.61) to the above equation (3.58), we

obtain that

Tr(Ak
1,2) = 2ω

−k/m 1− cos(π/m)ω−d/2m

1−ω−d/m Tr(Ak
1,3). (3.62)

Using the fact that

cos
(

π

m

)
=

1
2

(
ω

− d
2m +ω

d
2m

)
, (3.63)

we can simplify the relation (3.62) to the following form

Tr(Ak
1,2) = ω

−k/mTr(Ak
1,3) k = 1, . . . ,

⌊
d
2

⌋
. (3.64)

To prove that the traces of these observables vanish, we use the following observation

whose proof is deferred to Appendix B.

Observation 3.1. Consider two unitary observables A1,2 and A1,3 with eigenvalues {1,ω , . . . ,
ωd−1} that act on a finite-dimensional Hilbert space and satisfy the conditions (3.41) and

(3.42). Then for any n that is a divisor of d such that n < d we have that,

Tr(Ax
1,2) = ω

2tx
m Tr

(
A(2t+1)x

1,2 A−2tx
1,3

)
. (3.65)

for any non-negative integer t ∈ N∪{0} and x = 1, . . . ,⌊d/2⌋

Now, consider a positive integer n that is a divisor of d, that is, d/n ∈ N where N

denotes the set of natural numbers1. Now, d/n can be either even or odd. Let us first

1As a matter of fact, any non-trivial divisor of d is always less than or equal to d/2.
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consider the case, when d/n is even. This implies that there is an integer t such that

2t = d/n. Substituting x = n = d/2t in the conditon (3.65) we obtain that

Tr(An
1,2) = ω

d/m Tr(Ad+n
1,2 A−d

1,3). (3.66)

The above relation can be simplified to

Tr(An
1,2) = ω

d/mTr(An
1,2). (3.67)

where we used the fact that Ad
1,2 = A−d

1,3 = 1. Thus, for any m≥ 2, the only possible solution

of the above condition is Tr(An
1,2) = 0 for any n such that d/n is even. Using then Eq.

(3.64) one can similarly conclude that Tr(An
1,3) = 0. Now, consider the second case, that

is, n is a divisor of d such that d/n is odd. This implies that there is an integer t such

that 2t + 1 = d/n. Substituting x = n = d/(2t + 1) again in condition (3.65), we obtain

that

Tr(An
1,2) = ω

d/m
ω

−n/m Tr
(
An

1,3
)

. (3.68)

Comparing the above expression with Eq. (3.64), one directly concludes that Tr(A1,α) = 0
for any n such that d/n is odd and n ≤ d/2. Thus, we have shown that for any n which

is a divisor of d, Tr(An
1,α) = 0 for α = 2,3. This completes the proof of Lemma 3.1.

Now, we move onto finding the explicit form of the measurements A1,α for α = 2,3.

Lemma 3.2. Consider two unitary observables A1,2 and A1,3 with eigenvalues {1,ω , . . . ,ωd−1}
that act on a Cd ⊗H ′′

1 such that H ′′
1 is a finite-dimensional Hilbert space and satisfy the

conditions (3.41) and (3.42). Then, we can find a unitary V1 : H1 → H1 that transforms

A1,2 and A1,3 as

V1 A1,2V †
1 = Zd ⊗1′′1 (3.69)

and

V1 A1,3V †
1 = Td,m ⊗1′′1 (3.70)

where Zd ,Td,m are defined in (3.31) and (3.32).

Proof. Let us begin by proving a relation between A1,2 and A1,3 given by,

Ak
1,3 = −(k−1)ω

k
m Ak

1,2 +ω
k−1

m

k−1

∑
t=0

At
1,2A1,3Ak−1−t

1,2 . (3.71)

for any k = 1, . . . ,d. To prove the above relation, we use the technique of mathematical
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induction. We can easily check that this relation (3.71) holds trivially for k = 1. Now, let

us assume that this relation (3.71) holds for some k = s. To prove that it also holds for

k = s+ 1, we need to examine (3.42) for α1 = 2 and k = s+ 1

A(s+1)
1,2 =

[
A(1)

1,2

](s)
A(1)

1,2 . (3.72)

for s = 1, . . . ,d−1. Again, using (3.42) for α1 = 2 and k = s on the right hand side of the

above equation, we have that

A(s+1)
1,2 = A(s)

1,2A(1)
1,2 . (3.73)

Expanding A(s)
1,2 using (3.22) and then simplifying the obtained expression with the aid of

the formula as+1 −asa1 = ω
s+1
2m /2cos2(π/2m), we obtain that

As+1
1,3 = −ω

s+1
m As+1

1,2 +ω
s
m As

1,2A1,3 +ω
1
m As

1,3A1,2. (3.74)

Replacing As
1,3 using the relation (3.71) into the above equation, we arrive at

As+1
1,3 = −ω

s+1
m As+1

1,2 +ω
s
m As

1,2A1,3 +ω
1
m

[
−(s−1)ω

s
m As

1,2 +ω
s−1
m

s−1

∑
t=0

At
1,2A1,3As−1−t

1,2

]
A1,2

(3.75)

which on simplification gives us the above relation (3.71) for k = s+ 1,

As+1
1,3 = −sω

s+1
m As+1

1,2 +ω
s
m

s

∑
t=0

At
1,2A1,3As−t

1,2 . (3.76)

As discussed before, A1,2 and A1,3 act on C
d ⊗H ′′

1 and therefore we can always find a a

unitary V 1 : H1 → H1 such that V 1 A1,2V †
1 = Zd ⊗1′′1. Let us then decompose A1,3 under

the action of V 1 as

V 1 A1,3V †
1 =

d−1

∑
i, j=0

|i⟩⟨ j|⊗Fi j, (3.77)

where Fi j for i, j = 0,1, . . . ,d−1 are matrices acting on H ′′
1 . Notice that any matrix acting

on a Hilbert space Cd ⊗H ′′
1 can be decomposed in this way. From here on, for simplicity

we drop the unitary V1 and recall it back at the end of the proof of this lemma. Also, we

simplify the notation by replacing 1′′1 by 1 and use the correct notation at the end of the

proof.

For characterising A1,3, it is now enough to find the matrices Fi j. To do this we first

determine the matrices Fii for all i using the relations (3.71). Using then the derived Fii,

we then proceed to determine Fi j for i ̸= j. Let us now consider the relation (3.71) for
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k = d −1,

A†
1,3 = −(d −2)ω

d−1
m A†

1,2 +ω
d−2

m

d−2

∑
t=0

At
1,2A1,3Ad−t−2

1,2 . (3.78)

Substituting A1,2 = Zd ⊗1 and A1,3 from (3.77) in the above expression (3.78) and then

simplifying it, we arrive at

d−1

∑
i, j=0

| j⟩⟨i|⊗F†
i j = −(d −2)ω

d−1
m

d−1

∑
i=0

ω
−i|i⟩⟨i|⊗1+ω

d−2
m

d−1

∑
i, j=0

d−2

∑
t=0

ω
−2 j+t(i− j)|i⟩⟨ j|⊗Fi j.

(3.79)

Sandwiching the above equation with ⟨i|.|i⟩, we get the following expression

F†
ii = −(d −2)ω

d−1
m ω

−i1+(d −1)ω
d−2

m ω
−2iFii. (3.80)

We can get another relation by its Hermitian conjugation,

Fii = −(d −2)ω− d−1
m ω

i 1+(d −1)ω− d−2
m ω

2iF†
ii . (3.81)

Substituting F†
ii from the first relation (3.80) into the above formula (3.81) we arrive at

Fii = −(d −2)ω− d−1
m ω

i 1− (d −2)(d −1)ω
1
m+i1+(d −1)2Fii, (3.82)

which after rearranging the terms simplifies to,

Fii = ω
i+ 1

m

(
d −1+ω

− d
m

d

)
1 = ω

i+ 1
m

(
1− 2isin(π/m)

d
ω

− d
2m

)
1. (3.83)

where we used the trigonometric identity

sin
(

π

m

)
=

1
2i

(
ω

d
2m −ω

d
2m

)
. (3.84)

After determining Fii we proceed towards finding the matrices Fi j for i ̸= j. The first

observation can be simply made by considering the relation (3.79) and sandwiching it

with ⟨i|.| j⟩ for i ̸= j, to get

F†
ji = ω

d−2
m ω

−2 j
d−2

∑
t=0

ω
t(i− j)Fi j. (3.85)
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Using the fact that ∑
d−2
t=0 ω t(i− j) = −ω−(i− j) for i ̸= j, the above equation reduces to

Fi j = −ω
− d−2

m ω
i+ jF†

ji. (3.86)

Finding the exact form of Fi j requires another observation that involves higher order terms

in Fi j. Due to highly technical nature of the proof, we defer it to Appendix B.

Observation 3.2. The following conditions hold true for any k = 1, . . . ,d −1 and m ≥ 2,

−(k−1)
d−1

∑
i, j=0

ω
ki|i⟩⟨ j|⊗Fi j +ω

− 1
m

d−1

∑
i, j=0

|i⟩⟨ j|⊗

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFl j + kω

(k−1)iFiiFi j


= −kω

1
m

d−1

∑
i=0

ω
(k+1)i|i⟩⟨i|⊗1+

d−1

∑
i, j=0

|i⟩⟨ j|⊗
k

∑
t=0

ω
k j+t(i− j)Fi j.

(3.87)

We sandwich the relation (3.87) with ⟨i|.|i⟩ to get

−(k−1)
d−1

∑
i=0

ω
kiFii +ω

− 1
m

d−1

∑
i=0

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFli + kω

(k−1)iF2
ii


= −kω

1
m

d−1

∑
i=0

ω
(k+1)i1+

d−1

∑
i=0

k

∑
t=0

ω
kiFii (3.88)

which after some simple rearrangement of the terms gives us

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFli = kω

ki
[
2ω

1
m Fii −ω

−iF2
ii −ω

i+ 2
m 1
]

. (3.89)

Now replacing Fii from Eq. (3.83) and evaluating the above relation, we arrive at

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFli = − k

d2 ω
i(k+1)+ 2

m (1−ω
−d/m)21, (3.90)

which can also be rewritten in the following form

d−1

∑
l=0
l ̸=i

(
1−ωk(l−i)

1−ω i−l

)
FilFliω

−(i+l+ 2
m)ω

d
m =

k
d2 ω

d
m (1−ω

−d/m)21. (3.91)

Without loss of generality, we can replace the index l with j. Now, substituting Fji from
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(3.86) and also using the identity (3.84) we obtain

d−1

∑
j=0
j ̸=i

(
1−ωk( j−i)

1−ω i− j

)
Fi jF

†
i j =

4k
d2 sin2

(
π

m

)
1, (3.92)

for all k = 0, . . . ,d−1 and i = 0, . . . ,d−1. Multiplying the above equation (3.92) with ωkn

such that n = 1, . . . ,d −1, then summing over k and using the identity ∑
d−1
k=0 ωkn = 0 that

holds true for any n = 1,2, . . . ,d −1, we arrive at

−
d−1

∑
j=0
j ̸=i

1
1−ω i− j Fi jF

†
i j

d−1

∑
k=0

ω
k( j−i+n) =

4
d2 sin2

(
π

m

)d−1

∑
k=0

kω
kn1. (3.93)

Let us now consider some simple identities

d−1

∑
k=0

ω
kn = 0, and

d−1

∑
k=0

ω
k( j−i) = dδ j,i (3.94)

which can be simply computed using the formula for the sum of geometric sequence, and,

d−1

∑
k=0

kω
kn =

d
ωn −1

(3.95)

which has been proven in Fact 6 in Appendix A for any n = 1, . . . ,d −1. After applying

these identities to equation (3.93) we arrive at the following relation

Fi(i−n mod d)F
†
i(i−n mod d) =

4
d2 sin2

(
π

m

)
1. (3.96)

Let us notice that for a fixed i, i−n mod d covers all numbers from {0, . . . ,d −1} except

i by varying n from 1 to d −1. Thus, we can simply represent the above expression as

Fi jF
†
i j =

4
d2 sin2

(
π

m

)
1. (3.97)

Let us now consider a unitary transformation Ṽ : H1 → H1 of the following form

Ṽ =
d−1

∑
i=0

|i⟩⟨i|⊗Ṽi, (3.98)

64



CHAPTER 3. CERTIFICATION OF MULTIPARTITE ENTANGLED STATES OF
ARBITRARY LOCAL DIMENSION

where Ṽi are unitary matrices acting on H ′′
1 defined as

Ṽ0 = 1, Ṽi = − di
2sin(π/m)

ω
− i

2+
d−2
2m F0i (3.99)

for i = 1, . . . ,d −1. Notice that A1,2 remains invariant under application of Ṽ ,

Ṽ A1,2Ṽ † = Ṽ [Zd ⊗1]Ṽ † = Zd ⊗1, (3.100)

which a consequence of the fact that Zd ⊗ 1 commutes with Ṽ . Applying Ṽ to A1,3, we

obtain

Ṽ A1,3 Ṽ † =
d−1

∑
i, j=0

|i⟩⟨ j|⊗ F̃i j, (3.101)

where we denoted F̃i j = Ṽi Fi j Ṽ
†
j . Notice that all the algebraic relations obtained till now

for Fi j are equally valid for F̃i j, and F̃ii = Fii. Employing the relation (3.97) for i = 0, we

obtain that

F̃0 j = Ṽ0 F0 j Ṽ
†
j =

d
2

ω
2 j+d

4 + 2−d
2m F0 jF

†
0 j =

2i
d

sin
(

π

m

)
ω

j
2+

2−d
2m 1, (3.102)

Then employing the relation between F̃i j and F̃†
ji from Eq. (3.86) for i = 0, we obtain that

F̃j0 = F̃0 j.

To determine the remaining matrices F ′
i js, the above relations are not enough and we

also need to look at the off-diagonal elements of (3.92). For this, we again sandwich the

relation (3.92) with ⟨i|.| j⟩ such that i ̸= j, which leads us to

−(k−1)ωkiFi j +ω
− 1

m

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFl j + kω

(k−1)i
ω

− 1
m FiiFi j =

ω (k+1)i −ω (k+1) j

ω i −ω j Fi j.

(3.103)

Plugging Fii from Eq. (3.83) and then using some simple algebra, we arrive at

d−1

∑
l=0
l ̸=i

ωki −ωkl

ω i −ω l FilFl j = ω
1
m

[
ω (k+1)i −ω (k+1) j

ω i −ω j +

(
(1−ω−d/m)k

d
−1

)
ω

ki

]
Fi j. (3.104)

Now, let us consider the above relation for i = 0,

d−1

∑
l=1

1−ωkl

1−ω l F0lFl j = ω
1
m

(
1−ω (k+1) j

1−ω j +
(1−ω−d/m)k

d
−1

)
F0 j. (3.105)
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Replacing F0 j as derived in (3.102),

d−1

∑
l=1

1−ωkl

1−ω l ω
l
2 Fl j = ω

j
2+

1
m

(
1−ω (k+1) j

1−ω j +
(1−ω−d/m)k

d
−1

)
1. (3.106)

As the matrix Fj j was derived in (3.83), we separate it out from the sum on the left hand

side of the above equation and replace the index l with i to finally obtain

d−1

∑
l=1
l ̸= j

(
1−ωkl

1−ω l

)
ω

l
2 Fl j =

1−ω−d/m

d
ω

j
2+

1
m

(
k+

1−ωk j

1−ω j ω
j
)

1. (3.107)

We now multiply the above relation (3.107) by ω−kn with n = 1, . . . ,d−1 and n ̸= j. Next,

we sum the resulting relation over all k, which yields

d−1

∑
i=1
i ̸= j

ω i/2

1−ω i Fi j

d−1

∑
k=0

(
ω

−kn −ω
k(i−n)

)

=
1−ω−d/m

d
ω

j
2+

1
m

[
d−1

∑
k=0

kω
−kn +

ω j

1−ω j

d−1

∑
k=0

(
ω

−kn −ω
k( j−n)

)]
1.

(3.108)

Now, exploiting the fact that ∑
d−1
k=0 ωk(n−i) = dδn,i and the identity (3.95), we arrive at

−d
ωn/2

1−ωn Fn j =
1−ω−d/m

d
ω

j
2+

1
m

(
d

ω−n −1

)
I, (3.109)

which after rearranging some terms and replacing the index n with i, gives the matrices

Fi j for i ̸= j,

Fi j = −1−ω−d/m

d
ω

i+ j
2 + 1

m 1

= −2isin(π/m)

d
ω

i+ j
2 + 2−d

2m 1, i, j = 1, . . . ,d −1, i ̸= j (3.110)

where to obtain the second equality, we used the identity (3.84). Combining all the derived

identities, (first, Fii from (3.83) for all i, second, F0 j and Fj0 from (3.102) for all j and

finally, the rest of the matrices Fi j from (3.110)) into the form of A1,3 (3.77), we conclude

that the unitary V1 = ṼV 1,transforms A1,2 and A1,3 as:

V1 A1,2V †
1 = Zd ⊗1, (3.111)
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and

V1 A1,3V †
1 = Td,m ⊗1 (3.112)

with Td,m given by

Td,m =
d−1

∑
i=0

ω
i+ 1

m |i⟩⟨i|− 2i
d

sin
(

π

m

) d−1

∑
i, j=0

(−1)δi,0+δ j,0ω
i+ j

2 − d−2
2m |i⟩⟨ j| (3.113)

This completes the characterisation of A1,2 and A1,3.

Rest of the parties

To find the observables for rest of the parties, we follow the exact same lines as were

used for finding the observables of the first party A1,α1 . Let us now focus on the SOS

decomposition of the Bell operator B̂m,d,N given in Eq. (3.25). As discussed before

in Chapter 2 any state |ψN⟩ belonging to the Hilbert space HA′′
1
⊗ . . .⊗HA′′

N
⊗HE and

observables acting on it that maximally violate the Bell inequalities (3.9) must satisfy the

following relations due to the SOS decomposition (3.25),

P(k)
n,α1,...,αN |ψN⟩= 0. (3.114)

After expanding the above expession (3.114) with the aid of Eq. (3.26), we obtain the

following relation

A(k)
1,α1

⊗A(k)
n,αn−1+αn−1 ⊗

N⊗
i=2
i ̸=n

A(−1)i−1k
i,αi−1+αi−1|ψN⟩= |ψN⟩, (3.115)

and

R(k)
n,α |ψN⟩= 0 (3.116)

for k = 1,2, . . . ,d−1, αi = 1,2, . . . ,m for i = 1,2, . . . ,N −1, αN = 1 and n = 2,3, . . . ,N. The

expressions A(k)
n,αn−1+αn−1 and R(k)

n,α are given in Eqs. (3.27) and (3.28) when n is odd and

in Eqs. (3.29) and (3.30) when n is even. Taking into account that the local states of all

the parties are full-rank, we get similar relations among the observables for every party

as those in Eqs. (3.41) and (3.42) from the above expressions (3.115) and (3.116),

An,αn−1+αn−1 A†
n,αn−1+αn−1 = 1, (3.117)
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and

A(k)
n,αn−1+αn−1 =

[
A(1)

n,αn−1+αn−1

]k
, (3.118)

and

R(k)
n,α = 0, (3.119)

for k = 1,2, . . . ,d −1, αi = 1,2, . . . ,m for i = 1,2, . . . ,N −1, αN = 1 and n = 2,3, . . . ,N.

Let us notice that the forms of A(k)
n,αn−1+αn−1 in (3.27) and (3.29) are identical to A1,α1 .

Further, R(k)
n,α in (3.28) and (3.30) are identical to R(k)

1,α . Thus, we employ the same tech-

nique to find observables An,αn for all n and αn. We first use the relations (3.117) and

(3.118) for αn−1 = 2,αn = 1 when n is odd and αn−1 = 2,αn = 2 when n is even, yielding

the exactly same equations as (3.41) and (3.42) for α1 = 2. Thus, from Lemma 3.1 we

can conclude that Tr(As
n,2) = Tr(As

n,3) = 0 for any s that is a divisor of d. Now using

Fact 3 stated in Appendix B we can conclude that the multiplicity of the eigenvalues are

equal. This allows us to deduce that the observables of An act on a Hilbert space Hn of

dimension d ×Dn where Dn is a positive integer, that is,

Hn =C
d ⊗H ′′

n . (3.120)

As a consequence, one can always rotate one of A′
ns observables to some observable that

acts on a C
d tensored with identity acting on H ′′

n . Moreover, we can find a unitary

transformation Vn : Hn → Hn such that

Vn An,2V †
n = Zd ⊗1′′n (3.121)

where Zd is defined in Eq. (3.32). Then, using Lemma 3.2, using the above form of An,2

we show that An,3 is also unitarily equivalent to a an observable acting on a Cd tensored

with identity acting on H ′′
1 , that is,

Vn An,3V †
n = Td,m ⊗1′′n (3.122)

with Td,m defined in Eq. (3.32). Next, we show that there exist unitary transformations

Un : Hn → Hn such that

Un An,αn U†
n = On,αn ⊗1′′n for α1 = 2,3. (3.123)

These unitaries Un are explicitly calculated in Observation 3.3 stated in Appendix B.
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Finally, using the derived observables and the condition (3.116) we find the rest of the

observables of An,αn . For this, we first consider the relation (3.116) for k = 1 and α = 1.

After plugging the explicit form of R(1)
n from (3.30) and (3.26) and then plugging the

observables An,2 and An,3 from (3.123), we can easily compute that

Un An,4U†
n = On,4 ⊗1′′n . (3.124)

The above statement can also be checked based on the fact that the ideal observables

satisfy all the above conditions derived from the maximal violation of the Bell inequalities.

Continuing this procedure recursively for the remaining values of α , we see that

Un An,αn U†
n = On,α1 ⊗1′′n ∀αn. (3.125)

This completes the characterisation of all the observables of every party. We have shown

that the maximal violation of ASTA Bell inequalities (3.9) is attained only by observables

that up to local unitary transformations and addditional degrees of freedom are the ideal

observables (3.11), (3.12) and (3.13).

The state

We finally have all the tools required to determine the state that maximally violates the

Bell inequalities (3.9). For this, we only need to consider the relation (3.41). As was

derived in the previous subsection that up to a local unitary all the observables are the

ideal ones. Thus, we can rewrite the relation (3.41) for k = 1 by expanding A(1)
1,α1

as[
(a1O1,α1 + a∗1O1,α1+1)⊗

N⊗
i=2

O
(−1)i−1

i,αi−1+αi−1 ⊗1′′

]
|ψ̃N⟩= |ψ̃N⟩ (3.126)

for all αi = 1,2, . . . ,m such that i = 1,2, . . . ,N−1 and αN = 1. Also, in the above condition

1′′ acts on the Hilbert space H ′′
1 ⊗H ′′

2 ⊗ . . .⊗H ′′
N ⊗HE and

|ψ̃N⟩=U1 ⊗U2 ⊗ . . .⊗UN ⊗1E |ψN⟩. (3.127)

Let us simplify the term a1O1,α1 + a∗1O1,α1+1 by expanding it using (3.17) and (3.18),

a1O1,α + a∗1O1,α+1

=

[
d−2

∑
i=0

ω
γm(α)

(
a1 + a∗1ω

1
m

)
|i⟩⟨i+ 1|+ω

(1−d)γ2(α)
(

a1 + a∗1ω
− d−1

m

)
|d −1⟩⟨0|

]
⊗1′′n

=

[
d−2

∑
i=0

ω
ζm(α)|i⟩⟨i+ 1|+ω

−(d−1)ζm(α)|d −1⟩⟨0|

]
⊗1′′n , (3.128)

69



CHAPTER 3. CERTIFICATION OF MULTIPARTITE ENTANGLED STATES OF
ARBITRARY LOCAL DIMENSION

where to arrive at the third line of the above equation, we use the fact that a1+a∗1ω1/m =

ω1/2m and a1+a∗1ω−(d−1)/m =ω−(d−1)/2m and also that γm(x)+1/2m= ζm(x) [cf. (3.16)].

Let us now notice the action of the ideal observables on vectors belonging to the compu-

tational basis | j⟩ of Hilbert space Cd,

(a1O1,x + a∗1O1,x+1)| j⟩ = ω
(1−dδ j,0)(x/m)| j−1⟩,

O−1
2,x | j⟩ = ω

−(1−dδ j,0)(x/m)| j−1⟩, (3.129)

where the first equation follows from Eq. (3.128) and the second equation follows from

(3.17). Now, when n is odd or even

Onodd,x| j⟩ = ω
(1−dδ j,0)θm(x)| j−1⟩,

O−1
nev,x| j⟩ = ω

−(1−dδ j,0)θm(x)| j−1⟩, (3.130)

where we employed (3.18). Here, the natural convention is |−1⟩ ≡ |d −1⟩.
As the local Hilbert spaces of all the parties are of the form Hi = C

d ⊗H ′′
i , we can

express the state as

|ψ̃N⟩=
d−1

∑
i1,...,iN=0

|i1, . . . , iN⟩|ψi1,...,iN ,E⟩ (3.131)

where the vectors |ψi1,...,iN ,E⟩ ∈ H ′′
1 ⊗ . . .⊗H ′′

N ⊗HE are in general unnormalised. Let us

plug this state into the relation (3.126) for α1 = α2 = . . . = αN = 1 and k = 1. Noting

moreover that θm(1) = 0, gives us

d−1

∑
i1,...,iN=0

ω
d
m(δi2,0−δi1,0)|i1 −1⟩ . . . |iN −1⟩|ψi1,...,iN ,E⟩=

d−1

∑
i1,...,iN=0

|i1, . . . , iN⟩|ψi1,...,iN ,E⟩, (3.132)

where to arrive at the above expression we have also used the relations (3.129) and (3.130).

Multiplying the above expression with ⟨i1 −1| . . .⟨iN −1|, we obtain

ω
d
m(δi2,0−δi1,0)|ψi1,...,iN ,E⟩= |ψi1−1,...,iN−1,E⟩ (3.133)

for all i1, . . . , iN . Again, in the relation (3.126), we set α1 = 2 and α2 = . . . = αN = 1 to

obtain for all i1, . . . , iN that

ω
2d
m (δi2,0−δi1,0)|ψi1,...,iN ,E⟩= |ψi1−1,...,iN−1,E⟩. (3.134)

The relations (3.133) and (3.134) can be divided into two possible cases. The first case is
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δi2,0 = δi1,0 which holds true when and i1, i2 = 1,2, . . . ,d −1 or i1 = i2 = 0 for which

|ψi1,i2...,iN ,E⟩= |ψi1−1,i2−1,...,iN−1,E⟩ (3.135)

and for all i3, i4, . . . , iN . The second case is δi1,0 ̸= δi2,0 which holds true if i1 = 0 and

i2 = 1, . . . ,d −1 or i2 = 0 and i1 = 1, . . . ,d −1, for which Eq. (3.133) and Eq. (3.134) can

be simultaneously satisfied if and only if

|ψi1,0,i3,...,iN ,E⟩= 0, |ψ0,i2,...,iN ,E⟩= 0 (3.136)

and for all i3, i4, . . . , iN . Considering (3.135) for i2 = 1 and i1 ̸= 1, we get |ψi1,1...,iN ,E⟩ =
|ψi1−1,0,...,iN−1,E⟩= 0. Again, considering (3.135) for i2 = 2 and i1 ̸= 2, we get |ψi2,2,...,iN ,E⟩=
|ψi1−1,1,...,iN−1,E⟩= 0. Considering all the assignments of i2 from 3 to d−1 in (3.135) and

i1 ̸= i2, we can similarly obtain that

|ψi1,i2,...,iN ,E⟩= 0 ∀i1, i2, . . . , iN s.t. i1 ̸= i2 (3.137)

and,

|ψi2−1,i2−1,i3−1,...,iN−1,E⟩= |ψi2,i2,i3,...,iN ,E⟩ ∀i2, i3, . . . , iN . (3.138)

We again consider the relations (3.126) for α1 = α3 = . . .= αN = 1 and α2 = 2. Using the

above derived condition (3.137), we can focus only on the cases when i1 = i2 as rest of the

terms are 0. Due to this we arrive at the following condition for all i2, . . . , iN ,

ω
d
m(δi2,0−δi3,0)|ψi2,i2,i3...,iN ,E⟩= |ψi2−1,i2−1,i3−1,...,iN−1,E⟩. (3.139)

Again, there are two posible solutions when simultaneously solving Eq. (3.138) and the

above Eq. (3.139). The first solution is that δi2,0 = δi3,0 which holds true for i2, i3 =

1,2, . . . ,d −1 or i2 = i3 = 0 for which

|ψi2,i2,i3,...,iN ,E⟩= |ψi2−1,i2−1,i3−1,...,iN−1,E⟩ (3.140)

and for all i4, i5 . . . , iN . The second solution is that δi3,0 ̸= δi2,0 which holds true if i3 = 0
and i2 = 1, . . . ,d −1 or i2 = 0 and i3 = 1, . . . ,d −1, for which

|ψ0,0,i3,...,iN ,E⟩= 0, |ψi2,i2,0,...,iN ,E⟩= 0 (3.141)

and for all i4, i5 . . . , iN . Considering the above equation (3.140) for i2 = 1 and i3 ̸= 1, we

obtain that |ψ1,1,i3,...,iN ,E⟩ = |ψ0,0,i3,...,iN−1,E⟩ = 0, Again, considering the above equation
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(3.140) for i2 = 2 and i3 ̸= 2, we obtain that |ψ2,2,i3,...,iN ,E⟩ = |ψ1,1,i3,...,iN−1,E⟩ = 0. Con-

sidering all the assignments of i2 from 3 to d −1 in (3.140) and i3 ̸= i2, we can similarly

obtain that

|ψi2,i2,i3,...,iN ,E⟩= 0 ∀i2, i3, . . . , iN s.t. i2 ̸= i3 (3.142)

and,

|ψi2−1,i2−1,i2−1,...,iN−1,E⟩= |ψi2,i2,i2,...,iN ,E⟩ ∀i2, i4, . . . , iN . (3.143)

Proceeding in a similar manner, we assign αn = 2 for any n = 3,4, . . . ,N −1 with the rest

of coefficients as α1 = α2 = α3 = . . . = αN = 1 in Eq. (3.126), we obtain N − 3 different

conditions. We solve them exactly the same way as was done for n = 2, and can finally

conclude that the only non-zero terms among |ψi1,i2,i3,...,iN ,E⟩ are related as,

|ψi−1,i−1,i−1,...,i−1,E⟩= |ψi,i,i,...,i,E⟩ ∀i. (3.144)

Thus, we can conclude from (3.131) that

|ψ̃N⟩=
d−1

∑
i=0

|ii . . . i⟩⊗ |ψ0,0,...,0,E⟩. (3.145)

Normalising the state, we can rewrite it as

U1 ⊗ . . .⊗UN |ψN⟩=

(
1√
d

d−1

∑
i=0

|i⟩⊗N

)
⊗|ψ̃0,0,...,0,E⟩ (3.146)

where |ψ̃0,0,...,0⟩ = 1/
√

d|ψ0,0,...,0,E⟩. Thus, the state that maximally violates the Bell

inequalities (3.9) up to some local unitaries is infact the generalised GHZ state (3.1)

along with some uncorrelated auxiliary state on which the measurements act trivially.

This finally completes the proof of our self-testing scheme.

3.4 Randomness certification

As was discussed before in introduction Chapter 2, self-testing of quantum states and

measurements can be used to design methods of certification of genuine randomness that

can be generated using the outcomes of the measurement device. Even if some external

attacker Eve has access to the measurement devices and the state, self-testing restricts

the maximum probability by which Eve can guess the generated outputs.

For this, let us consider the scenario in which one of the observers, say the first
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party A1, wishes to generate randomness using the outcomes of their measurements. As

discussed before, Eve might supply the measurement devices which might give some pre-

determined outputs that are known to her. Interestingly, the self-testing scheme presented

in this Chapter can be used to certify log2 d bits of perfect randomness in the outcomes

of any measurement of any party. Let us now focus on A1’s measurements, keeping in

mind that the results apply to any party. We compute the probability of Eve to guess the

measurement outcomes of A1’s. For this, we refer to the local guessing probability (2.147)

introduced in Chapter 2 which can be straightforwardly extended to the multipartite

scenario,

G(α1 ,⃗p) = sup
Sp

∑
b
⟨ψN |Q

(b)
α1 ⊗1A2 ⊗ . . .⊗1N ⊗E(b)|ψN⟩, (3.147)

where |ψN⟩ ∈ H1⊗H2⊗ . . .⊗HN ⊗HE is the N-partite state shared by all the parties as

well as Eve. Here Q(b)
α1 is the b−th projector corresponding to the α1−th measurement

performed by A1, and E(b) corresponds to the b−th outcome of a d-outcome measurement

performed by Eve on her share of the state. This is Eve’s best guess of A1’s outcome.

Finally, Sp is the set of all possible strategies that Eve can use to guess of A1’s measurement

outputs.

Let us consider that all the parties perform the Bell test on a state |ψ⟩ and observe the

maximal violation of the Bell inequalities (3.9). As concluded in the previous section, up

to local unitary operations, the quantum state is given by (3.146) and the measurement

operators of A1’s can be expressed as Q(b)
α1 = Q̄(b)

α1 ⊗1A′′ , where Q̄(b)
α1 are eigenprojectors of

the ideal observables (3.11). Going back to the local guessing probability (3.147), which

can be rewritten as

G(α1 ,⃗p) = sup
Sp

∑
b

Tr
(

Q(b)
α1 ⊗E(b)

ρA1E

)
(3.148)

where ρA1E = TrA2A3...AN (|ψN⟩⟨ψN |). From (3.146), we obtain the following density matrix

ρA1E =
1
d

d−1

∑
i=0

|i⟩⟨i|⊗ρA′′
1E . (3.149)

Plugging the above state and measurement Q(b)
α1 to the guessing probability (3.148), we

arrive at

G(α1 ,⃗p) =
1
d

sup
Sp

∑
b

∑
i
⟨i|Q(b)

α1 |i⟩Tr
(

1A′′
1
⊗E(b)

ρA′′
1E

)
(3.150)
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Notice that ∑i ⟨i|Q
(b)
α1 |i⟩= 1 for any b, which allows us to finally arrive at

G(α1 ,⃗p) =
1
d

sup
Sp

∑
b

Tr
(

1A′′
1
⊗E(b)

ρA′′
1E

)
=

1
d

(3.151)

where we used the fact that Eve performs a valid measurement and thus ∑b E(b) = 1E and

Tr(ρA′′
1E) = 1. Thus, we can certify − log2 G(α1 ,⃗p) = log2 d bits of randomness from the

maximal violation of the Bell inequalities (3.9). The same analysis can be extended to

any party.

3.5 Conclusions and discussions

We proposed the first self-testing scheme for the certification of generalised GHZ state

that relies on violation of a single Bell inequality and requires only two measurements

per observer. Apart from this our approach relies on the maximum violation of a Bell

inequality that involves d−outcome measurements. The previous approach to self-test

the generalised GHZ state in Ref. [25] extends the scheme of Ref. [32] by utilising the

maximum violation of the tilted CHSH inequality [144] by considering two dimensional

subspaces among two parties. Here the first party needs to perform three and the rest of

the parties need to perform four measurements each. Unlike this approach, our method

does not rely on self-testing results for two-dimensional systems. We propose a novel

mathematical approach to derive self-testing statements. Moreover, our scheme is experi-

mentally friendly as we can self-test generalised GHZ states using the minimal number of

measurements required to observe Bell nonlocality, that is, two. This makes our scheme

more practical and easier to implement experimentally as compared to [32] because it

reduces the amount of data necessary to certify the devices. As a matter of fact, violation

of the SATWAP Bell inequalities has been experimentally demonstrated in Ref. [153] for

d = 3. Our scheme can also be considered as a generalisation of the self-testing scheme

based on chained Bell inequalities [16] to quantum systems of an arbitrary local dimension

as well as arbitrary number of parties.

We also showed that our scheme can be used to securely generate the maximum amount

of randomness using projective measurements with arbitrary number of outcomes. This

result is also interesting from a foundational point of view as this is the first instance,

where a single measurement can be used to generate genuine unbounded randomness with

the highest possible security. Our self-testing scheme has also been exploited in Ref. [154]

to show that the set of quantum correlations in a certain Bell scenario is not closed.
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An interesting follow-up of our work was presented in [155], [156] where correlations of

constant size where enough to self-test any two-qudit maximally entangled state.

Our work provokes some follow up problems. The first interesting problem would

be to devise an analytic technique that can also give information about the state and

measurements even when one does not obtain the exact quantum bound but a value

slightly lower than it. The only analytical method to derive such robustness bounds is

restricted to scenarios where the parties perform two-outcome measurements [12], [13],

[19], [20]. For the SATWAP Bell inequalities, in Ref. [39] the robustness was derived for

d = 3 and m = 2 using the numerical approach based on semi-definite programming. Such

results would be particularly important for experimental implementations.

Another interesting problem would be to derive genuinely d−outcome Bell inequalities

that are maximally violated by partially entangled states in the bipartite case and other

classes of multipartite entangled states such as W−states and then explore whether these

inequalities can be used for self-testing. As was discussed in introduction, the maximum

amount of randomness that one can generate using a d−dimensional system is of amount

2log2 d bits using non-projective measurements. Thus, it would be interesting to see

whether our self-testing scheme can be used to certify this optimal randomness along the

lines of Refs. [41], [42] which consider qubit and qutrit states respectively.
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Chapter 4

Certification of incompatible

measurements

4.1 Introduction

Most of the self-testing schemes aims to certify quantum states without much emphasis

on measurements even when one of the necessary conditions for existence of non-classical

correlations can be attributed to the presence of incompatible measurements in quan-

tum theory. Moreover, self-testing of quantum measurements in the Bell scenario has

restrictions as was shown in [157], [158]. Specifically, there exist pair of incompatible

measurements that do not violate any Bell inequality. As a consequence, it might not be

possible to certify every pair of incompatible measurements in a fully device-independent

way and therefire it is reasonable to look for scenarios that are weaker than the Bell sce-

nario. One such possibility is to assume that one of the parties in the Bell experiment is

fully characterised and performs known measurements. This is the well-known quantum

steering scenario. As a matter a fact, it was recently proven that there is a one-to-one

correspondence between quantum steering and measurement incompatibility [159]–[161],

suggesting that every pair of incompatible measurements can be certified in a steering

scenario. This makes quantum steering well suited for our task of certifying incompatible

measurements. Certification using quantum steering was proposed recently [51], [52] but

only for qubits and for a specific pair of 2-outcome measurements. It is worth noting that,

the technique used in these schemes [51], [52] cannot be used to certify arbitrary pair of

2-outcome incompatible measurements.

We provide here a simple scheme for certification of d-outcome incompatible projective

measurements and the maximally entangled state of local dimension d. Our scheme can

be used to certify a family of quantum observables termed here ”genuinely incompatible”.
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Roughly speaking, genuinely incompatible observables are those that do not share a com-

mon invariant proper subspace [see below for a precise definition]. For instance, mutually

unbiased bases (MUBs) acting on d-dimensional Hilbert spaces are genuinely incompati-

ble. Inspired by the inequalities presented in Refs. [162], [163], we introduce a family of

steering inequalities that are maximally violated by the maximally entangled state and

any set of genuinely incompatible measurements. We analyse the case when this inequal-

ity can be maximally violated by measurements that are not genuinely incompatible. We

also study the robustness of our certification scheme towards experimental imperfections

when trusted Alice chooses a pair of mutually unbiased bases to measure her subsystem.

4.2 Family of steering inequalities

Let us first recall the quantum steering scenario introduced in Chapter 2 in an analogous

way to Bell scenario. Alice and Bob are located in spatially separated labs. Both of them

receive two unknown subsystems from a preparation device. Alice is trusted and performs

N known d−outcome measurements on the received subsystem. On the other hand, Bob

also performs N d−outcome measurements on his subsystem but these measurements

are unknown. The measurements of both Alice and Bob are labelled by x,y = 1,2, . . . ,N
whereas the outcomes as a,b = 0,1, . . . ,d −1. They collect enough statistics to construct

the joint probability distribution {p(a,b|x,y)}. The scenario is depicted in Fig. 4.1.

Figure 4.1: Quantum steering scenario: Alice and Bob both receive a system from the
preparation device on which each of them perform N d−outcome measurements such that
N,d are integers greater than or equal to two. The experiment is repeated enough number
of times to generate the relevant joint probability distribution. The key difference between
this and Bell scenario is that Alice is trusted and her measurements are known.
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Inspired by [162], [163], we construct the following family of steering inequalities writ-

ten using generalised observables [cf. Sec. 2.1.3] as

W2,d,N =
d−1

∑
k=1

N

∑
y=1

〈
Ak

y ⊗Bk|y

〉
≤ βL. (4.1)

Note that the steering functional in the above expression looks similar to (2.73), here

however we assume that the observables Ak|x are unitary, that is, Ak|x = Ak
x. We also

moved the term for k = 0 to the classical bound, as it simply reduces to the expectation

value of 1 which is one. Alice is trusted and thus Ay are known to act on Hilbert space

of dimension d. Recall that Bob’s measurements act on a Hilbert space of unknown but

finite dimension. The above steering functional (4.1) can also be expressed in terms of

joint probabilities as

W2,d,N = d
N

∑
x=1

d−1

∑
a,b=0

ca,b p(a,b|x,y = x)−N, (4.2)

where,

c(a,b,x,y) =

1 if a⊕d b = 0

0 otherwise
(4.3)

where a⊕d b represents a+ b modulo d. To get from the observable picture (4.1) to the

joint probability picture (4.2), we used the relation (2.18) from Chapter 2, that is,

⟨Ak|x ⊗Bl|y⟩=
d−1

∑
a,b=0

ω
(ka+lb)p(a,b|x,y) (4.4)

for all k, l,x,y. Let us now compute the classical bound βL of the steering functional in

Eq. (4.1).

4.2.1 Classical bound

As discussed in Chapter 2, the classical bound of the steering functional (4.1) can be

calculated by assuming that the assemblage {σb|y} admits a local hidden state model,

that is,

σb|y = ∑
λ

p(λ )p(b|y,λ )ρλ , (4.5)

where λ represents the hidden variables that are distributed with probability p(λ ),

p(b|y,λ ) denotes the probability of obtaining outcome b when Bob performs the mea-
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surement y given the hidden variable λ and ρλ are hidden states that act on Alice’s

Hilbert space. Using (4.5), the corresponding joint probabilities p(a,b|x,y) for assem-

blages admitting a LHS model are given by

p(a,b|x,y) = Tr(Ma|xσb|y) = ∑
λ

p(λ )p(b|y,λ )Tr(Ma|xρλ ), (4.6)

where Ma|x represents the projector corresponding to the outcome a when Alice performs

the measurement x. The above expression can also be stated as

p(a,b|x,y) = ∑
λ

p(λ )p(a|x,ρλ )p(b|y,λ ), (4.7)

where p(a|x,ρλ ) = Tr(Ma|xρλ ). Now, using the joint probability form of the steering

functional (4.2), we have that

W2,d,N = d
n

∑
x=1

d−1

∑
a,b=0

∑
λ

ca,b p(λ )p(a|x,ρλ )p(b|x,λ )−N (4.8)

where ca,b is given in (4.3). Thus, the steering functional simplifies to

W2,d,N = d
N

∑
x=1

d−1

∑
a=0

∑
λ

p(λ )p(a|x,ρλ )p(d −a|x,λ )−N. (4.9)

The above term is upper bounded by

N

∑
x=1

∑
a

∑
λ

p(λ )p(a|x,ρλ )p(d −a|x,λ ) ≤
N

∑
x=1

∑
λ

p(λ )max
a

{p(a|x,ρλ )} (4.10)

where we used the normalisation condition ∑a p(a|x,λ ) = 1 and then the fact that for any

real-valued function f (x) ∈R,

∑
a

p(a) f (a) ≤ max
a

f (a) such that ∑
a

p(a) = 1. (4.11)

Also, notice that

N

∑
x=1

∑
λ

p(λ )max
a

{p(a|x,ρλ )} ≤
N

∑
x=1

max
ρ

∑
λ

p(λ )max
a

{p(a|x,ρ)}. (4.12)
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Now, using the fact that ∑λ p(λ ) = 1, we obtain an upper bound on the value of the

steering functional as

W2,d,N ≤ d
N

∑
x=1

max
ρ

max
a

{p(a|x,ρ)}−N (4.13)

Doing an inverse Fourier transform and expressing in terms of expectation values, we have

W2,d,N ≤
N

∑
x=1

max
ρ

max
a

d−1

∑
k=1

ω
−ka
〈

Âk
x

〉
ρ
≤

N

∑
x=1

max
ρ

d−1

∑
k=1

∣∣∣∣〈Âk
x

〉
ρ

∣∣∣∣ . (4.14)

Thus, we conclude that the local bound of W2,d,N is upper bounded by,

βL ≤
N

∑
i=1

max
ρ

d−1

∑
k=1

∣∣∣∣〈Âk
i

〉
ρ

∣∣∣∣ . (4.15)

This bound can be explicitly calculated for different set of observables Ax. For instance, if

N = d = 2 and A1 = σz and A2 = σx (2.27) then the classical bound is given by βL =
√

2.

Let us consider the special case, when N = 2 such that A1 = Zd and A2 = Xd which

are the d−dimensional generalisation of the Pauli matrices σz and σx respectively whose

explicit form is given below in Eq. (2.91). In this case, the classical bound is given by

βL =
√

2(d −1) and was computed in [162]. Let us now compute the quantum bound of

the steering functional in Eq. (4.1).

4.2.2 Quantum bound

It is straightforward to find the maximal quantum bound of the steering functional (4.1).

Let us first note that the algebraic bound of (4.1) is N(d −1) and can be achieved when

each term of the functional equals one. Let us now consider the maximally entangled

state of two qudits,

|φ d
+⟩=

1√
d

∑
i
|ii⟩, (4.16)

and Bob’s observables are unitary and conjugate of Alice’s observables, that is, By = A∗
y

for all y. For these quantum realisations, the expectation value of every term in the

functional (4.1) is one. Thus the quantum bound of the steering functional (4.1) is same

as its algebraic bound, that is,

βQ = N(d −1). (4.17)

Consequently, the quantum state and the measurements that achieve the maximum

quantum value βQ of the steering functional (4.1) for fixed observables Ai must satisfy the
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following relations

⟨Ak
y ⊗Bk|y⟩= 1 ∀y,k. (4.18)

Since Ay is unitary and B†
k|yBk|y ≤ 1, for any state ρAB that satisfies the above relation, we

have that

Ak
y ⊗Bk|y ρAB = ρAB ∀y,k. (4.19)

This relation would be particularly useful for deriving the 1SDI certification results.

Let us now figure out the cases when the steering inequality W2,d,N ≤ βL is non-trivial,

that is βL < βQ. For this, let us see when the upper bound (4.15) to the value attainable

using classical strategies is equal to the quantum bound, that is,

N

∑
i=1

d−1

∑
k=0

|⟨Ak
i ⟩ρ |= N(d −1). (4.20)

This implies that each term in the above relation is 1 or simply |⟨Ak
i ⟩ρ | = 1 for all i, k

and ρ acting on Cd. Let us say that ρ admits a decomposition in terms of pure states as

ρ = ∑i pi|ψi⟩⟨ψi|. Since Ak
i are unitary operators, this means that |ψi⟩ are the eigenvectors

of all Ai with eigenvalues of modulus 1. Thus, we can conclude that for the steering

inequality to be non-trivial the observables Ai cannot share any common eigenvector.

However, the steering functional (4.1) can not be used to certify all such observables that

do not share a common eigenvector, but a restricted set of such observables termed as

”genuinely incompatible” observables. The reason for this ambiguity would be clarified in

the later sections.

4.3 Genuinely incompatible observables

Here we refer to the definition of genuine incompatible (GI) observables introduced in

[62].

Definition 1 (Genuine incompatible observables). Consider a set of N d-outcome unitary

observables Ai acting on C
d and obeying Ad

i = 1. We call them genuinely incompatible

(GI) if there is no subspace V ⊂ C
d such that dimV < d and AiV ⊆ V for all i; in other

words, the only common invariant space of all Ai is the full space Cd.

Let us recall the d−outcome observables introduced in Chapter 2 in Eq. (2.91):

Zd =
d−1

∑
i=0

ω
i|i⟩⟨i|, Xd =

d−1

∑
i=0

|i+ 1⟩⟨i| (4.21)
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that are d−dimensional generalisation of the Pauli matrices σz,σx (2.27). Note that in

the above sum |i+ 1⟩ is modulo d. The eigenvectors of these observables are mutually

unbiased (see Def. 2 below). These observables are genuinely incompatible.

Definition 2 (Mutually unbiased bases). Two orthonormal bases {|e0
i ⟩} and {|e1

i ⟩} in Cd

form mutually unbiased bases if

|⟨e0
i |e1

j⟩|2 =
1
d

(4.22)

for every i, j = 0,1, . . . ,d −1.

We then say that two unitary observables A0 and A1 are mutually unbiased if their

eigenvectors are mutually unbiased. There are a few interesting observations about GI

observables.

1. Two d−outcome observables A0 and A1 are not genuinely incompatible if there exist

a basis in Cd using which the observables can be decomposed as

A0 = A′
0 ⊕A′′

0 and A1 = A′
1 ⊕A′′

1 (4.23)

such that A′
0 and A′

1 act on a d′−dimensional subspace ofCd with d′< d. In this case,

the observables share a common invariant subspace Cd′ spanned by the eigenvectors

of A′
0 (or equivalently, the eigenvectors of A′

1).

2. Genuinely incompatible observables do not share a common eigenvector. We ver-

ify this claim after Lemma 4.1 stated below. Thus, when Alice’s observables are

genuinely incompatible, the steering inequality (4.1) W2,d,N ≤ βL is non-trivial

3. Consider a set of N observables. If this set contains two observables that are GI,

then the whole set is genuinely incompatible as well. This is because if two observ-

ables do not share a common invariant subspace, then any set containing these two

observables can not share any invariant subspace.

4. The opposite implication of the above statement is not true. Set of observables might

be genuinely incompatible even when pairwise they are not genuinely incompatible.

To illustrate the above statement with an example, let us consider three five-outcome

observables with eigenvalues ω i with x = 0,1,2,3,4, such that ω = exp (2πi

5 ), written in

the computational basis.
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A0 =
1
2


1+ω 1−ω 0 0 0
1−ω 1+ω 0 0 0

0 0 ω2 0 0
0 0 0 ω3 0
0 0 0 0 ω4

 ,

A1 =
1
2


2 0 0 0 0
0 ω2 +ω ω2 −ω 0 0
0 ω2 −ω ω2 +ω 0 0
0 0 0 2ω3 0
0 0 0 0 2ω4

 ,

and A2 =
1
3


1 0 0 0 0
0 ω 0 0 0
0 0 f1(ω ,ω3) f2(ω ,ω3) f3(ω ,ω3)

0 0 f3(ω ,ω3) f1(ω ,ω3) f2(ω ,ω3)

0 0 f2(ω ,ω3) f3(ω ,ω3) f1(ω ,ω3)

 (4.24)

where f1(ω ,ω3) = ω2 +ω3 +ω4, f2(ω ,ω3) = ω2 +ω2
3 ω3 +ω3ω4 and f3(ω ,ω3) = ω2 +

ω3ω3 +ω2
3 ω4 such that ω3 = exp (2πi

3 ). Let us first find the eigenvectors of the above

observables. The eigenvectors of A′
0s are {|+01⟩, |−01⟩, |2⟩, |3⟩, |4⟩}, second, A′

1s eigenvec-

tors are {|0⟩, |+12⟩, |−12⟩, |3⟩, |4⟩} and finally, A′
2s eigenvectors are {|0⟩, |1⟩, |e1⟩, |e2⟩, |e3⟩}

where |±i j⟩= (|i⟩± | j⟩)/
√

2 and

|e1⟩=
1√
3
(|2⟩+ |3⟩+ |4⟩) , |e2⟩=

1√
3

(
|2⟩+ω3|3⟩+ω

2
3 |4⟩

)
,

and |e3⟩=
1√
3

(
|2⟩+ω

2
3 |3⟩+ω3|4⟩

)
. (4.25)

From Lemma 4.1 which is stated below, we conclude that A0 and A1 have two non-

trivial common invariant subspaces, spanned by {|0⟩, |1⟩, |2⟩} and {|3⟩, |4⟩}. Again, A0

and A2 have two non-trivial common invariant subspaces, spanned by {|0⟩, |1⟩} and

{|2⟩, |3⟩, |4⟩}. Finally, A1 and A2 have two non-trivial common invariant subspaces, spanned

by {|0⟩} and {|1⟩, |2⟩, |3⟩, |4⟩}. Thus, if we consider the pair of the above observables, none

of such pairs are genuinely incompatible. However, considering all three observables, we

can readily see that there is no common invariant subspace shared between A0, A1 and A2

as we simultaneously cannot express all the matrices using blocks of dimension less than

5×5.

83



CHAPTER 4. CERTIFICATION OF INCOMPATIBLE MEASUREMENTS

Now, we prove a lemma that would be useful for characterising genuinely incompatible

observables.

Lemma 4.1. Two d−outcome observables A0 and A1 share a common non-trivial invariant

subspace of dimension d′ < d if and only if d′ eigenvectors of A0 can be expressed as a

linear combination of d′ eigenvectors of A1.

Proof. Let us first recall that two d−outcome observables A0 and A1 share a common

invariant subspace if there exist a basis in Cd using which the observables can be decom-

posed as

A0 = A′
0 ⊕A′′

0 and A1 = A′
1 ⊕A′′

1 (4.26)

such that A′
0 and A′

1 act on d′ dimensional Hilbert space where d′ < d. The common

invariant subspace is Cd′ and is spanned by the d′ eigenvectors of A′
0 or the d′ eigenvectors

of A′
1. Thus, eigenvectors of A′

0 can be expressed as linear combination of eigenvectors

of A′
1 as they span the same Hilbert space. We showed here that if A0 and A1 share a

common invariant subspace of dimension d′, then d′ eigenvectors of A0 can be written as

d′ eigenvectors of d′.

It is trivial to show the other way round, that is, if d′ eigenvectors of A0 can be written

as d′ eigenvectors of A1, then A0 and A1 share a common invariant subspace spanned by

these eigenvectors. This ends the proof.

Note that if two observables share a common eigenvector, then they share a common

invariant subspace of dimension one. Thus, genuinely incompatible observables can not

even share a common eigenvector. A corollary of the above lemma is that mutually

unbiased bases are genuinely incompatible.

Corollary. Any two d-outcome observables whose eigenbases form mutually unbiased bases,

are genuinely incompatible.

Proof. Consider two d−element mutually unbiased bases denoted by, {|si⟩} and {|t j⟩}
such that |⟨si|t j⟩|2 = 1/d for all i, j ∈ {0,1, . . . ,d − 1}. One can construct d−outcome

observables whose eigenbases are mutually unbiased in the following way,

A0 =
d−1

∑
i=0

ω
i|si⟩⟨si|, A1 =

d−1

∑
i=0

ω
i|ti⟩⟨ti|. (4.27)

where ω = exp (2πi

d ). Any eigenvector |si⟩ of A0 can only be written as a linear combination

of all the d eigenvectors |t j⟩ of A1. Thus, from Lemma 4.1 we have that for A0 and

A1 do not share a non-trivial common invariant subspace and therefore are genuinely

incompatible.
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Another important property of genuinely incompatible observables which is particu-

larly useful for 1SDI certification is stated below.

Lemma 4.2. Consider a set of N d-outcome unitary observables Ay with eigenvalues ω i

for i = 0,1, . . . ,d −1 such that ω = exp (2πi

d ). Consider also a non-trivial normal matrix

P acting on Cd. If [P,Ay] = 0 for every y = 1,2, . . . ,N such that the set of observables Ay

are genuinely incompatible, then P = λ1d where λ is an arbitrary complex number.

Proof. The proof is by contradiction, that is, we assume that P ̸= λ1d. Let us first note

that since P is normal, there exists a unitary that transforms P to a diagonal matrix. Thus,

we can always express P, in terms of its orthogonal projections Pi and the corresponding

eigenvalues λi, in the following way

P =
m

∑
i=1

λiPi. (4.28)

Here λ ′
i s are distinct complex numbers that might be even 0 and m denotes the number

of such distinct eigenvalues.

Let us now assume that [P,Ay] = 0 for all y. Expanding this relation, we have that

Ay P = P Ay. (4.29)

Let us now consider two orthogonal projections Pm and Pn of P such that m ≤ n. Now,

we multiply Pm from left hand side and Pn from the right hand side of the above equation

(4.29) to obtain

Pm Ay P Pn = Pm P Ay Pn. (4.30)

Using the fact that PiPj = δi j in (4.28), we have that PPn = λnPn and PmP = λmPm. This

allows us to simplify the above equation (4.30) as

(λm −λn)Pm Ay Pn = 0. (4.31)

The above equation has two possible solutions:

λm = λn or Pm Ay Pn = 0. (4.32)

For distinct m,n, the eigenvalues λm,λn are also distinct. Thus, we conclude that Pm Ai Pn =

0 whenever m ̸= n. This means that Ay decomposes into blocks that act on supp(Pi). We

can obtain the same conclusion for every observable Ay. Given that P and Ay satisfy the

relation [P,Ay] = 0 for all y, if P is of the form (4.28), then all A′
ys are of the block form

Ay = A(1)
y ⊕ . . .⊕A(m)

y . (4.33)
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This contradicts the fact that A′
ys are genuinely incompatible which implies that P = λ1d

for some λ ∈C. Notice that the trivial solution to the condition [P,Ay] = 0 is when P = 0.

Any non-trivial solution such that Ay are genuinely incompatible observables imposes that

the rank of P is d and all its eigenvalues are equal and non-zero. This ends the proof.

Finally, we have all the required tools for deriving the results concerning certification

of incompatible measurements.

4.4 1SDI certification

4.4.1 Exact certification of GI observables

Here, we present the 1SDI certification of genuinely incompatible measurements that relies

on maximal violation of the steering inequality (4.1) W2,d,N = βQ. Let us first recall that

we can only characterise Bob’s observables on the support of his local state ρB. Thus,

without loss of generality we can consider that the local state ρB is full rank. This can

also be understood as that Bob’s observables and local state ρB act on the same Hilbert

space HB.

Theorem 4.1. Consider that Alice and Bob perform the quantum steering experiment and

observe that the steering functional

W2,d,N =
d−1

∑
k=1

N

∑
y=1

〈
Ak

y ⊗Bk|y

〉
, (4.34)

attains the maximal quantum value βQ = N(d − 1) where N is number of measurements

performed by Alice and Bob and d denotes the number of outcomes of each measurement.

Alice’s observables Ay acting on C
d are unitary with eigenvalues ω i such that ω = exp(2πi

d )

and are genuinely incompatible. Let us say that the maximal quantum bound is achieved

using the state ρAB acting on Cd ⊗HB and Bob’s generalised observables Bi (i∈ {1, . . . ,N})
acting on HB. Then, the following statements hold true for any integer d greater than or

equal to two:

1. Bob’s measurements are projective. Equaivalently, the operators Bk|y for all k,y are

unitary and Bk|y = Bk
1|y ≡ Bk

y.

2. Bob’s Hilbert space HB admits a decomposition into a d−dimensional Hilbert space

C
d)B′ and an auxiliary Hilbert space of unkown but finite dimension HB′′,

HB = (Cd)B′ ⊗HB′′ . (4.35)
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3. A local unitary transformation UB : HB → HB can be applied on Bob’s side, such

that

(1A ⊗UB)ρAB(1A ⊗U†
B) = |φ+

d ⟩⟨φ+
d |AB′ ⊗ρB′′ . (4.36)

where |φ+
d ⟩ is the maximally entangled state (4.16) and

∀y, UB ByU†
B = A∗

y ⊗1B′′ , (4.37)

where B′′ denotes Bob’s auxiliary system.

Proof. Let us first recall the relations (4.19) that stem from the fact that to saturate

the quantum bound of the steering functional (4.1) each of the expectation values in the

functional must amount to one,

Ak
y ⊗Bk|y ρAB = ρAB (4.38)

for y = 1,2, . . . ,N and k = 1,2, . . . ,d − 1. We begin by showing that the above relations

can only be satisfied if Bob’s measurements are projective. Note that an equivalent

representation of the above relation (4.38) is

Ad−k
y ⊗Bd−k|y ρAB = ρAB ∀y,k. (4.39)

Recall that by definition Bd−k|y = B†
k|y [cf. (2.22)]. Now, multiplying (4.38) with Ad−k

y ⊗
Bd−k|y, we have that(

Ad−k
y Ak

y ⊗Bd−k|yBk|y

)
ρAB =

(
Ad−k

y ⊗Bd−k|y

)
ρAB ∀y,k. (4.40)

Using the fact that Ad
y = 1A and the relation (4.39), we have that(

1A ⊗B†
k|yBk|y

)
ρAB = ρAB. (4.41)

Tracing over the subsystem A, we get that(
B†

k|yBk|y

)
ρB = ρB (4.42)

and since ρB is full-rank and thus invertible, we finally have that B†
k|yBk|y = 1B for all

k,y such that 1B is the identity acting on HB. Similarly, taking the relation (4.39) and

multiplying it with Ak
y ⊗Bk|y, we get that Bk|yB†

k|y = 1B for all k,y such that 1B. Thus, one

straightforwardly concludes from the above conditions that Bk|y are unitary for every y
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and k. Now using Fact 1, we conclude that Bob’s measurements are projective. Since, for

projective measurements Bk|y = Bk
y, from here on we substitute Bk|y = Bk

y.

Let us focus on the state ρAB that results in the quantum bound of the steering

functional (4.34). Consider the eigendecomposition of ρAB as

ρAB =
K

∑
s=1

ps|ψs⟩⟨ψs|AB, (4.43)

where K is any integer greater than or equal to one and ps ≥ 0 such that ∑s ps = 1. Further,

the eigenstates |ψs⟩ are pairwise orthogonal, that is, ⟨ψs|ψs′⟩= δss′ for every s,s′.
First, we show that the rank of the local state of Alice is d. The proof is by contra-

diction. For this, we use the relations (4.38) and the fact that Alice’s observables Ai are

genuinely incompatible. Let us assume that rank of ρA is strictly less than d. Then, we

consider the relation (4.19) for k = 1 and then project Alice’s observables onto the support

of the state ρA,

ΠA Ay ΠA ⊗By ρAB = ρAB, (4.44)

where ΠA is the projector onto the support of Alice’s local state ρA. Let us denote

Ai ≡ ΠA Ai ΠA. Also, considering the relation (4.39) for k = 1, we have that

ΠA A†
y ΠA ⊗B†

y ρAB = ρAB. (4.45)

Note, that ΠA A†
y ΠA = (ΠA Ay ΠA)

†. As proven above, Bob’s measurements that result

in the maximal violation are projective and thus By are unitary and satisfy Bd
y = 1. Now,

applying Ay ⊗By to the equation (4.45), we have that(
AyA†

y ⊗ByB†
y

)
ρAB = ρAB. (4.46)

Again, using the fact that By are unitary and then taking a trace of subsystem B, we have

that

AyA†
y = ΠA (4.47)

As proven in Fact 4 in Chapter 2, since Ay is unitary , it must be of block form

Ay = Ay ⊕A′
y (4.48)

for some unitary matrix A′
y of dimension [d − rank(ρA)]× [d − rank(ρA)]. However, from

Lemma 4.1 we conclude that A′
ys have a common invariant subspace of dimension lower
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rank(ρA) which strictly lower than d. This contradicts the fact that Ay are genuinely

incompatible observables. As a consequence, ρA is a full rank matrix, or equivalently the

rank of the local state of Alice ρA is d.

Now, we have all the required tools to formulate the main part of the theorem which

includes characterising the state ρAB and Bob’s observables By that result in the quantum

bound of the steering functional (4.34). Let us first expand the relation (4.38) using

the decomposition of the state ρAB (4.43) keeping in mind that Bob’s observables are

projective,

K

∑
s=1

ps Ak
y ⊗Bk

y |ψs⟩⟨ψs|AB =
K

∑
s=1

ps|ψs⟩⟨ψs|AB ∀y,k. (4.49)

Multiplying with |ψs⟩ on the right hand side of the above equation, we arrive at the

following condition,

Ak
y ⊗Bk

y |ψs⟩AB = |ψs⟩AB ∀s,y,k (4.50)

where we used the fact that ⟨ψ ′
s|ψs⟩= δss′ for every s,s′.

Now, we can characterise every |ψs⟩ and then find the relation among them to fully

identify the state ρAB. Let us first note from the relation (4.50) that Bob’s measurements

acting on the support of the local state ρB,s = TrA(|ψs⟩⟨ψs|AB) are also projective. For this

we can follow the exactly same procedure as was done in the beginning of the proof to

conclude that By acting on the support of ρB is projective. Thus, we can conclude that

By = Πs
BByΠs

B ⊕Es (4.51)

where Πs
B represents the projector onto the support of ρB,s and Es is some unitary matrix.

For completeness, let us briefly discuss the proof again. We begin by considering the

relations (4.38) and (4.39) for k = 1 and project it onto the support of ρB,s, that is,

Ay ⊗By,s|ψ⟩AB = |ψs⟩AB and A†
y ⊗B†

y,s|ψ⟩AB = |ψs⟩AB (4.52)

where By,s = Πs
BByΠs

B. By applying Ay⊗By,s to the left equation in (4.52) d−1 times, we

obtain that Bd
y,s = 1d. Now, applying A†

y ⊗B†
y,s to the right equation in (4.52) of the above

equation, we conclude that B†
y,sBy,s = 1d. Similarly, we can also conclude that By,sB

†
y,s = 1d.

As a result By,s are unitary and thus represent projective measurements with eigenvalues

{1,ω , . . . ,ωd−1}. Using the Fact 4 proven in Chapter 2, we finally arrive at the desired

block form of Bob’s observables (4.51).

Since all the states |ψs⟩AB follow the same relation (4.50), foe the moment let us drop
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the index s and consider a simple state |ψ⟩AB. As concluded before in Lemma 4.2, when

the set of observables Ay are genuinely incompatible, rank(ρA) = d which implies that the

local dimension of the state is d. This allows us to consider the Schmidt decomposition

of |ψ⟩AB as

|ψ⟩AB =
d−1

∑
i=0

λi|ei⟩| fi⟩. (4.53)

As ρA is of full-rank, the Schmidt coefficients λi for (i = 0, . . . ,d−1) are all strictly greater

than zero. Also, the normalisation of the state |ψ⟩AB relates the coefficients by the condi-

tion ∑i λ 2
i = 1. Moreover, the local vectors {|ei⟩} and {| fi⟩} form two orthonormal bases

in Cd.

Let us now consider a unitary UB : Cd →C
d such that | fi⟩=U†

B|e∗i ⟩ for every i, where

the asterisk denotes complex conjugation in the computational basis. Applying this uni-

tary to the state (4.53), we have that

(1A ⊗UB)|ψ⟩AB =
d−1

∑
i=0

λi|ei⟩|e∗i ⟩. (4.54)

Now, let us consider a diagonal matrix PA with eigenvectors {|ei⟩} and eigenvalues
√

d λi,

that is, PA =
√

dλi ∑
d−1
i=0 |ei⟩⟨ei|. Now, the state (4.53) can be written as

(1A ⊗UB)|ψ⟩AB = (PA ⊗1B)
1√
d

d−1

∑
i=0

|ei⟩|e∗i ⟩ (4.55)

Recall that all λ ′
i s are positive real numbers which implies that PA is full rank, or equiva-

lently rank(PA) = d. Notice that the state on the right hand side of (4.55) is the two-qudit

maximally entangled state (4.16) as there exist a unitary V :Cd →C
d such that V |i⟩= |ei⟩.

Let us now perform following operation

V ⊗V ∗ 1√
d

d−1

∑
i=0

|i⟩|i⟩= 1√
d

d−1

∑
i=0

|ei⟩|e∗i ⟩. (4.56)

Now using the Fact 5, we arrive at V ⊗V ∗|φ+
d ⟩=VV †⊗1|φ+

d ⟩= |φ+
d ⟩. Thus, the two-qudit

maximally entangled state remains invariant under the action of the unitary of the form

V ⊗V ∗. As a consequence, we finally arrive at the simplified version of the state (4.53)

given by

(1A ⊗UB)|ψ⟩AB = (PA ⊗1B)|φ+
d ⟩. (4.57)

Substituting the above state (4.57) to the relation (4.50) for k = 1, we obtain that

(AyPA ⊗ B̃y)|φ+
d ⟩= (PA ⊗1B)|φ+

d ⟩, (4.58)
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where B̃y = U†
B ByUB. Again, employing Fact 5 stated in Appendix A which states that

Thus, we finally arrive at

(AyPAB̃T
y ⊗1B)|φ+

d ⟩= (PA ⊗1B)|φ+
d ⟩. (4.59)

Now, taking the partial trace over subsystem B, we arrive at

AyPAB̃T
y = PA. (4.60)

Multiplying the above equation with its hermitian conjugate from the right hand side, we

arrive at (
AyPAB̃T

y

)(
B̃∗

yPAA†
y

)
= P2

A , (4.61)

where we used the fact that PA is hermitian, that is, PA = P†
A . Recalling that B̃y are unitary

allows us to conclude that

B̃T
y B̃∗

y = (B̃†
yB̃y)

∗ = 1d (4.62)

and thus from (4.61) we finally arrive at

Ay P2
A A†

y = P2
A . (4.63)

Using the fact that Ay are unitary, we arrive at a simple condition for PA that for every y

the commutator of Ay and P2
A is zero, that is, [Ay,P2

A ] = 0. Since, PA ≥ 0, this condition is

equivalent to

[Ay,PA] = 0 ∀y. (4.64)

Taking into account that Ay are genuinely incompatible, Lemma 4.2 implies that PA is

proportional to identity or simply PA = λ1A for some λ ∈C. Plugging this form of PA into

Eq. (4.60) we deduce that

B̃y =UBByU
†
B = A∗

y (4.65)

Let us now go back to every state |ψs⟩AB and reconsider the condition (4.50). Now as

concluded above for a particular s, there exist a local transformation UB,s : Cd →C
d for

every s that transforms Bob’s observables acting on the support of ρB,s as

B̃y,s =UB,sBy,sU
†
B,s = A∗

y . (4.66)

Also, from (4.55) we get that up to a local transformation the state |ψs⟩AB is the two-qudit
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maximally entangled state

(1A ⊗UB,s)|ψs⟩AB =
1√
d

d−1

∑
i=0

|ei⟩|e∗i ⟩= |φ d
+⟩. (4.67)

Let us notice that the unitary transformation UB,s might be different for different s.

Moreover, they also act on different subspaces of Bob’s local Hilbert space. In the last

part of the proof, we show that these subspaces are mutually orthogonal and thus we

arrive at the form of state ρAB as (4.36) and Bob’s measurement as (4.37). For this, let

us first rewrite the state |ψs⟩AB (4.67) as

|ψs⟩AB = [1⊗ (UB,s)
†]|φ d

+⟩=
1√
d

d−1

∑
i=0

|e′i⟩|gi,s⟩, (4.68)

where the vectors |gi,s⟩ = (UB,s)†|e′∗i ⟩ form an orthonormal basis in C
d for any s. Note

that for convenience, we expressed the state (4.68) in the eigenbasis of A0 given by {|e′i⟩}.

This is well justified as the two-qudit maximally entangled state remains invariant under

application of the unitary V ⊗V ∗ as shown above. The support of the local state ρB,s is

spanned by the vectors |gi,s⟩, that is,

supp(ρB,s) ≡Vs = span{|g0,s⟩, |g1,s⟩, . . . , |gd−1,s⟩} ⊂ HB. (4.69)

Now, we show that all the local subspaces Vs corresponding to the eigenstates |ψs⟩AB of ρAB

(4.43) are mutually orthogonal. To this end, let us consider two arbitrary eigenstates, for

simplicity denoted by |ψ1⟩AB and |ψ2⟩AB and the corresponding local subspaces on Bob’s

side as V1 and V2. Let us now express Alice’s observable A0 using its eigendecomposition as

A0 = ∑
d−1
i=0 ω i|e′i⟩⟨e′i|. For simplicity, in the rest of the proof we denote |e′i⟩ as |i⟩. Plugging

A0 and the certified state (4.68) to the relation (4.50) for y = 0, s = 1,2 and k = 1, we

have that

d−1

∑
i=0

ω
i|i⟩⟨i|⊗B0

(
1√
d

d−1

∑
i=0

|i⟩|gi,s⟩

)
=

1√
d

d−1

∑
i=0

|i⟩|gi,s⟩ s = 1,2. (4.70)

Multiplying ⟨i| from the left hand side of the above equation, we have that

B0|gi,s⟩= ω
−i|gi,s⟩ s = 1,2. (4.71)

Thus, we clearly observe that both local bases {|gi,1⟩} and {|gi,2⟩} are the eigenbases of

B0.

Recalling that B0 is unitary, we find some orthogonality relations among the vectors
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of the two bases specifically that eigenvectors corresponding to different eigenvalues must

be orthogonal

⟨gi,1|g j,2⟩= 0 (i ̸= j). (4.72)

As a consequence, to prove that V1 is orthogonal to V2, it is now enough to show that

eigenvectors corresponding to same eigenvalues are also orthogonal, or equivalently

⟨gi,1|g j,2⟩= 0 ∀i, j. (4.73)

To this end, we consider the decomposition of the vectors belonging to subspace V2 in

terms of vectors belonging to V1 kepping in mind the condition (4.72) as

|gi,2⟩= αi|gi,1⟩+βi|hi⟩, (4.74)

where αi,βi ∈ C and |αi|2 + |βi|2 = 1 and |hi⟩ is a normalized vector orthogonal to |gi,1⟩
for any i. Again, using the condition (4.72), we clearly observe from Eq. (4.74) that

β j⟨gi,1|h j⟩= 0 (i, j = 0, . . . ,d −1). (4.75)

The above equation has two possible solutions, either β j = 0 or the vectors |h j⟩ are or-

thogonal to the whole subspace V1.

Let us now revisit the conditions (4.50) for k = 1, y = 2,3, . . . ,N and s = 1,2 written

as

(1A ⊗By)|ψs⟩AB = (A†
y ⊗1B)|ψs⟩AB s = 1,2. (4.76)

Using then the certified state |ψs⟩AB given in Eq. (4.68) we have that

d−1

∑
i=0

|i⟩⊗ (By|gi,s⟩) =
d−1

∑
i=0

(A†
y |i⟩)⊗|gi,s⟩. (4.77)

Multiplying with ⟨i| on both sides of the above equation, we arrive at the following set of

vector equations

By|gi,s⟩=
d−1

∑
m=0

⟨i|A†
y |m⟩|gm,s⟩ s = 1,2. (4.78)

for i = 0, . . . ,d −1. Using the decomposition (4.74) in (4.78) for s = 2, leads us to

αiBy|gi,1⟩+βiBy|hi⟩=
d−1

∑
m=0

αm⟨i|A†
y |m⟩|gm,1⟩+

d−1

∑
m=0

βm⟨i|A†
i |m⟩|hm⟩. (4.79)

93



CHAPTER 4. CERTIFICATION OF INCOMPATIBLE MEASUREMENTS

Now, using Eq. (4.78) for s = 1 and substituting By|gi,1⟩ we have that

d−1

∑
m=0

(αi −αm)⟨i|A†
y |m⟩|gm,1⟩=

d−1

∑
m=0

βm⟨i|A†
y |m⟩|hm⟩−βiBy|hi⟩. (4.80)

Multiplying the above equation with ⟨gn,1| on the left hand side, we obtain

(αi −αn)⟨i|A†
y |n⟩= −βi⟨gn,1|By|hi⟩, (4.81)

where we used that βm⟨gn,1|hm⟩= 0 for any n,m (4.75). Again, using the condition (4.75)

along with the property of By acting invariantly on the subspace spanned by |gn,1⟩. This

can also inferred from (4.78) and thus the right-hand side of the above equation simply

vanishes and we finally arrive at

(αi −αn)⟨i|A†
y |n⟩= 0 (i,n = 0, . . . ,d −1). (4.82)

Now, consider a matrix Q = ∑
d−1
i=0 αi|i⟩⟨i| and observe that the left hand side of the above

condition can be expressed as the commutator of A†
y and Q,

[A†
y ,Q] = 0 ∀y (4.83)

However, using the fact that Ay are genuinely incompatible and Lemma 4.1, the above

condition can only hold if Q = α1 for some α ∈C. This means that all α ′
i s are equal.

Let us now recall that the eigenstates |ψ1⟩ and |ψ2⟩ are orthogonal and thus using

(4.68), we arrive at

0 = ⟨ψ1|ψ2⟩=
1
d ∑

i
⟨gi,1|gk,2⟩=

1
d ∑

i
αi = α . (4.84)

As αi ≥ 0, we have that αi = α = 0 for any i. Plugging it back to Eq. (4.74), we can

clearly observe that |gi,2⟩= βi|hi⟩ such that βi = exp (iθi). Finally, from (4.74) the inner

product ⟨gi,2|gi,1⟩ = α = 0. Thus, we can finally say that the subspaces V1 and V2 are

mutually orthogonal. Applying the same argument by considering every pair of subspaces

Vj and Vk, allows us to conclude that every pair of the subspaces are mutually orthogonal.

Thus, Bob’s Hilbert space decomposes as

HB = V1 ⊕V2 ⊕ . . .⊕VK , (4.85)

where each subspace Vs is of dimension d, that is, dimVs = d. Equivalently, Bob’s Hilbert

space can be represented as HB = (Cd)B′ ⊗HB′′ for some Hilbert space HB′′ of unknown
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but finite dimension. Another consequence of the subspaces Vs being mutually orthogonal

is that we can construct a unitary UB : HB → HB such that

UB|gi,s⟩= |i⟩B′ ⊗|s⟩B′′ , (4.86)

for i = 0, . . . ,d − 1 and s = 1, . . . ,K such that |s⟩ is the computational basis over HB′′ .

Thus, the states |ψs⟩AB transform as

(1A ⊗UB)|ψs⟩AB = |φ d
+⟩AB′ ⊗|s⟩B′′ (4.87)

for every s. Let us now look at the state ρAB and use the decomposition (4.43) to get that

(1A ⊗UB)ρAB(1A ⊗U†
B) = |φ d

+⟩⟨φ d
+|⊗ρB′′ , (4.88)

such that ρB′′ = ∑s ps|s⟩⟨s|B′′ . Note that |s⟩B′′ is the eigenbasis of ρB′′ This is exactly the

form of the state we wanted to prove (4.36). To find the desired form of Bob’s observables

(4.37), we first notice that applying UB (4.86) to Bob’s observables By gives us

UB ByU†
B =

K

∑
s,t=1

By,s,t ⊗|s⟩⟨t|B′′ , (4.89)

where By,s,t are d ×d blocks acting on (Cd)B′ . Plugging Eqs. (4.88) and (4.89) into Eq.

(4.38) for k = 1 and also recalling that Bob’s measurements are projective, we obtain

∑
s,t
(Ay ⊗By,s,t)|φ d

+⟩⟨φ d
+|⊗ pt |s⟩⟨t|B′′ = |φ d

+⟩⟨φ d
+|⊗∑

s
ps|s⟩⟨s|B′′ . (4.90)

Sandwiching the above equation with ⟨s|.|t⟩, we get that for s ̸= t

(Ay ⊗By,s,t)|φ d
+⟩= 0. (4.91)

Since, Ay is unitary, we can clearly see that By,s,t = 0 for s ̸= t. The terms of (4.90) for

s = t gives us

(Ay ⊗By,s,s)|φ d
+⟩= |φ d

+⟩. (4.92)

Due to Fact 5 proven in Appendix A, we have that By,s,s = A∗
i which on substitution to

Eq. (4.89), finally gives us the exact form of Bob’s observables (4.37)

UB BiU
†
B =

K

∑
s=1

A∗
i ⊗|s⟩⟨s|B′′ = A∗

i ⊗1B′′ . (4.93)

This ends the proof.
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4.4.2 Weaker certification

Let us now consider the quantum steering scenario as described above when the set of

Alice’s observables are not genuinely incompatible observables and thus they share a

common invariant subspace. In this case, the saturation of the quantum bound (4.1) is

insufficient to certify the Bob’s full observable but only the part of it which acts on these

subspaces. For example, consider two four-outcome observables on Alice’s side as,

A1 =
3

∑
j=0

(i) j| j⟩⟨ j|, A2 =
1

∑
j=0

(−1) j (|− j⟩⟨− j|+ i
j+1|+ j⟩⟨+ j|

)
(4.94)

where |±0⟩= (|0⟩± |1⟩)/
√

2, |±1⟩= (|2⟩± |3⟩)/
√

2. Any diagonal matrix PA of the form

PA =

(
λ112 O

O λ212

)

satisfies the commutation relation [PA,Ay] = 0 for y = 1,2 given in (4.94). Consequently,

any bipartite state of local dimension four of the form

|ψAB⟩= λ1(|00⟩+ |11⟩)+λ2(|22⟩+ |33⟩) (4.95)

such that λ 2
1 +λ 2

2 = 1 gives the quantum bound of the steering functional (4.1). Bob’s ob-

servables can be certified on the subspace where the coefficients λi ̸= 0. For instance, when

Alice’s observables are given in (4.94), then the quantum bound of steering functional (4.1)

can achieved by the two-qubit maximally entangled state and Bob’s observbales are given

by B1 = |0⟩⟨0| − i|1⟩⟨1| and B2 = |−0⟩⟨−0| − i|+0⟩⟨+0|. Thus, neither Bob’s observables

nor the state shared among the parties can be exactly certified if the set of observables

on the trusted side are not genuinely incompatible.

4.4.3 Robust certification

Let us now study the robustness of our certification scheme against experimental defects

that might not lead to achieving the exact quantum bound but a value little lower than

it. A numerical approach was suggested in [140], where a general scheme to robustly

certify steerable assemblage was devised using the semi-definite programming. However,

this approach is not applicable in our case because we consider systems of arbitrary

local dimension d. A more challenging task would be to find analytical methods to

address the considered problem. Here we find a simple technique to find robustness

bounds of certification in the quantum steering scenario, when the trusted side chooses

a family of genuinely d−outcome incompatible observables that are mutually unbiased
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bases. Specifically, the proof given below works when the steering functional is given by

(4.1) and the Alice’s observables are A1 = XdZl
d with l = 0, . . . ,d −1 and A2 = Zd. Unlike

our exact certification scheme, for simplicity we assume here that the underlying state is

pure and Bob’s observables zare projective. These two assumptions are well justified in

a non-cryptographic scenario where there is no Eve who has access to the untrusted lab

as well as the preparation device. In this scenario, the states and the measurements can

always be purified by extending the Hilbert space of the untrusted party.

Theorem 4.2. Consider that Alice and Bob perform the quantum steering experiment and

observe that the steering functional Wd,2 [ (4.1) for N = 2] attains a value close to the

quantum bound βQ = 2(d −1), that is,

Wd,2 =
d−1

∑
k=1

2

∑
y=1

〈
Ak

y ⊗Bk
y

〉
≥ 2(d −1)− ε , (4.96)

such that Bob’s measurements are projective and Alice’s observables are given by A1 =

XdZl
d with l = 0,1, . . . ,d − 1 and A2 = Zd. Let us say that this value is attained by the

state |ψAB⟩ ∈ C
d ⊗HB and observables By (i = 1,2), that are unitary with eigenvalues

1,ω , . . . ,ωd−1, acting on HB. Then, for any integer d greater than or equal to two, there

exist a unitary UB : HB → HB such that:

1. The state |ψAB⟩ is close to the ideal state |φ d
+⟩ up to a function of ε, that is,

∥∥(1A ⊗UB) |ψAB⟩− |φ+
d ⟩
∥∥≤√2(3d + 1) 4

√
2ε . (4.97)

2. Bob’s observables are close to the ideal Bob’s observables up to a function of ε, that

is, ∥∥∥UBBk
1U†

B − (XdZ−l
d )k

∥∥∥
2
≤
√

d
(√

2ε + 2
√

2(3d + 1) 4
√

2ε

)
(4.98)

and, ∥∥∥UBBk
2U†

B −Z−k
d

∥∥∥
2
≤
√

d
(√

2ε + 2
√

2(3d + 1) 4
√

2ε

)
(4.99)

with k = 0, . . . ,d −1 and ∥ · ∥2 stands for the Hilbert-Schmidt norm.

Proof. Let us first manipulate the condition (4.96) to obtain a few inequalities that are

crucial for the proof. As Ay,By are unitary, the absolute value of its expectation values

are bounded by one due to which we have that Re
(
⟨Ak

y ⊗Bk
y⟩
)
≤
∣∣⟨Ak

y ⊗Bk
y⟩
∣∣≤ 1 for all y,k.

Further as discussed before, the maximum value of the expectation values in the steering
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functional (4.96) is one. Thus, for every y = 1,2 and k = 1,2, . . . ,d −1 we have that

Re
(
⟨Ak

y ⊗Bk
y⟩
)
+ 2d −3 ≥ 2d −2− ε (4.100)

which on simplification yields us that∣∣∣⟨ψ|Ak
y ⊗Bk

y|ψ⟩
∣∣∣≥ Re

(
⟨ψ|Ak

y ⊗Bk
y|ψ⟩

)
≥ 1− ε

2
≥ 1− ε . (4.101)

Here, we also used the fact the absolute value of a complex number is always greater than

or equal to its real value, that is, |z| ≥ Re(z) for any complex number z.

Another observation that is important in our proof is that any bipartite state |ψ⟩ of

local dimension d can be expressed in the computational basis as,

|ψ⟩=
d−1

∑
i=0

αi|i⟩|bi⟩, (4.102)

where {|bi⟩} are set of d normalised vectors belonging to HB that might not be orthogonal.

Also αi are real numbers greater than or equal to zero that satisfy the normalisation

condition ∑
d−1
i=0 α2

i = 1.

The proof for bounding the distance between the actual state |ψ⟩ and the ideal state

|φ d
+⟩ is divided into two major parts. We first show that α ′

i s are close to 1/
√

d. Then, we

show that the real part of the terms ⟨i|bi⟩ are close to 1. The proof for finding robustness

of the measurements (4.98) and (4.99) is quite straightforward and follows directly from

the robustness of state (4.97) using simple manipulations.

Let us first consider the inequality (4.101) for y = 1, and then substitute into it A1 =

XdZl
d and the state (4.102), which gives

Re

(
∑

j
α j⟨ j|⟨b j|

[(
XdZl

d

)k
⊗Bk

1

]
∑

i
αi|i⟩|bi⟩

)
≥ 1− ε (4.103)

for every k. Notice that (XdZl
d)

k|i⟩ = ω
kl(i+ k−1

2 )|i+ k⟩, where the sum i+ k is modulo d.

Thus, we have that

∑
i

αiαi+kRe
(

ω
kl(i+ k−1

2 )⟨bi+k|Bk
1|bi⟩

)
≥ 1− ε . (4.104)

Using the fact that

Re
(

ω
kl(i+ k−1

2 )⟨bi+k|Bk
1|bi⟩

)
≤
∣∣∣ωkl(i+ k−1

2 )⟨bi+k|Bk
1|bi⟩

∣∣∣≤ ∣∣∣⟨bi+k|Bk
1|bi⟩

∣∣∣≤ 1, (4.105)
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where we used that |bi⟩ are normalised, we have finally have that

d−1

∑
i=0

αiαi+k ≥ 1− ε ∀k. (4.106)

Notice that the above relation holds trivially for k = 0 from the normalisation condition.

Summing the above relation over k, we obtain

d−1

∑
i,k=0

αiαi+k =

(
d−1

∑
i=0

αi

)2

≥ d(1− ε), (4.107)

which gives
d−1

∑
i=0

αi ≥
√

d
√

1− ε . (4.108)

Let us now consider the following expression,

d−1

∑
i=0

(
αi −

1√
d

)2

=
d−1

∑
i=0

α
2
i −

2√
d

d−1

∑
i=0

αi + 1

= 2

(
1− 1√

d

d−1

∑
i=0

αi

)
, (4.109)

where we used the normalisation condition ∑i α2
i = 1. The right hand side of the above

equation can be upper bounded using (4.108) and thus we can finally conclude that α ′
i s

are close to 1/
√

d by a factor of
√

2ε , that is,

d−1

∑
i=0

(
αi −

1√
d

)2

≤ 2(1−
√

1− ε)

≤ 2ε , (4.110)

where we used the fact that
√

1− ε ≥ 1− ε for any 0 ≤ ε ≤ 1 and thus,

1√
d
−
√

2ε ≤ αi ≤
1√
d
+
√

2ε . (4.111)

Considering the expression ∑
d−1
i=0

(
αiα j − 1√

d

)2
for any i, j = 0, . . . ,d−1, in a similar man-

ner as done above we can conclude that

1
d
−
√

2ε ≤ αiαi+ j ≤
1
d
+
√

2ε . (4.112)

We now consider the condition (4.101) for y = 2 by substituting A2 = Zd and the state
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(4.102)

Re

(
∑

j
α j⟨ j|⟨b j|

[
Zk

d ⊗Bk
2

]
∑

i
αi|i⟩|bi⟩

)
≥ 1− ε ∀k. (4.113)

Notice that Zk
d|i⟩= ω ik|i⟩ and thus the above equation simplifies to

d−1

∑
i=0

α
2
i Re

(
ω

ik⟨bi|Bk
2|bi⟩

)
≥ 1− ε . (4.114)

Again, using the property that

Re(ω ik⟨bi|Bk
2|bi⟩) ≤ |ω ik⟨bi|Bk

2|bi⟩| ≤ |⟨bi|Bk
2|bi⟩| ≤ 1 (4.115)

for every i,k as |bi⟩ is normalised. Thus, we can choose an index j such that

∑
i̸= j

α
2
i +α

2
j Re

(
ω

jk⟨b j|Bk
2|b j⟩

)
≥ 1− ε . (4.116)

Using the normalisation condition ∑i α2
i = 1, we arrive at

α
2
j

[
1−Re

(
ω

jk⟨b j|Bk
2|b j⟩

)]
≤ ε . (4.117)

Again using the property (4.112),and then the inequality (4.111), we arrive at

1
d

[
1−Re

(
ω

jk⟨b j|Bk
2|b j⟩

)]
≤ ε +

√
2ε

[
1−Re

(
ω

jk⟨b j|Bk
2|b j⟩

)]
≤ ε + 2

√
2ε

≤ 3
√

2ε , (4.118)

where we used the fact that the maximum of the term
[
1−Re

(
ω jk⟨b j|Bk

2|b j⟩
)]

is two.

Thus, we can finally conclude that

Re
(

ω
jk⟨b j|Bk

2|b j⟩
)
≥ 1−3d

√
2ε . (4.119)

Recall that the eigenvalues of B2 is {1,ω , . . . ,ωd−1} and thus we can consider the eigen-

decomposition of B2 using orthogonal projections Pi as

B2 =
d−1

∑
i=0

ω
iPi. (4.120)

Here Pi in general might be of rank higher than one. Plugging this decomposition into
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the condition (4.119), we have that

d−1

∑
i=0

Re
(

ω
(i+ j)k⟨b j|Pi|b j⟩

)
≥ 1−3d

√
2ε ∀k. (4.121)

Notice that the above equation holds trivially for k = 0. Taking a sum over k gives us

⟨b j|P− j|b j⟩ ≥ 1−3d
√

2ε , (4.122)

which implies that each vector |b j⟩ is close to the projection P− j which signifies the

subspace corresponding to the (d− j)−th outcome of B2. Now, let us look at the following

normalised vectors

|v j⟩=
P− j|b j⟩
∥P− j|b j⟩∥

, (4.123)

where we can infer that |v j⟩ are mutually orthogonal as well, that is, ⟨vi|v j⟩ = δi, j. Note

that, from the condition (4.122) the normalisation factor of each of the vector |v j⟩ is close

to one, that is, ∥P− j|b j⟩∥ ≥ 1−2d
√

2ε . Further, using these vectors we can express B2 as

B2 =
d−1

∑
i=0

ω
−i|vi⟩⟨vi|⊕B′

2, (4.124)

such that B′
2 is some operator acting on the support orthogonal to the subspace spanned by

the vectors {|vi⟩}. Now, there always exist a unitary UB : HB →HB such that UB|vi⟩= |i⟩
and thus,

UBB2U†
B =

d−1

∑
i=0

ω
−i|i⟩⟨i|⊕B′′

2 . (4.125)

Substituting the above form of B2 to (4.119) and then taking a sum over k, we can also

deduce that

Re
(
⟨bi|U†

B|i⟩
)
≥ 1−3d

√
2ε . (4.126)

Finally, we can compute the distance between the states (4.97) using the above results

as,

∥∥1A ⊗UB|ψ⟩− |φ+
d ⟩
∥∥ =

{
2
[
1−Re(⟨ψ|U†

B|φ
+
d ⟩)

]}1/2

=

{
2

[
1− 1√

d
∑

i
αi Re(⟨bi|U†

B|i⟩)

]}1/2

. (4.127)
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Now, using the conditions (4.108) and (4.126), we have

∑
i

αi Re(⟨bi|U†
B|i⟩) ≥ (1−3d

√
2ε)∑

i
αi

≥ (1−3d
√

2ε)
√

d
√

1− ε

≥
√

d
[
1− (3d + 1)

√
2ε

]
, (4.128)

where the inequality in the third line is a consequence of two inequalities, first,
√

1− ε ≥
1− ε for any ε ≤ 1 and second, ε ≤

√
2ε . Using the inequality (4.128), we finally obtain

the robustness of the state (4.97) as

∥∥(1A ⊗UB) |ψ⟩− |φ+
d ⟩
∥∥≤√2(3d + 1) 4

√
2ε . (4.129)

Let us now prove the inequalities (4.98) and (4.99). For simplicity, we denote the ideal

observables as B′
i and UBBiU

†
B = B̃i. We first observe that the Hilbert Schmidt norm can

be written as a vector norm using |φ d
+⟩ as∥∥∥B̃k

i − (B′
i)

k
∥∥∥

2
=

√
d
∥∥∥[B̃k

i − (B′
i)

k
]
|φ+

d ⟩
∥∥∥ . (4.130)

Then, using the triangle inequality |A+B| ≥ ||A|− |B|| and denoting |ψ̃⟩ = 1A ⊗UB|ψ⟩,
we have that∥∥∥B̃k

i |ψ̃⟩− (B′
i)

k|φ+
d ⟩
∥∥∥ =

∥∥∥B̃k
i |ψ̃⟩− (B′

i)
k|φ+

d ⟩+(B′
i)

k|φ+
d ⟩− B̃k

i |φ+
d ⟩
∥∥∥

≥
∥∥∥[B̃k

i − (B′
i)

k
]
|φ+

d ⟩
∥∥∥−∥∥∥B̃k

i (|ψ̃⟩− |φ+
d ⟩)

∥∥∥ , (4.131)

Then using using the inequality (4.130) and the fact that Bi is unitary, leads us to∥∥∥B̃k
i − (B′

i)
k
∥∥∥

2
≤
√

d
(∥∥∥B̃k

i |ψ̃⟩− (B′
i)

k|φ+
d ⟩
∥∥∥+∥∥|ψ̃⟩− |φ+

d ⟩
∥∥) . (4.132)

The first term in the right hand side of the above inequality can be computed using (4.127)

by first noting that Ak
i ⊗B′k

i |φ d
+⟩= |φ d

+⟩ and then using the fact that Ai is unitary,∥∥∥(Ak
i ⊗ B̃k

i )|ψ̃⟩− |ψ̃⟩+ |ψ̃⟩− |φ+
d ⟩
∥∥∥≤ ∥∥∥(Ak

i ⊗ B̃k
i )|ψ̃⟩− |ψ̃⟩

∥∥∥+∥∥|ψ̃⟩− |φ+
d ⟩
∥∥ . (4.133)
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Finally using the conditions (4.101) we get∥∥∥(Ak
i ⊗ B̃k

i )|ψ̃⟩− |ψ̃⟩
∥∥∥ =

∥∥∥(Ak
i ⊗Bk

i )|ψ⟩− |ψ⟩
∥∥∥

=
{

2
[
1−Re

(
⟨ψ|Ak

i ⊗Bk
i |ψ⟩

)]}1/2

≤
√

2ε . (4.134)

Using the above inequality, we get that∥∥∥(Ak
i ⊗ B̃k

i )|ψ̃⟩− |ψ̃⟩+ |ψ̃⟩− |φ+
d ⟩
∥∥∥≤√

2ε + 2
∥∥|ψ̃⟩− |φ+

d ⟩
∥∥ , (4.135)

and then using the condition (4.97) we obtain (4.98) and (4.99).

4.5 Conclusions and discussions

We proposed a one-sided device-independent scheme for a certification of a large family

of incompatible measurements with arbitrary number of outcomes termed here genuinely

incompatible. Our scheme also allows for the certification of the two-qudit maximally

entangled of any arbitrary local dimension using only two measurements on each side.

This is the first certification of mutually unbiased bases of any dimension using quantum

steering. Unlike the previous approaches in literature, our scheme is more general in

the sense that we do not assume that the state shared between the parties is pure or the

measurements on the untrusted side are projective. This makes our scheme even significant

in cryptographic scenarios where there can be an external Eve who can have access to

the state as well as the untrusted measurements. We also find a simple technique for

robust certification of a smaller family of genuinely incompatible observables including the

complete mutually unbiased bases of any prime dimension and pair of them for non-prime

dimensions. We also considered the scenario when the measurements are not genuinely

incompatible and observed that only a part of the measurement can be certified based on

the quantum state that realises the quantum bound of the steering functional.

One of the drawbacks of the 1SDI scheme as compared to fully device-independent

schemes is that one has to assume that one of the parties is trusted. However, they still

posses some of the essential features that would be useful in certification of quantum

technologies. First, if one possesses a well characterised quantum device, here it is the

measuring device of the trusted party, our scheme provides a way to compare any other

untrusted device with the trusted device using minimal resources. In other words, our

scheme given a trusted measurement device allows one to verify that any other device per-

forms the desired measurements. Second, our scheme is applicable to every 1SDI scenario
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where a client wants to verify the state supplied by an untrusted source along with the un-

trusted measuring device. Thus, one-sided quantum key distribution schemes [111], [112]

and randomness generation would be two major applications of our certification scheme.

Third, even from a practical point of view, implementing 1SDI protocols is much easier

than the DI protocols [111]. The reason being that demonstration of quantum steering is

practically more robust to noise and can be observed with detectors of lower efficiencies

than Bell violations [164], [165]. Fourth, there are a very few analytical methods dedicated

to the field of quantum certification, let alone to higher dimensional quantum certifica-

tion. Thus, purely from a mathematical perspective, we introduced techniques that can

be relevant for other schemes that aim to characterise arbitrary dimensional quantum

systems. Finally, in certain scenarios 1SDI schemes can be made device-independent if

one can device-independently characterise the measuring device of the trusted party as

pointed out recently in Ref. [62].

Some interesting follow-up problems arise from our work. The most important among

them would be whether our 1SDI scheme can be made fully device-independent, that

is, the question whether it is possible to design a scheme for certifying every set of gen-

uinely incompatible observables in a device-independent way still remains open. Another

interesting problem would be to find 1SDI scheme that can be used for certification of

incompatible observables that are not genuine incompatible. It would also be interesting

to construct steering functionals whose quantum bound is saturated by non-maximally

entangled state of arbitrary local dimension d and thus eventually finding a scheme allow-

ing for certification of every bipartite entangled state. This problem is tackled in the next

chapter of this thesis. An ambitious problem would be extend the idea of genuine incom-

patibility to non-projective schemes and then find steering functionals for certification of

POVM’s.
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Chapter 5

Certification of any pure bipartite

entangled state and optimal randomness

using quantum steering

5.1 Introduction

Generating genuine random outputs inaccessible to hackers is one of the key steps in any

key distribution protocol, be it classical or quantum. As discussed before in Chapter 2, in

classical physics the security of such protocols relies on the fact that large numbers can

not be efficiently factorized using classical computers. However, using quantum computers

such protocols can be broken in polynomial time. As was shown in [65], violation of

Bell inequalities serve as the most secure way to certify genuine randomness. However,

from a practical point of view, performing a Bell experiment is extremely challenging as

one requires very low levels of noise along with the detectors being highly efficient. As

a consequence, we need to consider scenarios where one can efficiently generate secure

randomness, easier to implement, require minimal resources and are robust to noise. We

showed in Chapter 3 that one can securely generate log2 d bits of randomness using a

quantum system of dimension d. From a foundational point of view, it still remains

an open and highly non-trivial problem whether one can securely generate the optimal

amount of randomness using a quantum system of arbitrary dimension d which is 2log2 d

bits.

In this chapter, we aim to solve the above problem by considering the one-sided device-

independent (1SDI) scenario where the required resource is quantum steering. As a matter

of fact, it was shown in [111] that quantum steering can be observed using detectors

with much lower efficiency and more noise-robust when compared to observing Bell non-
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locality. This makes 1SDI setting an ideal scenario to construct protocols for randomness

generation that can be practically implemented. Randomness generation in 1SDI setting

has been recently explored in [122], [166]. Particularly in Ref. [166], the authors construct

a protocol for generating log2 d bits of randomness from a quantum system of dimension

d in a secure way by using d-outcome projective measurements.

To this end, we first construct a family of steering inequalities maximally violated by

any pure entangled state of local dimension d and two d−outcome measurements on each

side. Using the maximal violation of the steering inequalities, we then certify any pure

bipartite entangled state and a pair of mutually unbiased bases of arbitrary dimension on

the untrusted side. This is the first instance, where any pure bipartite entangled state can

be certified using the least number of measurements required to observe quantum non-

locality, that is, using only two measurements on each side. Additionally, we demonstrate

that any rank-one extremal measurement can be certified using our protocol. Based on

these results, we finally demonstrate the certification of 2log2 d bits of randomness using

the certified entangled state of local dimension d and the certified d2−outcome extremal

measurement. We further show that for systems of dimension d = 3,4,5,6, the optimal

amount of randomness can be certified using partially entangled states. This further

strengthens our scheme as one can generate highest amount of randomness by employing

less resource in terms of entanglement.

5.2 Family of steering inequalities

Let us shortly describe again the quantum steering scenario introduced in Chapter 2 and

also in Chapter 4 in an analogous way to Bell scenario. Alice and Bob are located in

spatially separated labs. Both of them receive two subsystems from a preparation device.

Alice is trusted and performs two known d−outcome measurements on the received sub-

system labelled by x = 1,2. In our case, we consider these measurements in the observable

form as A0 = Zd and A1 = Xd which as described in Eq. (2.91) of Chapter 4, constitute

a pair of mutually unbiased bases. Bob also performs two d−outcome measurements on

his subsystem labelled by y = 1,2. They collect enough statistics to construct the joint

probability distribution {p(a,b|x,y)}. The scenario is depicted in Fig. 4.1 of Chapter 4

such that N = 2.

We now construct a family of steering inequalities which is expressed in the observable

picture and using a collection of positive non-zero numbers ααα = {α0,α1, . . . ,αd−1} such

that ∑
d−1
i=0 α2

i = 1, as

I2,d,2(ααα) =
d−1

∑
k=1

〈
Ak

0 ⊗Bk|0 + γ(ααα)Ak
1 ⊗Bk|1 + δk(ααα)Ak

0

〉
≤ βL(ααα), (5.1)
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where the coefficients γ(ααα) and δk(ααα) are given by

γ(ααα) = d

 d−1

∑
i, j=0
i ̸= j

αi

α j


−1

, δk(ααα) = −γ(ααα)

d

d−1

∑
i, j=0
i ̸= j

αi

α j
ω

k(d− j). (5.2)

Notice that γ(ααα) ≥ 0 for any choice of ααα and δk(ααα) are in general complex. Alice is

trusted (or fully characterised), and her measurements are expressed in the observable

picture as

A0 = Zd =
d−1

∑
i=0

ω
i|i⟩⟨i|, A1 = Xd =

d−1

∑
i=0

|i+ 1⟩⟨i|. (5.3)

Recall that the set of vectors {|i⟩}d−1
i=0 represents the computational basis in C

d. It is

worth noting here that the expression I2,d,2(ααα) (2.67) is real for any choice of ααα . This

is because Bd−k|i = (Bk|i)
† for any generalised observable (see Eq. (2.22) of Chapter 2)

and also that the coefficient δd−k(ααα) = δ ∗
k (ααα) for any k. Let us now express the steering

functional in (2.67) using the joint probability picture as

I2,d,2(ααα) = d
d−1

∑
a,b=0

ca,b p(a,b|0,0) + γ(ααα)

d
d−1

∑
a,b=0

ca,b p(a,b|1,1)−
d−1

∑
i,a=0
i̸=a

αi
p(a|0)

αa


− 1− γ(ααα)−δ0(ααα), (5.4)

such that

c(a,b) =

1 if a⊕d b = 0

0 otherwise ,
(5.5)

where a⊕d b represents a+ b modulo d. To arrive at the above expression we used the

fourier transform to express the expectation values in terms of the joint probabilities as

defined in (4.4). Note from Eq. (5.2) that δ0(ααα) = −1, which implies that

I2,d,2(ααα) = d
d−1

∑
a,b=0

ca,b p(a,b|0,0)+ γ(ααα)

(
d

d−1

∑
a,b=0

ca,b p(a,b|1,1)−
d−1

∑
i=0

αi

d−1

∑
a=0

p(a|0)
αa

)
.

(5.6)

Using the above expression of the steering functional, let us now compute the classical

bound βL(ααα) of the above steering inequality.
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5.2.1 Classical bound

As derived before in Eq. (4.7) of Chapter 4, to find the classical bound of a steering

functional, we need to consider an LHS model such that the joint probability distribution

can be expressed as

p(a,b|x,y) = ∑
λ

p(λ )p(a|x,ρλ )p(b|y,λ ), (5.7)

where λ denotes some unknown variables the collection of which is denoted by λ . These

variables occur with a probability distribution p(λ ). Here p(a|x,ρλ ) is the local proba-

bility of Alice obtaining an outcome a given the input x and some quantum state ρλ acts

on C
d 1 and p(b|y,λ ) is the local probability distribution depending on some unknown

variable λ . For such a probability distribution (5.7), the steering functional from Eq.

(5.6) can be expressed as,

I2,d,2(ααα) = d
d−1

∑
a=0

∑
λ

p(λ )p(a|0,ρλ )p(d −a|0,λ )

+ γ(ααα)

(
d

d−1

∑
a=0

∑
λ

p(λ )p(a|1,ρλ )p(d −a|1,λ )−∑
i

αi

d−1

∑
a=0

∑
λ

p(λ )p(a|0,ρλ )

αa

)
,

(5.8)

where to obtain the last term, we used the no-signalling conditions given in Eq. (2.53) of

Chapter 2 such that

p(a|0) = ∑
b

p(a,b|0,y) ∀y. (5.9)

Notice that in the above expression we used the fact that ∑b p(b|y,λ ) = 1 for any λ

and then denoted ρA = ∑λ p(λ )ρλ . Let us first consider the first two terms in Eq. (5.8)

and find their upper bound in the following way,

I2,d,2(ααα) ≤ d
d−1

∑
a=0

∑
λ

p(λ )max
a

p(a|0,ρλ )

+ γ(ααα)

(
d

d−1

∑
a=0

∑
λ

p(λ )max
a

p(a|1,ρλ )−∑
i

αi

d−1

∑
a=0

∑
λ

p(λ )p(a|0,ρλ )

αa

)
,

(5.10)

where y = 0,1 and to obtain the first inequality we used the fact that ∑a p(d−a|y,λ ) = 1

1This is due to the fact that Alice is trusted and is known to perform quantum measurments on some
quantum state.
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for any y and λ and then used the mathematical identity ∑i siwi ≤ maxi{si} whenever

wi ≥ 0 and ∑i wi = 1. Now as was done before in Chapter 4 [see Eq. (4.12)] and using the

fact that ∑λ p(λ ) = 1, we get that

I2,d,2(ααα) ≤ max
ρ

[
d max

a
{p(a|0,ρ)}+ γ(ααα)

(
d max

a
{p(a|1,ρ)}−

d−1

∑
i=0

αi

d−1

∑
a=0

p(a|0,ρ)
αa

)]
.

(5.11)

Notice the above expression is convex in the state ρ . As a consequence, the maximisation

in the above expression can be taken over pure states |ψ⟩ ∈ C
d. Now expressing the

state |ψ⟩ in the computational basis of Cd as |ψ⟩= ∑i ηi|i⟩, and then plugging in Alice’s

observables, A0 = Zd and A1 = Xd, the formula (5.11) can be rewritten as

I2,d,2(ααα) ≤ max
|η0|,...,|ηd−1|

|η0|2+...+|ηd−1|2=1

d max
a

{|ηa|2}+ γ(ααα)

(d−1

∑
i=0

|ηi|

)2

−
d−1

∑
i=0

αi

d−1

∑
a=0

|ηa|2

αa

 .

(5.12)

Given any arbitrary collection of positive numbers ααα such that the sum of the squares of

those numbers is one, it is not straightforward to find this bound. However, we can show

here that the right hand side of the above formula is strictly less than d for any ααα . We

prove this claim using the technique of contradiction. Let us first consider the term inside

the square brackets of the above expression (5.12) and show that it is always negative.

For this, let us recall the Cauchy–Schwarz inequality for positive real numbers also known

as Sedrakyan’s inequality [167],

(∑i ui)2

∑i vi
≤ ∑

i

u2
i

vi
. (5.13)

Now, substituting ui = |ηi| and vi = αi, we can rewrite the above expression as(
d−1

∑
i=0

|ηi|

)2

≤
d−1

∑
i=0

αi

d−1

∑
j=0

|ηi|2

αi
. (5.14)

Thus, we can conclude from (5.12) that the the classical bound of I2,d,2(ααα) is less than or

equal to d, that is,

I2,d,2(ααα) ≤ d max
a

{|ηa|2} ≤ d. (5.15)

We now show that the above inequlity can not be saturated by L.H.S. models. To this

end, let us assume that I2,d,2(ααα) = d. This implies that the term inside the square brackets
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in (5.12) vanishes and thus,(
d−1

∑
i=0

|ηi|

)2

=
d−1

∑
i=0

αi

d−1

∑
j=0

|ηi|2

αi
. (5.16)

along with the first term

max
a

{|ηa|2}= 1. (5.17)

Recall that equality holds in the Cauchy–Schwarz inequality (5.13) iff ui = κvi for all

i where κ is some real coefficient. Thus, in (5.16) αi = κ|ηi| for each i. Using the

condition ∑i α2
i = ∑i |ηi|2 = 1 and that αi > 0 for any i, imposes that κ = 1, and therefore

αi = |ηi|. But αi < 1 for any i which contradicts the second condition (5.17). Thus, our

initial assumption is wrong which implies that the maximal classical value of the steering

function I2,d,2(ααα) is strictly less than d for arbitrary collection of positive numbers αi such

that α2
0 + . . .+α2

d−1 = 1. Now, we move onto finding the quantum bound of the steering

functional in (2.67).

5.2.2 Quantum bound

Here we show that the maximum value of the steering functional I2,d,2(ααα) in Eq. (5.1)

obtainable using quantum states and measurements is given by βQ(ααα) = d. The result is

stated below as a mathematical theorem.

Theorem 5.1. For any collection of positive real numbers ααα = {α0,α1, . . . ,αd−1} such that

α2
0 + . . .+α2

d−1 = 1, the quantum bound of the steering functional I2,d,2(ααα) is independent

of ααα and is given by βQ(ααα) = d.

Proof. Let us begin by introducing the steering operator corresponding to the steering

functional I2,d,2(ααα) in (5.1),

Î2,d,2(ααα) =
d−1

∑
k=1

(
Ak

0 ⊗Bk|0 + γ(ααα)Ak
1 ⊗Bk|1 + δk(ααα)Ak

0

)
. (5.18)

Recall that A0 = Zd and A1 = Xd and B′
is are any d-outcome generalised observables

corresponding to the measurements of Bob. Our aim is to show that

βQ(ααα) = max
ρAB,Bi

Tr
[
Î2,d,2(ααα)ρAB

]
= d, (5.19)

where ρAB acting on C
d ⊗HB represents some quantum state shared between Alice and

Bob and HB represents the Hilbert space of Bob of arbitrary but finite dimension. As the

expression (5.19) is linear, we can optimise this over pure states |ψAB⟩ ∈ Cd ⊗HB, that
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is,

max
|ψAB⟩,Bi

⟨ψAB|Î2,d,2|ψAB⟩= d. (5.20)

For simplicity, in the rest of the proof we drop the subscript AB from the state. We first

show that the expectation value of the steering operator for any |ψ⟩ is upper bounded by

d and then find a quantum realisation that achieves this bound. For this purpose, let us

break the steering operator Î2,d,2(ααα) into two parts as

Î2,d,2(ααα) =
d−1

∑
k=1

Ak
0 ⊗Bk|0 + S(ααα) (5.21)

such that

S(ααα) =
d−1

∑
k=1

[
γ(ααα)Ak

1 ⊗Bk|1 + δk(ααα)Ak
0

]
. (5.22)

Notice that the above operator is hermitian which is due to the fact that Ad−k
0 = (Ak

0)
†

and Bd−k|0 = B†
k|0 [see Eq. (2.22)]. It is trivial to see that the absolute values of the

expectation value of each term in the first part of operator in Eq. (5.21) is less than or

equal to 1 as A0 is unitary and B†
k|0Bk|0 ≤ 1 for any k [see Eq. (2.23)], that is,

|⟨ψ|Ak
0 ⊗Bk|0|ψ⟩| ≤ 1, (5.23)

for any |ψ⟩ and k = 1, . . . ,d −1. This allows us to conclude from (5.21) that

⟨ψ|Î2,d,2(ααα)|ψ⟩ ≤ d −1+ ⟨ψ|S(ααα)|ψ⟩. (5.24)

Now, we demonstrate for any |ψ⟩ that ⟨ψ|S(ααα)|ψ⟩ ≤ 1. For this purpose, let us first

notice that the state |ψ⟩ belongs to Cd ⊗HB. Thus, as discussed before in Chapter 2 any

such state can be written using the computational basis in Cd as

|ψABE⟩=
d−1

∑
i=0

λi|i⟩A|ei⟩B, (5.25)

where λi are real and non-negative numbers such that λ 2
0 + . . .+ λ 2

d−1 = 1, and |ei⟩ are

vectors belonging to HB which are not orthogonal in general. Plugging in this state, we

find the expectation value of S(ααα) as

⟨ψ|S(ααα)|ψ⟩ =
d−1

∑
k=1

d−1

∑
i, j=0

[
γ(ααα)λiλ j⟨i|Ak

1| j⟩⟨ei|Bk|1|e j⟩+ δk(ααα)λiλ j⟨i|Ak
0| j⟩⟨ei|e j⟩

]
=

d−1

∑
k=1

d−1

∑
i=0

[
γ(ααα)λiλi−k⟨ei|Bk|1|ei−k⟩+ δk(ααα)λ 2

i ω
ik
]

, (5.26)
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where to arrive at the second equality, we plugged in the explicit forms of A′
is and then

used the fact that Zk
d|i⟩ = ωki|i⟩ and Xk

d |i⟩ = |i+ k⟩. Focusing on the second term of the

above expression and plugging in δ0(ααα) = −1, we obtain that

d−1

∑
k=1

d−1

∑
i=0

δk(ααα)λ 2
i ω

ik = 1+
d−1

∑
k=0

d−1

∑
i=0

δk(ααα)λ 2
i ω

ik. (5.27)

Using then the explicit form of δk(ααα) given in Eq. (5.2), we arrive at

d−1

∑
k=1

d−1

∑
i=0

δk(ααα)λ 2
i ω

ik = 1+ γ(ααα)− γ(ααα)
d−1

∑
i, j=0

αi

α j
λ

2
j , (5.28)

where we also used the identity

d−1

∑
k=0

ω
k(i− j) = dδi j. (5.29)

Notice that since γ(ααα) is real, the above expression (5.28) is also real. Since, S(ααα) is a

Hermitian operator we have that any expectation value of this operator is real. Plugging

the relations (5.28) and remembering that λ ′
i s are also real, we can rewrite Eq. (5.26) as

⟨ψ|S(ααα)|ψ⟩= 1+ γ(ααα)
d−1

∑
k=0

d−1

∑
i=0

λiλi−kRe
(
⟨ei|Bk|1|ei−k⟩

)
− γ(ααα)

d−1

∑
i, j=0

αi

α j
λ

2
j . (5.30)

Exploiting the fact that Re(z) ≤ |z| for any z ∈C and that B†
k|1Bk|1 ≤ 1 for any k, we get

that Re
(
⟨ei|Bk|1|ei−k⟩

)
≤ 1, Thus, we finally arrive at

⟨ψ|S(ααα)|ψ⟩ ≤ 1+ γ(ααα)

(d−1

∑
i=0

λi

)2

−
d−1

∑
i=0

αi

d−1

∑
j=0

λ 2
j

α j

 . (5.31)

Now, using the Cauchy-Schwarz inequality (5.13) in which we substitute ui = λi and

vi = αi, we can conclude that the term inside the square brackets of the above expression

is less than or equal to 0. Thus, we can finally conclude that the expectation value of

S(ααα) for any state |ψ⟩ is less than or equal to 1. that is,

⟨ψ|S(ααα)|ψ⟩ ≤ 1 (5.32)

and hence, putting it back into (5.24), we obtain

⟨ψ|Î2,d,2(ααα)|ψ⟩ ≤ d, (5.33)
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for any |ψ⟩ ∈ C
d ⊗HB. It is also interesting to note here that the relation (5.32) is

saturated when (
d−1

∑
i=0

λi

)2

=
d−1

∑
i=0

αi

d−1

∑
j=0

λ 2
j

α j
. (5.34)

Now, using the fact that Sedrakyan’s inequality (5.13) is saturated if ui = κvi for some

κ ∈C. Substituting ui = λi and vi = αi in the Sedrakyan’s inequality (5.13), we see that

λi = καi for all i. Now, using normalisation we get that the only solution of Eq. (5.34) is

λi = eiφ αi for some arbitrary phase φ . As αi > 0, we get that |λi|> 0 for all i. Thus, we

can simply conclude that any state saturating the inequality (5.32) is locally full-rank.

Let us now consider a family of states parametrized by the collection of positive real

coefficients ααα ,

|ψ(ααα)⟩AB =
d−1

∑
i=0

αi|i⟩A|i⟩B, (5.35)

where the local bases of (5.35) is the computational basis of Cd. Notice that the above

state is a valid normalised quantum state ∑
d−1
i=0 α2

i = 1. Notice also that every pure

bipartite entangled state of Schmidt rank d can be expressed as these states (5.35) up to

local unitary transformations. Now, consider Bob’s observables to be projective and to

satisfy

B0 = Z∗
d , B1 = Xd . (5.36)

Plugging this state and the observables in the steering functional in (5.1), we get that

I2,d,2(ααα) = d. This completes the proof.

Notice that the maximal violation of the steering inequality (5.1) by a state |ψAB⟩
and Bob’s observables Bi can only be achieved iff the inequalities (5.40) and (5.43) are

saturated. Thus, we arrive at the following conditions

⟨ψ|Ak
0 ⊗Bk|0|ψ⟩= 1 (5.37)

for any k = 1, . . . ,d −1 as well as

⟨ψ|S(ααα)|ψ⟩= 1, (5.38)

where S(ααα) is defined in Eq. (5.22). Now, consider the Cauchy-Schwarz inequality for
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vectors given as

Re(⟨u|v⟩) ≤ |⟨u|v⟩| ≤ |⟨u|u⟩⟨v|v⟩| . (5.39)

From the condition (5.37), let us now substitute |u⟩ = |ψ⟩ and |v⟩ = Ak
0 ⊗Bk|0|ψ⟩ in the

above inequality (5.39). Then using the fact that B†
k|0Bk|0 ≤ 1, we get that both the L.H.S.

and R.H.S. of (5.13) are equal to one. This can only happen iff |u⟩ and |v⟩ are linearly

dependent, that is, |u⟩= λ |v⟩ for some λ ∈C. As both |u⟩ and |v⟩ are normalised, we get

that |u⟩= eiφ |v⟩ where φ is some arbitrary phase. Putting it back into Eq. (5.37), we get

that φ = 0. As a consequence, we obtain the following relation

Ak
0 ⊗Bk|0 |ψAB⟩= |ψAB⟩ (k = 1, . . . ,d −1). (5.40)

Let us now consider the condition (5.38) and express S(ααα) as S(ααα) = S(ααα)+ − S(ααα)−

where S(ααα)+ is a positive matrix spanned by the eigenvectors corresponding to the pos-

itive eigenvalues of S(ααα) and S(ααα)− is a positive matrix spanned by the eigenvectors

corresponding to the negative eigenvalues of S(ααα). Plugging this decomposition in (5.38),

we get that

⟨ψ|S(ααα)+|ψ⟩= 1+ ⟨ψ|S(ααα)−|ψ⟩ (5.41)

Notice now from Eq. (5.32) that the maximum eigenvalue of S(ααα) is one and as a con-

sequence ⟨ψ|S(ααα)+|ψ⟩ ≤ 1 and also ⟨ψ|S(ααα)2
+|ψ⟩ ≤ 1. Thus, from the above condition

(5.41), we can conclude that ⟨ψ|S(ααα)−|ψ⟩= 0 which implies that S(ααα)−|ψ⟩= 0 as S(ααα)−

is positive. As a consequence, we also have that ⟨ψ|S(ααα)+|ψ⟩ = 1. Going back to the

Cauchy-Schwarz inequality (5.39), we substitute |u⟩ = |ψ⟩ and |v⟩ = S(ααα)|ψ⟩. Let us

now compute |⟨v|v⟩| by using the decomposition of S(ααα) and also using the fact that it is

hermitian

⟨ψ|S(ααα)|ψ⟩ ≤ ⟨ψ|S(ααα)2|ψ⟩ = ⟨ψ|
(
S(ααα)2

++ S(ααα)2
−+ S(ααα)+S(ααα)−+ S(ααα)−S(ααα)+

)
|ψ⟩

= ⟨ψ|S(ααα)2
+|ψ⟩ ≤ 1 (5.42)

where to get to the second line of the above expression we used that S(ααα)−|ψ⟩= 0. Now,

as concluded before, we get that |u⟩= eiφ |v⟩ where φ is some arbitrary phase. Now, again

using Eq. (5.38) thus we finally arrive at the relation

(
d−1

∑
k=1

[
γ(ααα)Ak

1 ⊗Bk|1 + δk(ααα)Ak
0

])
|ψAB⟩= |ψAB⟩. (5.43)
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The relations (5.40) and (5.43) would be particularly useful for certification of the quantum

states and measurements that achieve the maximal violation of the steering functional

I2,d,2. Let us now show that observation of maximal violation of our steering inequalities

allows us to certify the state shared between Alice and Bob and also the measurements

performed by Bob.

5.3 ISDI certification of all pure bipartite entangled states

Here, we present the 1SDI certification of all pure bipartite entangled states using the

saturation of the quantum bound of the steering functional (5.1) I2,d,2 = βQ. Let us first

recall that we can only characterise Bob’s observables on the support of his local state ρB.

Thus, without loss of generality we assume it to be full rank. This can also be understood

as that Bob’s observables and local state ρB act on the same Hilbert space HB.

Theorem 5.2. Consider that Alice and Bob perform the quantum steering experiment and

observe that the steering functional

I2,d,2(ααα) =
d−1

∑
k=1

〈
Ak

0 ⊗Bk|0 + γ(ααα)Ak
1 ⊗Bk|1 + δk(ααα)Ak

0

〉
, (5.44)

attains the maximal quantum value βQ = d where d denotes the number of outcomes of

each measurement. Alice is trusted and her measurements are given by A0 = Zd and

A1 = Xd [cf. Eq. (2.91)]. Let us say that the maximal quantum bound is achieved using

the state ρAB acting on Cd ⊗HB and Bob’s generalised observables Bi (i ∈ {1,2}) acting

on HB. Then, the following statements hold true for any integer d ≥ 2 :

1. Bob’s measurements are projective. Equaivalently, the operators Bk|i for all k, i are
unitary and Bk|i = Bk

1|i ≡ Bk
i .

2. Bob’s Hilbert space HB admits a decomposition into a d−dimensional Hilbert space

C
d)B′ and some unknown but finite dimensional auxiliary Hilbert space HB′′,

HB = (Cd)B′ ⊗HB′′ . (5.45)

3. There exists a local unitary on Bob’s side UB : HB → HB such that

(1A ⊗UB)ρAB(1A ⊗U†
B) = |ψ(ααα)⟩⟨ψ(ααα)|AB′ ⊗ρ

aux
B′′ . (5.46)

where |ψ(ααα)⟩ is the state given in (5.35) and

∀i, UB BiU
†
B = A∗

i ⊗1B′′ , (5.47)
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where B′′ denotes Bob’s auxiliary system.

Proof. The proof is divided into two major steps. In the first step, we exploit the relations

(5.40) and (5.43) to find Bob’s observables that result in the maximal violation of the

steering inequality (5.1). Again, using the relations (5.40) and (5.43) and the derived

Bob’s observables, we find the family of states shared beween Alice and Bob parametrised

by the collection of numbers ααα . For our proof, as was discussed before in Chapter 2,

the state shared between Alice and Bob ρAB is purified by adding an ancillary system E

possessed by some external agent, named Eve, such that ρAB = TrE(|ψABE⟩⟨ψABE |) where

|ψABE⟩ ∈Cd ⊗HB ⊗HE .

Bob’s observables

Before finding the explicit forms of Bob’s observables that maximally violate our steering

inequality (5.1), we show that these generalised observables must correspond to projective

measurements. Let us concentrate on Bob’s first observable and follow the exact same

technique as was used in Chapter 4 from Eqs . (4.38) to (4.42) as the relations (5.40) and

(4.38) are identical. First, we apply Zd−k
d ⊗Bd−k|0 to the relation (5.23) and then recalling

that Zd is unitary as well as that Bd−k|0 = B†
k|0 from (2.22), we obtain that

1AE ⊗ (B†
k|0Bk|0)|ψABE⟩= |ψABE⟩. (5.48)

Taking a partial trace over the subsystems AE, we arrive at the following condition

(B†
k|0Bk|0)ρB = ρB, (5.49)

where ρB = TrAE [|ψABE⟩⟨ψABE |]. Recall that ρB is full-rank and thus it is non-singular and

invertible. This allows us to immediately conclude that B†
k|0Bk|0 = 1B and consequently

Bk|0B†
k|0 = 1B, and thus Bk|0 is unitary for any k = 0, . . . ,d − 1. Now using Fact 1, we

can conclude that Bob’s measurements are projective, that is, the positive semi-definite

operators representing the measurement are mutually orthogonal projectors. Further, the

fact that B0 is projective imposes that Bk|0 are powers of B1|0 [see Chapter 2]. As a

consequence, from now on we can simply denote Bk|0 = Bk
0, where B0 ≡ B1|0.

Let us now focus on Bob’s second observable and show that it corresponds to a pro-

jective measurement too. For this purpose, we refer to the second condition (5.32) and

then consider the general representation of any state |ψABE⟩ ∈ Cd ⊗HB ⊗HE as in Eq.

(5.25)

|ψABE⟩= ∑
i

λi|i⟩A|ei⟩BE , (5.50)

where λi ≥ 0 and |ei⟩BE are vectors that are in general not orthogonal. Now recall that,
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we showed in the previous subsection we showed that any state satisfying the condition

(5.32) must be locally full-rank. Thus, in the state (5.50), λi > 0 for all i. For simplicity,

from here on we drop all the subscripts in the notation of the state. Now, by plugging

this state in the condition ⟨ψABE |S(ααα)|ψABE⟩= 1, we obtain [cf. Eq. (5.30)]

d−1

∑
k=0

d−1

∑
i=0

λiλi−kRe
(
⟨ei|[Bk|1 ⊗1E ]|ei−k⟩

)
=

d−1

∑
i, j=0

αi

α j
λ

2
j . (5.51)

Dropping the identity acting on Eve, 1E , for the time being and then using the inequality

(5.13) with in ui = λi and vi = αi, we arrive at

d−1

∑
k=0

d−1

∑
i=0

λiλi−kRe
(
⟨ei|Bk|1|ei−k⟩

)
≥

(
d−1

∑
i=0

λi

)2

. (5.52)

Notice that the term on the right hand side of the above inequality can be expanded as(
∑

d−1
i=0 λi

)2
= ∑

d−1
k=0 ∑

d−1
i=0 λiλi−k. As a consequence, we immediately obtain that

d−1

∑
k=0

d−1

∑
i=0

λiλi−kRe
[(
⟨ei|Bk|1|ei−k⟩

)
−1
]
≥ 0. (5.53)

Again, recalling that B†
k|1Bk|1 ≤ 1B for any k allows us to conclude that Re

(
⟨ei|[Bk|1|ei−k⟩

)
≤

1 for any i and k. However, λi being non-negative in the inequality (5.52), forces the term

inside the square brackets to be 0 for all i,k. Thus, we finally obtain

Re
(
⟨ei|Bk|1|ei−k⟩

)
= 1. (5.54)

As the states |ei⟩ are normalised, the above condition is satisfied iff Bk|1 ⊗ 1E |ei−k⟩ =
|ei⟩. For this purpose, we again employ the Cauchy-Schwarz inequality (5.39) where

|u⟩ = |ei⟩ and |v⟩ = Bk|1|ei−k⟩ and then the fact that B†
k|1Bk|1 ≤ 1 from which we obtain

Bk|1 ⊗1E |ei−k⟩ = eiφ |ei⟩ for some arbitrary phase φ . Again using Eq. (5.54), we get that

φ = 0. Now, we multiply this equation with its conjugate transpose, to observe that

⟨ei−k|[B†
k|1Bk|1 ⊗1E ]|ei−k⟩= 1. (5.55)

for any i,k. This implies that for any k the above condition is satisfied for any i. As a

consequence, we arrive at a simple relation for any k

⟨ei|[B†
k|1Bk|1 ⊗1E ]|ei⟩= 1 (i = 0, . . . ,d −1). (5.56)

Tracing out Eve’s subsystem, further implies that Tr[B†
k|1Bk|1ρ i

B] = 1 for all i, where ρ i
B =
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TrE [|ei⟩⟨ei|BE ]. As ρ i
B is positive and again recalling that B†

k|1Bk|1 ≤ 1B for any k allows us

to conclude that this condition holds true iff B†
k|1Bk|1 is an identity acting onto the support

of ρ i
B. However, notice that the support of Bob’s reduced state ρB = TrAE [|ψ⟩⟨ψ|ABE ] is

in-fact composed of the supports of ρ i
B’s. To see this, we use the decomposition of the

state |ψ⟩ABE given in (5.50) to obtain that

ρB = TrAE

[
d−1

∑
i, j=0

λiλ j|i⟩⟨ j|⊗ |ei⟩⟨e j|

]

= TrE

[
d−1

∑
i=0

λ
2
i |ei⟩⟨ei|

]
=

d−1

∑
i=0

λ
2
i ρ

i
B. (5.57)

As a consequence, B†
k|1Bk|1 is an identity that acts on the entire support of Bob’s reduced

state ρB, and thus we finally have that B†
k|1Bk|1 = 1B and consequently Bk|1B†

k|1 = 1B for all

k. Again, using Fact 1, we can conclude that the second Bob’s observable corresponds to

projective measurements and hence from here on, we denote Bk|1 = Bk
1, where B1 ≡ B1|1.

This completes the part of the proof to show that the maximal violation of the steering

inequality (5.1) can only be achieved when Bob’s both measurements are projective.

Now, we move onto finding the explicit form of Bob’s both observables. Let us first

consider the relation (5.43) and then apply 1A ⊗B1 to it, which after rearranging some

terms gives us

γ(ααα)
d−1

∑
k=1

(
Xk

d ⊗Bk+1
1

)
|ψABE⟩=

[(
1A −

d−1

∑
k=1

δk(ααα)Zk
d

)
⊗B1

]
|ψABE⟩. (5.58)

To simplify the notation, let us introduce the following operator

ZA := 1A −
d−1

∑
k=1

δk(ααα)Zk
d . (5.59)

Now, an application of Z−1
d ⊗1B to the left hand side of Eq. (5.58) gives us

γ(ααα)
d−1

∑
k=1

(
Z−1

d Xk
d ⊗Bk+1

1

)
|ψABE⟩= (ZAZ−1

d ⊗B1)|ψABE⟩, (5.60)

where we can interchange the positioning of Zd and ZA as they commute. Then, by using

the commutation relation ZdXd = ωXdZd, we can rewrite Eq. (5.60) as

γ(ααα)
d−1

∑
k=1

(
ω

−kXk
d ⊗Bk+1

1

)(
Z−1

d ⊗1B
)
|ψABE⟩= (ZA ⊗B1)

(
Z−1

d ⊗1B
)
|ψABE⟩, (5.61)
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where we again used the fact that Z−1
d ⊗1B and 1A⊗B1 commute. Now, using Eq. (5.40)

for k = 1, that is,
(
Z−1

d ⊗1B
)
|ψABE⟩= 1A ⊗B0|ψABE⟩, we finally get

γ(ααα)
d−1

∑
k=1

(
ω

−kXk
d ⊗Bk+1

1 B0

)
|ψABE⟩= (ZA ⊗B1B0)|ψABE⟩. (5.62)

Applying B0 from the left hand side of the expression (5.58), we obtain

γ(ααα)
d−1

∑
k=1

(
Xk

d ⊗B0Bk+1
1

)
|ψABE⟩= (ZA ⊗B0B1)|ψABE⟩. (5.63)

In the next step, we multiply ω−1 to Eq. (5.62) and then subtract it from Eq. (5.63),

which immediately gives us

γ(ααα)
d−1

∑
k=1

[
Xk

d ⊗
(

B0Bk+1
1 −ω

−(k+1)Bk+1
1 B0

)]
|ψABE⟩= [ZA ⊗ (B0B1 −ω

−1B1B0)]|ψABE⟩.

(5.64)

Let us again consider the relation (5.43) and multiply it by X−1
d ⊗ 1B from the left

hand side, which gives us

d−1

∑
k=1

(
γ(ααα)Xk−1

d ⊗Bk
1

)
|ψABE⟩= (X−1

d ZA ⊗1B)|ψABE⟩. (5.65)

Then, after multiplying 1A ⊗B0 to the above equation and then taking into account that

it commutes with Xd ⊗1B, it not difficult to see that

d−1

∑
k=1

(
γ(ααα)Xk−1

d ⊗B0Bk
1

)
|ψABE⟩= (X−1

d ZA ⊗B0)|ψABE⟩. (5.66)

Now, let us exploit the relation (5.40) for k = 1, that is,
(
Z−1

d ⊗1B
)
|ψABE⟩= 1A⊗B0|ψABE⟩

and then using the fact that ZA and Zd commutes, we finally get,

d−1

∑
k=1

(
γ(ααα)Xk−1

d ⊗B0Bk
1

)
|ψABE⟩= (X−1

d Z−1
d ZA ⊗1B)|ψABE⟩. (5.67)

Next, we apply Z−1
d ⊗1B to Eq. (5.65) from the left hand side to obtain,

d−1

∑
k=1

(
γ(ααα)Z−1

d Xk−1
d ⊗Bk

1

)
|ψABE⟩= (Z−1

d X−1
d ZA ⊗1B)|ψABE⟩. (5.68)

Again, by employing the relation ZdXd =ωXdZd, the above equation (5.68) can be rewriten
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as

d−1

∑
k=1

(
γ(ααα)ω−(k−1)Xk−1

d ⊗Bk
1B0

)
|ψABE⟩=

(
ωX−1

d Z−1
d ZA ⊗1B

)
|ψABE⟩. (5.69)

Notice that in the left hand side of the above equation, we again exploited the relation

(5.40) for k = 1, that is,
(
Z−1

d ⊗1B
)
|ψABE⟩ = 1A ⊗B0|ψABE⟩. Now we apply ω−1 to the

above equation (5.69) and then subtract it from Eq. (5.66) to get

γ(ααα)
d−1

∑
k=1

[
Xk−1

d ⊗
(

B0Bk
1 −ω

−kBk
1B0

)]
|ψABE⟩= 0, (5.70)

which can be divided up into two parts by separating the term corresponding to k = 1, as

follows

γ(ααα)
d−1

∑
k=2

[
Xk−1

d ⊗
(

B0Bk
1 −ω

−kBk
1B0

)]
|ψABE⟩= −γ(ααα)

(
B0B1 −ω

−1B1B0
)
|ψABE⟩. (5.71)

Notice that the left hand side of the expressions (5.64) and (5.71) are identical, which

immediately allows us to get that

ZA ⊗ (B0B1 −ω
−1B1B0)|ψABE⟩= −γ(ααα)

(
B0B1 −ω

−1B1B0
)
|ψABE⟩, (5.72)

which after a simple rearrangement of the terms and expanding ZA from (5.59) yields,[
(1+ γ(ααα))1A −

d−1

∑
k=1

δk(ααα)Zk
d

]
⊗
(
B0B1 −ω

−1B1B0
)
|ψABE⟩= 0. (5.73)

As proven in Observation 5.1 stated in Appendix C, the operator [1+γ(ααα)]1−∑
d−1
k=1 δk(ααα)Zk

d

is invertible. Thus, taking trace over the subsystems A,E allows us to finally conclude

that

(B0B1 −ω
−1B1B0)ρB = 0, (5.74)

where ρB = TrAE |ψABE⟩⟨ψABE |. Recalling that ρB is full-rank and thus invertible, the

above expression (5.74) implies the following commutation relation between Bob’s both

observables

B0B1 = ω
−1B1B0. (5.75)

As stated in Fact 2 which was proven in Ref. [31], the above relation along with the fact

that Bd
0 = Bd

1 = 1B imposes that Bob’s Hilbert space decomposes into a tensor product

HB = (Cd)B′ ⊗HB′′ where HB′′ is some Hilbert space of unknown but finite dimension.
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Along with it, there also exists a unitary transformation UB : HB → HB such that

UB B0U†
B = Z∗

d ⊗1B′′ , UB B1U†
B = Xd ⊗1B′′ , (5.76)

where 1B′′ is the identity acting on HB′′ . This completes the characterisation of Bob’s

observables that maximally violate the steering inequality (5.1).

The state

We finally have all the tools required to find the state that maximally violates the steering

inequality (5.1). As was derived in the previous part, up to a local unitary Bob’s both

observables are the ideal ones (5.76). Thus, we can rewrite the relation (5.23) and (5.32)

by plugging in Bob’s derived observables as

(Zd ⊗Z†
d ⊗1B′′E)|ψ̃ABE⟩= |ψ̃ABE⟩, (5.77)

and

d−1

∑
k=1

[
γ(ααα)Xk

d ⊗Xk
d ⊗1B′′E + δk(ααα)Zk

d ⊗1BE

]
|ψ̃ABE⟩= |ψ̃ABE⟩, (5.78)

where |ψ̃ABE⟩=UB ⊗1AE |ψABE⟩. From here on, for convenience we drop the all the iden-

tities from the above relations. As concluded in the previous part of the proof that Bob’s

Hilbert space is of dimension (Cd)B′ ⊗HB′′ due to which the state |ψ̃ABE⟩ belongs to

(Cd)A ⊗ (Cd)B′ ⊗HB′′ ⊗HE . As a consequence, any such state can be written using the

computational basis in Cd as,

|ψ̃ABE⟩=
d−1

∑
i, j=0

|i⟩A| j⟩B′|ψi j⟩B′′E , (5.79)

where |ψi j⟩B′′E is some unnormalised state belonging to HB′′ ⊗HE . After plugging this

state to the condition (5.77) for k = 1, we arrive at

d−1

∑
i, j=0

ω
i− j|i j⟩|ψi j⟩=

d−1

∑
i, j=0

|i j⟩|ψi j⟩, (5.80)

which holds true if and only if |ψi j⟩= 0 for any i ̸= j. As a consequence, the only terms

in the state (5.79) remains when i = j, and thus we have the simplified form of the state

given by

|ψ̃ABE⟩=
d−1

∑
i=0

|ii⟩|ψii⟩. (5.81)
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Let us now consider the condition (5.78) where we can extend the range of the sum to k = 0
by recalling that the 0− th power of an observable is identity and also that δ0(ααα) = −1.

Thus, after some rearrangement of the terms we get the following expression

d−1

∑
k=0

[
γ(ααα)Xk

d ⊗Xk
d + δk(ααα)Zk

d ⊗1B

]
|ψ̃ABE⟩= γ(ααα)|ψ̃ABE⟩. (5.82)

Plugging in the simplified form of |ψ̃ABE⟩ as derived in (5.81), the above expression turns

out to be

γ(ααα)
d−1

∑
k=0

d−1

∑
i=0

|i+ k⟩|i+ k⟩|ψii⟩+
d−1

∑
k=0

d−1

∑
i=0

ω
ki

δk(ααα)|ii⟩|ψii⟩= γ(ααα)
d−1

∑
i=0

|ii⟩|ψii⟩. (5.83)

Mulitplying the above expression with ⟨ss| from the lest hand side, we obtain that

d−1

∑
k=0

γ(ααα)|ψs⊖k,s⊖k⟩+
d−1

∑
k=0

ω
ks

δk(ααα)|ψss⟩= γ(ααα)|ψss⟩ (5.84)

where s⊖k represents s−k modulo d. We can simplify the above expression by substituting

the explicit form of δ (ααα) to obtain

d−1

∑
k=0

|ψs⊖k,s⊖k⟩−
d−1

∑
k=0

ωk(d− j+s)

d

d−1

∑
i, j=0
i ̸= j

αi

α j
|ψss⟩= |ψss⟩ (5.85)

Now, using the identity ∑
d−1
k=0 ωk( j−s) = dδ j,s, we can simplify the above expression to find

the explicit form of the state |ψss⟩ given by

|ψss⟩=
αs

α0 + . . .+αd−1
|Ψ⟩, (5.86)

where we denoted |Ψ⟩ = ∑
d−1
k=0 |ψs⊖k,s⊖k⟩ ≡ ∑

d−1
k=0 |ψkk⟩ for any s. As a consequence, Eq.

(5.81) can be rewritten as

(UB ⊗1AE)|ψABE⟩ =

(
d−1

∑
m=0

αi|ii⟩AB′

)
⊗|ξ ⟩B′′E = |ψ(ααα)⟩AB′ ⊗|ξ ⟩B′′E , (5.87)

where

|ξ ⟩B′′E =
1

α0 + . . .+αd−1
|Ψ⟩. (5.88)

This finally completes the proof of certification of all pure bipartite entangled states along

with a pair of arbitrary outcome mutually unbiased bases in the 1SDI scenario.
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Figure 5.1: 1SDI scenario to certify any rank-one extremal POVM: Alice and Bob receive
subsystems from the preparation device on which they perform d+1 and 3 measurements
respectively such that Alice is trusted. All the measurements are d−outcome except Bob’s
third measurement which is of d2−outcome.

Let us now proceed towards another important result of this chapter that utilises the

above theorem (5.2) involving certification of every rank-one extremal POVM’s.

5.4 Certification of all rank-one extremal POVM

As discussed before in Chapter 2, let us consider a rank-one extremal measurement de-

noted as I = {Ib}, such that b represents its outcomes and Ib represents the measure-

ment operator corresponding to the b− th outcome. These measurement operators are

positive semi-definite and sum up to one. Additionally, it was shown in [70] that mea-

surement operators of an extremal rank-one POVM are projectors scaled down by some

non-negative real number, that is, Ib = λb|µ⟩⟨µ| with |µ⟩ ∈Cd and 0 ≤ λb ≤ 1.

It turns our that the observation of the maximal violation of our steering inequality

(5.1) plus an additional set of conditions enables us to design a simple method that can be

used for certification of any extremal rank-one POVM. For this purpose, we again consider

the 1SDI setting such that Alice is again trusted but now performs d + 1 measurements

corresponding to the observables A0 = Zd and Ai+1 = XdZi
d for i = 0,1, . . . ,d − 1. Bob

is untrusted and performs three measurements, where the first two measurements are

d−outcome and the third one has d2−outcomes. The scenario is depicted in Fig. 5.1.

Notice that the statistics corresponding to both Alice and Bob choosing the input 0,1,

allow us to employ the steering inequality (5.1) and certify any pure bipartite entangled

state using Theorem 5.2. Without loss of generality, Bob’s third measurement, which is

a d2−outcome POVM, is denoted as {Rb}. Further, notice that the operators XdZi
d for
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i= 1,2, . . . ,d−1 are not proper observables based on the definition introduced in Chapter 2

as (XdZi
d)

d = ω id(d−1)1. Thus, dividing the matrices with the scalar ω−i(d−1) yields proper

observables, but for simplicity we would drop this factor from further considerations. It is

also worth noting that the statistics obtained from the d+1 observables, Zd and XdZi
d, are

enough to simulate the statistics corresponding to the operators X i
dZ j

d for i, j = 0,1, . . . ,d−1
that represent the Heisenberg-Weyl (HW) basis [168] 2. The reason for this fact is that

every element in the HW basis can be generated by considering the powers of Zd and

XdZi
d for all i and then multiply them with appropriate powers of ω . For instance, X2

d Z2
d

can be generated by taking XdZd two times and then multiplying it with ω−1, that is,

X2
d Z2

d = ω−1(XdZd)
2. The result is stated below as a simple theorem.

Theorem 5.3. Assume that Alice and Bob perform the quantum steering experiment and

are able to certify that the state shared among them as well as the measurements along

with the Hilbert space of Bob as given in Theorem-5.2. Consider then a POVM R = {Rb}
acting on HB = (Cd)B′ ⊗HB′′. If for some extremal POVM I = {Ib} acting on Cd the

following identities

⟨X iZ j ⊗Rb ⊗1E⟩|ψABE⟩ = ⟨X iZ j ⊗Ib⟩|ψ(ααα)⟩ (5.89)

hold true for any i, j = 0, . . . ,d−1, where |ψABE⟩= (1A⊗U†
B)|ψ(ααα)⟩AB′⊗|ξB′′E⟩ from (5.46)

where |ψ(ααα)⟩AB′ is the ideal state defined in Eq. (5.35). Then, there exist a unitary

transformation UB : HB → HB such that the measurement operators of the POVM R are

equivalent to the measurement operators of the ideal POVM I as

UB Rb U†
B = Ib ⊗1B′′ ∀b. (5.90)

Proof. Our proof takes inspiration from the technique introduced in Ref. [41], where

extremal POVM’s acting on two-dimensional Hilbert space were certified up to certain

equivalences. Here, we generalise that approach to POVM’s that act on arbitrary dimen-

sional Hilbert space in the scenario where Alice is trusted. Let us first observe that the

statistics one observes from the actual experiment must be equivalent to one observed in

the ideal experiment, that is,

∀ b ∀i, j ⟨ψABE |X iZ j ⊗Rb ⊗1E |ψABE⟩= ⟨ψ(ααα)|X iZ j ⊗Ib|ψ(ααα)⟩. (5.91)

Solving the above condition is enough to certify the POVM R. For this purpose, as was

done in Chapter 4, we first rewrite the state |ψ(ααα)⟩ in terms of the maximally entangled

2The HW basis is a collection of operators that forms a basis for operators that act on d−dimensional
Hilbert space with d being any positive integer.
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state of two qudits |φ d
+⟩ [see Eq. (4.16)] as

|ψ(ααα)⟩= [1A ⊗P(ααα)]|φ d
+⟩, (5.92)

where

P(ααα) =
d−1

∑
i=0

αi|i⟩⟨i|. (5.93)

Recall that αi > 0 for all i and ∑i α2
i = 1. Let us also introduce another set of d2 number

of operators, derived from HW basis

Wi, j := P(ααα)−1 (X iZ j)∗P(ααα)−1. (5.94)

Let us observe that the above operators are linearly independent as P(ααα) is invertible and

X iZ j are orthogonal in the Hilbert-Schmidt scalar product, that is, Tr[X iZ j(X i′Z j′)†] =

dδi,i′δ j, j′ . As a consequence, the set {Wi, j} forms a complete basis for operators acting on

d−dimensional Hilbert space. Recalling that the measurement operators Ib of the ideal

POVM act on d−dimensional Hilbert space and thus, using the newly defined operator

basis (5.94), we can express them as

Ib =
d−1

∑
i, j=0

lb
i, jWi, j ∀b, (5.95)

where lb
i, j are in general complex coefficients. Let us now compute the right hand side of

the expression (5.91) by plugging in the above representation of the POVM I ,

⟨ψ(ααα)|X iZ j ⊗Ib|ψ(ααα)⟩ = ∑
m,n

lb
m,n⟨ψ(ααα)|X iZ j ⊗P(ααα)−1 (XmZn)∗P(ααα)−1|ψ(ααα)⟩

= ∑
m,n

lb
m,n⟨φ d

+|X iZ j ⊗ (XmZn)∗ |φ d
+⟩, (5.96)

where we exploited the form of the state |ψ(ααα)⟩ given in (5.92). Now, exploiting the

identity (R⊗Q) |φ d
+⟩ = (RQT ⊗ 1)|φ d

+⟩ that is satisfied for any two matrices Q and R

acting on d−dimensional Hilbert space [see Fact 5 in Appendix A] and also the fact that

X iZ j form an orthogonal basis as mentioned above, we finally obtain that

⟨ψ(ααα)|X iZ j ⊗Ib|ψ(ααα)⟩= lb
i, j ∀b. (5.97)

Next, our aim is to compute the left hand side of the expression (5.91). We use the

fact that according to Theorem 5.2, Bob’s Hilbert space decomposes as HB = C
d ⊗HB′′

and there exist a unitary UB : HB →HB that transforms that transforms the state |ψABE⟩
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as

(1AE ⊗UB)|ψABE⟩= |ψ(ααα)⟩AB′ ⊗|ξB′′E⟩. (5.98)

Now, any measurement operator of the POVM R acting on HB can be expressed using

the basis (5.94) as,

UBRbU†
B =

d−1

∑
i, j=0

Wi, j ⊗ R̃b
i, j, (5.99)

where R̃b
i, j are general operators acting on HB′′ . Now, computing the left hand side of

(5.91) by plugging in it the above mentioned form of Rb (5.99) and the state |ψABE⟩, we

have

⟨ψABE |X iZ j ⊗Rb ⊗1E |ψABE⟩=

[
∑
m,n

⟨ψ(ααα)|X iZ j ⊗Wm,n|ψ(ααα)⟩

]
⟨ξB′′E |R̃b

i, j ⊗1E |ξB′′E⟩.

(5.100)

As was computed above to get (5.97) from (5.96), the term inside the square bracket in

the above expression is just 1. Thus, we finally arrive at

⟨ψABE |X iZ j ⊗Rb ⊗1E |ψABE⟩= ⟨ξB′′E |R̃b
i, j ⊗1E |ξB′′E⟩= Tr

(
R̃b

i, jσB′′

)
∀b, (5.101)

where σB′′ = TrE(|ξB′′E⟩⟨ξB′′E |). Let us now decompose σB′′ using its eigenvectors denoted

by |k⟩ as σB′′ = ∑k pk|k⟩⟨k|. Plugging this into the above expression, we get that

Tr
(

R̃b
i, jσB′′

)
= ∑

k
pk⟨k|R̃b

i, j|k⟩. (5.102)

Recalling again the identity (5.91) and then using Eq. (5.97), we finally arrive at

∑
k

pk⟨k|R̃b
i, j|k⟩= lb

i, j. (5.103)

Next, we introduce a family of POVM’s k as, Ik = {Ib,k}, whose measurement oper-

ators are given by

Ib,k = TrB′′ [(1B′ ⊗|k⟩⟨k|B′′)Rb]

=
d−1

∑
i, j=0

⟨k|R̃b
i, j|k⟩Wi, j. (5.104)

As R is a valid POVM, as discussed in Chapter 2 all its measurement operators are

hermitian and positive semi-definite, that is, Rb ≥ 0 for all b. Consequently, from the first
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line of Eq. (5.104), we can see that Ib,k is also positive semi-definite, that is, Ib,k ≥ 0
for any k and b, as product of two positive semi-definite matrices is also positive semi-

definite. Further, ∑b Rb = 1B is identity and then using the first line of of Eq. (5.104), we

can directly see that ∑b Ib,k = 1B′ for any k. As a consequence, the family of POVM’s

{I k
b }b are valid quantum measurements. Let us now go back to Eq. (5.103), and then

rewrite it using the family of POVM’s (5.104) as

Ib =
d−1

∑
i, j=0

lb
i, jWi, j =

d−1

∑
i, j=0

∑
k

pk⟨k|R̃b
i, j|k⟩Wi, j = ∑

k
pkIb,k. (5.105)

However, the POVM I is extremal and can not be decomposed as a convex mixture of

other POVM’s. Thus, we can immediately conclude that

∀k Ib,k = Ib, (5.106)

which is equivalent to the condition,

∀k ⟨k|R̃b
i, j|k⟩= lb

i, j. (5.107)

Next, we consider the following vectors belonging to Cd:

|ϕa,s,t⟩=
1√
2
(|s⟩± ia|t⟩) , (5.108)

where a = 0,1 and |s⟩ and |t⟩ are two distinct vectors belonging to the eigenbasis {|k⟩} of

σB′′ . We now compute the following quantity

TrB′′ [(1B′ ⊗|ϕa,s,t⟩⟨ϕa,s,t |B′′)Rb] = ∑
i, j

Tr(|ϕa,s,t⟩⟨ϕa,s,t |B′′R̃b
i, j)Wi, j. (5.109)

Expanding the above quantity using the explicit form of the vectors given in (5.108), we

obtain

TrB′′ [(1B′ ⊗|ϕa,s,t⟩⟨ϕa,s,t |B′′)Rb] = Ib ±TrB′′ [(1B′ ⊗La
B′′)Rb] , (5.110)

where

La
B′′ = (ia/2) (|t⟩⟨s|+(−1)a|s⟩⟨t|) . (5.111)

The fact that Rb ≥ 0, imposes that left-hand side of the above expression is non-negative

as it is a product of two matrices that are positive semi-definite matrices. This allows us
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to conclude that

Ib ≥±TrB′′ [(1B′ ⊗La
B′′)Rb] . (5.112)

As discussed above, the measurement operators of any rank-one extremal POVM acting

on d−dimensional Hilbert space can be expressed as Ib = λb|µb⟩⟨µb|, where the vectors

|µb⟩ are normalized and belong to Cd. Using this fact, we show in Observation 5.2 stated

in Appendix C that the operator appearing on the right-hand side of the above expression

(5.112) must be rank one as well and must admit the following form

TrB′′ [(1B′ ⊗La
B′′)Rb] = λ

′
b|µb⟩⟨µb|, (5.113)

such that λb ≥±λ ′
b. Recalling that ∑b Rb = 1B and that TrLa

B′′ = 0 for any a, we can finally

conclude that

∑
b

TrB′′ [(1B′ ⊗La
B′′)Rb] = 0 = ∑

b
λ
′
b|µb⟩⟨µb|. (5.114)

Since Ib are linearly independent, we learn from the above condition that λ ′
b = 0 for all b

which in turn implies from (5.113) that TrB′′
[
(1B′ ⊗La

B′′)Rb
]
= 0 for any b and a. Finally

expanding the left hand side of (5.113) by plugging in the explicit form of La
B′′ and also

taking into account that X iZ j are linearly independent for any i, j gives us two simple

conditions:

(
X iZ j)∗(⟨s|R̃b

i, j|t⟩+ ⟨t|R̃b
i, j|s⟩

)
= 0, (5.115)

for a = 0 and

(
X iZ j)∗(⟨t|R̃b

i, j|s⟩−⟨s|R̃b
i, j|t⟩

)
= 0, (5.116)

for a = 1. One can immediately see that the only possible solution of the above conditions

(5.115) and (5.116) is ⟨s|R̃b
i, j|t⟩= 0 for s ̸= t. Thus, from Eq. (5.107) we can conclude that

the POVM acting on the support of Bob’s local state is given by Rb = Ib⊗1B′′ for all b′s.

This completes the proof.

It is worth noting that the above certification scheme works for any rank-one extremal

POVM with arbitrary number of outcomes. However, it was shown in [70] that any

extremal POVM with d2 outcomes have to be rank-one. As a consequence, we certify

every d2−outcome extremal POVM. We now show that the certified state and the certified

POVM can be used for optimal randomness certification.
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Figure 5.2: Optimal randomness certification in the 1SDI scenario: Alice (trusted) and
Bob receive subsystems from the preparation device on which they perform d + 1 and
3 measurements respectively. All the measurements are d−outcome except Bob’s third
measurement which has d2 outcomes. Using this measurement Bob wishes to generate
2log2 d bits of randomness. Eve has knowledge about Bob’s measurement choices. She
also might receive an additional system from the preparation device. Using her measuring
device and the received subsystem from the preparation she wants to guess Bob’s outcome.

5.5 Optimal randomness certification

Let us again go back to the previous scenario depicted in Fig. 5.1, but now let us assume

that there is another party Eve who wants to guess Bob’s outcome. As discussed in

Chapter 2, Eve has full control on Bob’s lab and also has access to the state sent by the

preparation device. However, unlike randomness certification in the Bell scenario, in the

1SDI scenario Eve has no access to Alice’s lab as it is trusted. This is depicted in Fig.

5.2.

Let us now say that Alice and Bob observe the maximal violation of the steering

inequality (5.1) using the observables corresponding to the inputs x,y = 0,1 where A0 = Zd

and A1 = Xd. Now, using Theorem 5.2, Alice and Bob can certify the quantum state shared

between Alice and Bob up to local unitaries and additional degrees of freedom [see Eq.

(5.46)]. Notice that in the proof we considered an external system E that was used to

purify the state shared between Alice and Bob. Without loss of generality, this external

system in fact denotes the subsystem possessed by Eve and her Hilbert space is denoted by
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HE . Again, in the previous section, using this result we certified Bob’s third measurement

to be an ideal extremal measurement up to some local unitary [see Eq. (5.90)]. Notice that

in the proof, the only condition we used apart from Theorem 5.2 was that the statistics

one obtains in the actual experiment is the same as in the ideal experiment, even with

the presence of the external subsystem E which is held with Eve [cf. Eq. (5.91)]. Given

the certified state and the measurements, let us now compute the probability of Eve to

guess Bob’s outcomes corresponding to the POVM R [cf. Chapter 2],

G(y = 2, p⃗) = sup
Sp

∑
b
⟨ψABE |1A ⊗Rb ⊗E(b)|ψABE⟩

= sup
Sp

⟨ψ(ααα)|1A ⊗Ib|ψ(ααα)⟩⟨ξB′′E |1B′′ ⊗E(b)|ξB′′E⟩. (5.117)

Eve’s strategy is composed of the states σE = TrB′′ |ξB′′E⟩⟨ξB′′E | and a measurement Z =

{E(b)}. Thus, simplifying the above expression we obtain

G(y = 2, p⃗) = sup
σE ,Z

∑
b

Tr[IbρB′(ααα)]Tr[E(b)
σE ] (5.118)

where ρB′(ααα) = TrA|ψ(ααα)⟩⟨ψ(ααα)|AB′ . Using the fact ∑b E(b) = 1E , we can immediately

observe from the above expression that for any extremal POVM {Ib} if

Tr[IbρB(ααα)] =
1
d2 ∀b, (5.119)

then the guessing probability (5.117) is G(y = 2, p⃗) = 1/d2. As a consequence, the max-

imal violation of the steering inequality (5.1) along with with conditions (5.91), can be

used to certify 2log2 d bits of randomness from Bob’s POVM using any pure bipartite en-

tangled state provided there exists an extremal POVM {Ib} that satisfies the condition

(5.119) for any ρB(ααα).

Here we show an example of extremal qudit POVM that can be used to generate

the optimal amount of randomness by Bob when he and Alice and share the two-qudit

maximally entangled state |φ d
+⟩. We consider a simple construction of family of extremal

d2−outcome POVM’s acting on arbitrary dimensional Hilbert space introduced in Ref.

[70]. It turns out that such POVM’s serve as a perfect example to obtain the desired

result. Consider the following d2 unitary operators defined as

Uk,l = Xk
d Zl

d , (5.120)

where k, l = 0 . . .d − 1 and a vector |ν⟩ ∈ C
d such that Tr[U†

k,l|ν⟩] ̸= 0 for any k, l. As
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proven in [70], the following d2−outcome POVM given by

Ik,l :=
1
d

Uk,l|ν⟩⟨ν |U†
k,l , (5.121)

is extremal. Notice that when |ψAB⟩ = |φ d
+⟩, then the local states of Alice and Bob are

ρA = ρB = 1d/d. Now, plugging this reduced state and the above POVM (5.121) into the

left hand side of the condition (5.119), we see that

Tr[IbρB(ααα)] =
1
d2 Tr(Uk,l|ν⟩⟨ν |U†

k,l) =
1
d2 ∀k, l. (5.122)

Thus, the example provided above can be used to obtain optimal randomness.

Now, we also demonstrate that the optimal randomness can be certified when Alice

and Bob share partially entangled states. For this purpose, we find examples of extremal

qudit POVMs with d2 outcomes when d = 3,4,5,6 that can be used to securely generate

2log2 d amount of random bits using a particular class of partially entangled pure states

|ψ(ααα)⟩AB such that αi ≥ 1/d for i = 0,1, . . . ,d−2. These extremal POVM’s are given by,

Ib := λb|δb⟩⟨δb|. (5.123)

For b = 0, . . . ,d −2, the vectors |δb⟩ are given by

|δb⟩= |b⟩, (5.124)

whereas, for b = d −1, . . . ,d2 −1 they are defined as

|δb⟩=
d−1

∑
i=0

µi exp
(

2πiξi(b−d + 1)
d2 −d + 1

)
|i⟩ (5.125)

where

µi =

√
1−λi

(d2 −d + 1)λd
(i = 0,1, . . . ,d −2) (5.126)

and

µd−1 =

√
1

(d2 −d + 1)λd
. (5.127)

The λ ′
bs are given by

λi =
1

d2α2
i

(i = 0,1, . . . ,d −2) (5.128)
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and

λd−1 = λd = . . .= λd2−1 =
1

d2 −d + 1

(
d −

d−2

∑
i=0

λi

)
. (5.129)

Finally, below we provide the ξi coefficients.

For d = 3:

ξ0 = 0, ξ1 = 1 and ξ2 = 3. (5.130)

For d = 4:

ξ0 = 0, ξ1 = 1, ξ2 = 3 and ξ3 = 9. (5.131)

For d = 5:

ξ0 = 0, ξ1 = 1, ξ2 = 4, ξ3 = 14 and ξ4 = 16. (5.132)

For d = 6:

ξ0 = 0, ξ1 = 1, ξ2 = 3, ξ3 = 8, ξ4 = 12 and ξ4 = 18. (5.133)

All these coefficients were found numerically such that the above constructed POVM is

extremal and satisfies the condition (5.119).

5.6 Conclusions and Discussions

In this chapter, we first constructed a family of steering inequalities that are maximally

violated by every pure entangled bipartite state. The only other work that provides a

steering inequality that is maximally violated by any pure entangled state is Ref. [166].

However, the inequality proposed in Ref. [166] requires the trusted party to perform

the full tomography on her subsystem. On the other hand, our scheme is the most

efficient in terms of the number of measurements, as we require only two measurements

to be performed by both the parties. This is the minimal number required to observe

any form of quantum non-locality. We then showed that the maximal violation of our

inequality allows one to certify any pure bipartite entangled state in the 1SDI scenario.

A method for certification of any pure entangled bipartite state in the 1SDI scenario was

also proposed in [129], but their approach is a direct translation of the method of Ref.

[169] to the 1SDI scenario that relies on certification of two-qubit states as discussed

before in Chapter 3. The scheme also requires both the parties to perform three and four

measurements respectively. Contrary to this, our certification scheme relies only on two
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genuinely d-outcome measurements per party making it extremely useful for experimental

implementation. Moreover, our scheme does not need to assume that the state shared

among Alice and Bob is pure and the measurements performed by them are projective.

Improving on the results presented in the previous Chapter 4, we went on further with

our self-testing result and used it to certify any rank-one extremal POVM in 1SDI scenario.

Apart from it, we also showed that this task can be accomplished with quantum states

that are close to separable states, that is, quantum states with a low level of entanglement.

This makes our scheme resource friendly. Finally, we utilised both these results to devise a

simple scheme for certification of the optimal amount of 2log2 d bits of randomness using

quantum systems of local dimension d in the 1SDI scenario. Apart from its importance

towards application in quantum cryptography, our result answers a long-standing question

in the quantum foundations community of whether one can securely generate this optimal

amount of randomness. Moreover, for a few finite dimensions, we showed that we can also

accomplish this task using low levels of entanglement.

Some interesting follow-up questions arise from our work. First, and the most im-

portant one would be to explore whether our construction of the steering functionals

can be used to design Bell functionals whose maximal quantum value is achieved by any

pure entangled bipartite state and two measurements per site which can be later used for

self-testing. Another interesting problem would be to devise a scheme for certification of

extremal measurements of arbitary rank, and thus certify any quantum measurement in

the 1SDI scenario. A direct follow-up problem from our work is to find extremal POVM’s

satisfying the condition (5.119) for any ρB(ααα). A more challenging problem would be then

to find a fully device-independent scheme for certification of optimal randomness using

quantum systems of arbitrary local dimension. For the particular case of d = 2 and d = 3,

schemes have been devised that can certify 2log2 2 and 2log2 3 bits of local randomness

in [41] and [42] respectively (see also Ref. [170]).
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Chapter 6

Concluding remarks

6.1 Summary of the thesis

Let us finally summarise the major points presented throughout this thesis and their

relevance to the current literature in quantum information and foundations.

From a theoretical perspective

1. All the results presented in this thesis are very general, in the sense that, they

are applicable to composite quantum systems of arbitrary local dimensions. The

results presented in Chapter 3 are even applicable to arbitrary number of parties.

As a matter of fact, the results presented in Chapter 4 and Chapter 5 can also be

generalised to arbitrary number of parties using similar mathematical techniques.

2. Most of the known certification schemes in the device-independent regime deal with

states that are locally qubits and thus can utilise the Jordan’s lemma [63] which

simplifies the mathematical considerations significantly. Our work is thus interesting

from a mathematical point of view, as we develop new mathematical techniques that

are applicable to arbitrary finite dimensional quantum systems.

3. The result presented in Chapter 3 provide an interesting insight into the structure

of quantum sets. For instance, it was exploited in Ref. [154] to show that the set of

quantum correlations in a certain Bell scenario is not closed.

4. An open question in quantum information has been whether one can securely gen-

erate the optimal randomness using quantum systems of arbitrary local dimension.

In Chapter 5, we show that it is possible in the 1SDI scenario.
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From a practical perspective

1. We showed in Chapter 3 that one can certify the generalised GHZ state using just two

genuinely d−outcome measurements per party in a fully device-independent way.

This is the minimum number of measurements required to observe quantum non-

locality and thus more efficient as compared to the existing schemes with regards

to implementing it in experiments as one needs to observe minimum number of

correlations to certify the state.

2. Mutually unbiased bases are essential for quantum cryptographic tasks. In Chapter

4, we presented robust certification of mutually unbiased bases in the 1SDI scenario.

This is the first instance where a method for certification of a general family of

measurements, termed genuinely incompatible, have been introduced, which is based

on quantum steering.

3. In Chapter 5, we demonstrated a method to certify any pure bipartite entangled

state using just two genuinely d−outcome measurements per party in the 1SDI

scenario. This is again the most efficient protocol till date that can be used to

certify such states. We then showed that any rank-one extremal measurement can

be certified in the 1SDI scenario.

4. Any cryptographic task requires access to sources generating random bits. In Chap-

ter 3, we demonstrated a protocol to generate randomness of amount log2 d bits

using projective measurements in a fully device-independent way. Then, in Chapter

5, we showed that optimal randomness of amount 2log2 d bits can be certified us-

ing a quantum system and a generalised measurement in the 1SDI scenario. Both

of these protocols are secure against any eavesdropper who has access to quantum

resources.

Let us list some of the interesting open questions that stem from this work.

6.2 Open questions for further exploration

1. The first open question that naturally stems from this work is to find Bell inequal-

ities inspired from the construction of our steering inequalities in Chapter 5 that

are maximally violated by any pure bipartite entangled state and utilises only two

measurements per party. Then, building on our techniques described in Chapter 3,

it would be extremely interesting to prove self-testing statements of such states in

the fully DI scenario using minimal number of measurements.
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2. Generalising the steering inequalities in Chapter 5 to the multipartite scenario in

order for 1SDI certification of any pure multipartite entangled state. The author

of this thesis is currently investigating the possibility to certify certain class of

multipartite states in the 1SDI scenario such as graph states and Schmidt states by

extending the approach presented in Chapter 4 and Chapter 5.

3. Generalising the certification method of rank-one extremal measurements in the

1SDI scenario to measurements of arbitrary rank. Further, it would be interesting

to explore whether one can reduce the number of measurements performed by each

party, as in our scheme, the trusted party needs to perform d + 1 measurements.

4. Finding ideal POVM’s that can be used to locally generate the optimal amount of

randomness using any pure partially entangled bipartite state, or putting it sim-

ply, finding extremal POVM’s {Ib} that satisfies the condition (5.91) for any non-

singular local state ρB.

5. Extending all the 1SDI schemes presented in this thesis to the fully device-independent

scenario. In particular, it would be extremely interesting to provide a way to certify

the optimal amount of randomness in the fully device-independent scenario. Fur-

ther, certifying the mutually unbiased bases in a fully device-independent way has

been a long sought after question in quantum information community. For instance,

if one can fully characterise the trusted side in the scheme presented in Chapter 4,

then this scheme becomes fully device-independent.
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[51] I. Šupic and M. J. Hoban, “Self-testing through EPR-steering,” New J. Phys.,

vol. 18, no. 7, 075006, Jul. 2016. [Online]. Available: https://doi.org/10.1088/

1367-2630/18/7/075006.

[52] A. Gheorghiu, P. Wallden, and E. Kashefi, “Rigidity of quantum steering and one-

sided device-independent verifiable quantum computation,”New J. Phys., vol. 19,

no. 2, 023043, Feb. 2017. [Online]. Available: https://doi.org/10.1088/1367-

2630/aa5cff.

[53] D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,”Phys.

Rev. Lett., vol. 81, 3018–3021, 14 Oct. 1998. [Online]. Available: https://link.

aps.org/doi/10.1103/PhysRevLett.81.3018.

[54] D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-

dimensional quantum states,” Phys. Rev. Lett., vol. 88, 127901, 12 Mar. 2002.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.88.

127901.

[55] P. O. Boykin and V. Roychowdhury, “Optimal encryption of quantum bits,”Phys.

Rev. A, vol. 67, 042317, 4 Apr. 2003. [Online]. Available: https://link.aps.

org/doi/10.1103/PhysRevA.67.042317.

[56] H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger

alphabets,”Phys. Rev. A, vol. 61, 062308, 6 May 2000. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevA.61.062308.

143

https://link.aps.org/doi/10.1103/PhysRevLett.121.250506
https://link.aps.org/doi/10.1103/PhysRevLett.121.250506
https://link.aps.org/doi/10.1103/PhysRevLett.121.250507
https://doi.org/10.1017/s0305004100013554
https://link.aps.org/doi/10.1103/PhysRevLett.98.140402
https://link.aps.org/doi/10.1103/PhysRevLett.98.140402
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.1088/1367-2630/aa5cff
https://link.aps.org/doi/10.1103/PhysRevLett.81.3018
https://link.aps.org/doi/10.1103/PhysRevLett.81.3018
https://link.aps.org/doi/10.1103/PhysRevLett.88.127901
https://link.aps.org/doi/10.1103/PhysRevLett.88.127901
https://link.aps.org/doi/10.1103/PhysRevA.67.042317
https://link.aps.org/doi/10.1103/PhysRevA.67.042317
https://link.aps.org/doi/10.1103/PhysRevA.61.062308
https://link.aps.org/doi/10.1103/PhysRevA.61.062308


BIBLIOGRAPHY

[57] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribu-

tion and coin tossing,” Theoretical Computer Science, vol. 560, 7–11, 2014, The-

oretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S0304397514004241.

[58] T. Durt and B. Nagler, “Covariant cloning machines for four-level systems,”Phys.

Rev. A, vol. 68, 042323, 4 Oct. 2003. [Online]. Available: https://link.aps.

org/doi/10.1103/PhysRevA.68.042323.

[59] N. J. Cerf, “Pauli cloning of a quantum bit,” Phys. Rev. Lett., vol. 84, 4497–

4500, 19 May 2000. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevLett.84.4497.

[60] N. Cerf, T. Durt, and N. Gisin, “Cloning a qutrit,” Journal of Modern Optics,

vol. 49, no. 8, 1355–1373, 2002. [Online]. Available: https://doi.org/10.1080/

09500340110109043.

[61] T. Durt, B.-G. Englert, I. Bengtsson, and K. Życzkowski, “On mutually unbiased
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extraction from no-signaling correlations,” Phys. Rev. A, vol. 74, 042339, 4 Oct.

2006. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.74.

042339.

[93] E. Hänggi and R. Renner, Device-independent quantum key distribution with

commuting measurements, 2010. [Online]. Available: https://arxiv.org/abs/

1009.1833.

[94] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and V. Scarani, “Testing
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[99] A. Aćın and L. Masanes, “Certified randomness in quantum physics,” Nature,

vol. 540, no. 7632, 213–219, Dec. 2016. [Online]. Available: https://doi.org/10.

1038/nature20119.

[100] S. Pironio and S. Massar, “Security of practical private randomness generation,”

Phys. Rev. A, vol. 87, 012336, 1 Jan. 2013. [Online]. Available: https://link.

aps.org/doi/10.1103/PhysRevA.87.012336.

[101] R. Colbeck and R. Renner, “No extension of quantum theory can have improved

predictive power,” Nat Commun, vol. 2, 411, 2011. [Online]. Available: https:

//doi.org/10.1038/ncomms1416.

[102] R. Colbeck and R. Renner, “Free randomness can be amplified,” Nature Phys,

vol. 8, 450–453, 2012. [Online]. Available: https://doi.org/10.1038/nphys2300.

[103] M. J. W. Hall, “Local deterministic model of singlet state correlations based on

relaxing measurement independence,” Phys. Rev. Lett., vol. 105, 250404, 25 Dec.

2010. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.

105.250404.

[104] R. Gallego et al., “Full randomness from arbitrarily deterministic events,” Nat

Commun, vol. 4, 2654, 2013. [Online]. Available: https://doi.org/10.1038/

ncomms3654.

[105] S. Fehr, R. Gelles, and C. Schaffner, “Security and composability of randomness

expansion from Bell inequalities,” Phys. Rev. A, vol. 87, 012335, 1 Jan. 2013.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.87.012335.

[106] D. E. Koh, M. J. W. Hall, Setiawan, et al., “Effects of reduced measurement

independence on Bell-based randomness expansion,” Phys. Rev. Lett., vol. 109,

160404, 16 Oct. 2012. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevLett.109.160404.
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Appendix A

Some general mathematical facts

We prove here some identities that were extensively used throughout this work.

Fact 4. Consider a matrix U acting on a Hilbert space H and U = ΠUΠ, where Π is a

projection onto some subspace K of H . Then the following properties hold true:

1. If U is unitary, then UU† ≤ 1K where 1K is identity acting on the subspace K .

2. If U is hermitian, then U is also hermitian.

3. If both U and U are unitary, then U =U ⊕C such that C is also unitary.

Proof. Given that U is a projection of U onto some subspace K , then U can be written

in the matrix form as

U =

(
U A

B C

)
, (A.1)

where A = ΠUΠ⊥, B = Π⊥UΠ, C = Π⊥UΠ⊥. Here, Π⊥ is the projection onto the

subspace K ⊥ of H that is orthogonal to K . Since, U is unitary

UU† =

(
UU†

+AA† UB† +AC†

BU†
+CA† BB† +CC†

)
=

(
1K 0
0 1K ⊥

)
. (A.2)

Here 1K ⊥ is identity acting on the subspace K ⊥. Since AA† is positive, we can conclude

that

UU† ≤ 1. (A.3)

Now, if U is hermitian, that is, U† =U then for U we have that

U†
= (ΠUΠ)† = ΠU†Π = ΠUΠ =U (A.4)
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and thus U is also hermitian if U is hermitian. One can also realise this by observing

(A.1).

Let us now also assume that U is unitary, that is, UU†
= 1. Since U is unitary, from

the diagonal element in (4.128) we have that AA† = 0 which implies that A = 0. Again,

from the off-diagonal element, we have that UB† = 0 which imposes that B = 0 as U is

unitary and thus invertible. Similarly, one can prove that C = 0. Thus, the matrix U

reduces to

U =

(
U 0
0 C

)
(A.5)

which is equivalent to saying that U =U ⊕C.

Fact 5. Consider two matrices R,Q acting on d−dimensional Hilbert space. Then, the

following relation holds true when they act on the two-qudit maximally entangled state,

R⊗Q|φ+
d ⟩= RQT ⊗1|φ+

d ⟩ (A.6)

such that QT represents the transpose of Q.

Proof. Let us first expand the matrices R,Q using the d−dimensional computational basis

as

R =
d−1

∑
i, j=0

ri, j|i⟩⟨ j|, Q =
d−1

∑
i, j=0

qi, j|i⟩⟨ j|. (A.7)

Let us now evaluate the right hand side of (A.6) by employing the form of the maximally

entangled state |φ+
d ⟩ given in (4.16),

R⊗Q|φ+
d ⟩= 1√

d

d−1

∑
i,k, j=0

ri, jqk, j|i⟩|k⟩. (A.8)

Notice that QT = ∑
d−1
i, j=0 q j,i|i⟩⟨ j| using which we get

RQT =
d−1

∑
i,k, j=0

ri, jqk, j|i⟩⟨k| (A.9)

Now, using the above expression let us evaluate the left hand side of the equation (A.6)

RQT ⊗1|φ+
d ⟩= 1√

d

d−1

∑
i,k, j=0

ri, jqk, j|i⟩|k⟩ (A.10)

160



APPENDIX A. SOME GENERAL MATHEMATICAL FACTS

which is exactly same as the left hand side (A.8).

Fact 6. The following identities hold true:

d−1

∑
j=0
j ̸=i

1−ωk( j−i)

1−ω i− j = k, k = 1, . . . ,d −1, i = 0, . . . ,d −1, (A.11)

and

d−1

∑
k=0

kω
kn =

d
ωn −1

, n = 1, . . . ,d −1. (A.12)

Proof. Let us begin by proving the first identity (A.11). For this, we express the left-hand

side of (A.11) as
d−1

∑
j=0
j ̸=i

1−ωk( j−i)

1−ω i− j = −
d−1

∑
j=0
j ̸=i

ω
j−i

(
1−ωk( j−i)

1−ω j−i

)
. (A.13)

Notice that the term appearing inside the bracket on the right-hand side of the above

expression is a sum of a geometric sequence ∑
n−1
k=0 wk = (1−wn)/(1−w). Thus, the above

expression can be rewritten as

d−1

∑
j=0
j ̸=i

1−ωk( j−i)

1−ω i− j = −
d−1

∑
j=0
j ̸=i

(
ω

j−i +ω
2( j−i)+ . . .+ω

k( j−i)
)

= −
k

∑
n=1

ω
−ni

d−1

∑
j=0
j ̸=i

ω
n j

 . (A.14)

Evaluating the term inside the brackets of the above expression over x for any n= 1, . . . ,d−
1, we obtain that

d−1

∑
j=0
j ̸=i

ω
n j =

d−1

∑
j=0

ω
n j −ω

ni = −ω
ni, (A.15)

where we used the fact that ∑
d−1
j=0 ωn j = δn,0. Plugging this last formula into Eq. (A.15)

we finally arrive at Eq. (A.11).

Let us now prove the second identity (A.12) for which we again consider a geometric

sum given by,

d−1

∑
k=0

xk =
1− xd

1− x
. (A.16)
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Now, we take the derivative of the above expression and then multiply the resultant

equation with x on both sides, to finally obtain

d−1

∑
k=0

kxk = x
d
dx

(
1− xd

1− x

)
=

−dxd

1− x
+

x(1− xd)

(1− x)2 . (A.17)

Substituting x = ωn and using the fact that ωd = 1 we obtain (A.12).
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Appendix B

Proofs of some observations relevant to

Chapter 3

Observation 3.1. For any two unitary observables A1,2 and A1,3 related by the condition

(3.57) which is given by

ω
2k−d

2m Ak
1,2A−k

1,3 +ω
− 2k−d

2m Ak
1,3A−k

1,2 = 2cos
(

π

m

)
1, (B.1)

for k = 1,2, . . . ,d −1. Then, the traces of A1,2 and A1,3 are related in the following way:

Tr(Ax
1,2) = ω

2tx
m Tr

(
A(2t+1)x

1,2 A−2tx
1,3

)
. (B.2)

for any non-negative integer t ∈ N∪{0} and x = 1, . . . ,⌊d/2⌋.

Proof. To prove the above claim we use the technique of mathematical induction. For this

purpose, one can immediately observe that the condition (B.2) holds trivially for t = 0.

Now, let us assume that the condition (B.2) is satisfied for t = s−1, that is,

Tr(Ax
1,2) = ω

2(s−1)x
m Tr

(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)
x = 1, . . . ,

⌊
d
2

⌋
. (B.3)

Let us now show that the condition (B.2) is also satisfied for t = s. For this purpose, let

us consider (3.57) for k = 2sx and multiply it with Ax
1,2 on both the sides. Now, taking

the trace of the resultant expression yields,

ω
4sx−d

2m Tr
(

A(2s+1)x
1,2 A−2sx

1,3

)
+ω

d−4sx
2m Tr

(
A2sx

1,3A(−2s+1)x
1,2

)
= cos

(
π

m

)
Tr
(
Ax

1,2
)

. (B.4)

Again, considering the condition (3.57) for k = (2s−1)x but now we multiply it with Ax
1,3
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on both the sides. Taking the trace of the resulting expression gives us,

ω
2(2s−1)x−d

2m Tr
(

A(2s−1)x
1,2 A−2(s−1)x

1,3

)
+ω

d−2(2s−1)x
2m Tr

(
A2sx

1,3A(−2s+1)x
1,2

)
= cos

(
π

m

)
Tr
(
Ax

1,3
)

.
(B.5)

Utilising the condition (3.64) for k = x, the above expression simplifies to

ω
4(s−1)x−d

2m Tr
(

A(2s−1)x
1,2 A−2(s−1)x

1,3

)
+ω

d−4sx
2m Tr

(
A2sx

1,3A(−2s+1)x
1,2

)
= cos

(
π

m

)
Tr
(
Ax

1,2
)

, (B.6)

for x = 1, . . . ,⌊d/2⌋ where ⌊d/2⌋ denotes the largest integer smaller than d/2. Finally,

subtracting Eq. (B.6) from Eq. (B.4) we obtain

Tr
(

A(2s+1)x
1,2 A−2sx

1,3

)
= ω

− 2x
m

(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)
, (B.7)

which along with Eq. (B.3) gives us the desired result,

Tr
(

A(2s+1)x
1,2 A−2sx

1,3

)
= ω

− 2sx
m Tr(Ax

1,2). (B.8)

Observation 3.2. Consider two unitary observables A1,2 and A1,3 related by the condition

(3.71) which is given by

Ak
1,3 = −(k−1)ω

k
m Ak

1,2 +ω
k−1

m

k−1

∑
t=0

At
1,2A1,3Ak−1−t

1,2 (B.9)

for any k = 1, . . . ,d −1 and m ≥ 2. If A1,2 = Zd ⊗1 and A1,3 = ∑
d−1
i, j=0 |i⟩⟨ j|⊗Fi j, then the

matrices Fi j are related as:

−(k−1)
d−1

∑
i, j=0

ω
ki|i⟩⟨ j|⊗Fi j +ω

− 1
m

d−1

∑
i, j=0

|i⟩⟨ j|⊗

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFl j + kω

(k−1)iFiiFi j


= −kω

1
m

d−1

∑
i=0

ω
(k+1)i|i⟩⟨i|⊗1+

d−1

∑
i, j=0

|i⟩⟨ j|⊗
k

∑
t=0

ω
k j+t(i− j)Fi j.

(B.10)

for any k = 1, . . . ,d −1 and m ≥ 2.

Proof. To begin the proof, let us first notice that Ak+1
1,3 = Ak

1,3A1,3. Now, plugging in Ak+1
1,3
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and Ak
1,3 using Eq. (3.71) gives us,

−kω
1
m Ak+1

1,2 +
k

∑
t=0

At
1,2A1,3Ak−t

1,2 = −(k−1)Ak
1,2A1,3 +ω

− 1
m

k−1

∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3. (B.11)

Substituting the explicit forms of the observables A1,2 = Zd ⊗1 and A1,3 = ∑
d−1
i, j=0 |i⟩⟨ j|⊗Fi j,

we obtain that

k−1

∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3 =
d−1

∑
i, j=0

|i⟩⟨ j|⊗
d−1

∑
l=0

k−1

∑
t=0

ω
l(k−1)

ω
t(i−l)FilFl j. (B.12)

Splitting the sum over l appearing on the right hand side into two parts: l = i and l ̸= i,

and then using the sum computed using the geometric series

k−1

∑
t=0

ω
t(i−l) =

1−ωk(i−l)

1−ω i−l , (B.13)

we obtain that

k−1

∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3 =
d−1

∑
i, j=0

|i⟩⟨ j|⊗

d−1

∑
l=0
l ̸=i

(
ωki −ωkl

ω i −ω l

)
FilFl j + kω

(k−1)iFiiFi j

 . (B.14)

Using exactly the same technique, the sum on the left-hand side of Eq. (B.11) can be

rewritten as,
k

∑
t=0

At
1,2A1,3Ak−t

1,2 =
d−1

∑
i, j=0

ω
k j

k

∑
t=0

ω
t(i− j)|i⟩⟨ j|⊗Fi j. (B.15)

Finally substituting Eqs. (B.14) and (B.15) into Eq. (B.11), we obtain (3.87).

Observation 3.3. Consider the following unitary operators W1,W2,Wodd,Wev : Cd → C
d

given by

W1 =
1√
d

d−1

∑
i, j=0

(−1)δ j,0ω
− 3i

2m+i j+ j
2 |i⟩⟨ j|,

W2 =
1√
d

d−1

∑
i, j=0

(−1)δ j,0ω
− 2i

m+i j+ j
2 |d −1− i⟩⟨ j|,

Wodd =
1√
d

d−1

∑
i, j=0

(−1)δ j,0ω
− i

m+i j+ j
2 |i⟩⟨ j|,

Wev =
1√
d

d−1

∑
i, j=0

(−1)δ j,0ω
− i

m+i j+ j
2 |d −1− i⟩⟨ j|, (B.16)
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where {|i⟩} is the standard basis on Cd. These unitaries transform Zd ,Td,m as defined in

Eq. (3.32) to the ideal measurements given in Eq. (3.11),(3.12) and (3.13) in the fol-

lowing way: Oi,2 = Wi Zd W †
i and Oi,3 = Wi Td,mW †

i for the parties i = 1,2, and Onodd,2 =

Wodd Zd W †
odd,Onodd,3 =WoddTd,mW †

odd, and Onev,2 =WevZdW †
ev,Onev,3 =WevTd,mW †

ev for remain-

ing parties. Here, the subscripts odd and ev refer to parties that are numbered by odd and

even numbers respectively.

Proof. Before proceeding, let us recall the measurements Zd ,Td,m as defined in Eq. (3.32)

Zd =
d−1

∑
i=0

ω
i|i⟩⟨i|

Td,m =
d−1

∑
i=0

ω
i+ 1

m |i⟩⟨i|− 2i
d

sin
(

π

m

) d−1

∑
i, j=0

(−1)δi,0+δ j,0ω
i+ j

2 − d−2
2m |i⟩⟨ j|. (B.17)

Let us also recall the ideal observables given in Eq. (3.11),(3.12) and (3.13) which we

express here in their matrix form as

O1,x =
d−2

∑
i=0

ω
γm(α)|i⟩⟨i+ 1|+ω

(1−d)γm(α)|d −1⟩⟨0|,

O2,x =
d−2

∑
i=0

ω
ζm(α)|i+ 1⟩⟨i|+ω

(1−d)ζm(α)|0⟩⟨d −1| (B.18)

for the first two parties, and

Oodd,x =
d−2

∑
i=0

ω
θm(α)|i⟩⟨i+ 1|+ω

(1−d)θm(α)|d −1⟩⟨0|,

Oev,x =
d−2

∑
i=0

ω
θm(α)|i+ 1⟩⟨i|+ω

(1−d)θm(α)|0⟩⟨d −1| (B.19)

for the remaining parties. Let us begin by finding the eigen-decomposition of the ideal

measurements (3.11),(3.12) and (3.13) for the second and third measurements for each

party as,

On,x =
d−1

∑
r=0

ω
r|r⟩⟨r|n,x (B.20)
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with x = 2,3 and n = 1,2, . . . ,N, where the eigenvectors are defined as

|r⟩1,x =
1√
d

d−1

∑
q=0

ω
(r−γm(x))q|q⟩,

|r⟩2,x =
1√
d

d−1

∑
q=0

ω
−(r−ζm(x))q|q⟩,

|r⟩nodd,x =
1√
d

d−1

∑
q=0

ω
(r−θm(x))q|q⟩,

|r⟩nev,x =
1√
d

d−1

∑
q=0

ω
−(r−θm(x))q|q⟩ (B.21)

where the coefficients γm(x), ζm(x) and θm(x) are given in Eq. (3.16) and {|q⟩} denotes

the computational basis of Cd. Notice that the set of vectors {|r⟩i,x} for any particular i

and x are mutually orthogonal.

Let us now consider the eigen-decompositions of Zd and Td,m,

Zd =
d−1

∑
q=0

ω
q|q⟩⟨q|, Td,m =

d−1

∑
r=0

ω
r|r⟩⟨r|T . (B.22)

Here again {|q⟩} is the computational basis of Cd and |r⟩T denote the eigenvectors of

Td,m given by

|r⟩T =
2i
d

sin
(

π

m

)
ω

− d
2m

d−1

∑
q=0

(−1)δq,0
ω− q

2

1−ω
r−q− 1

m
|q⟩. (B.23)

Let us now go back to the main proof and show that the unitaries W1,W2,Wodd,Wev

(B.16) transform Zd and Td,m to the ideal measurements Oi,2 and Oi,3 for any i = 1,2, . . . ,N.

For this purpose, we show that under the action of the unitaries the eigenvectors of one

observable transform to the eigenvectors of another observable up to a complex number.

Let us begin by considering the first party. The action of W †
1 on the eigenvectors of

O1,2, |r⟩1,2, given explicitly in Eq. (B.21) can be expressed as

W †
1 |r⟩1,2 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j)q

ω
− j

2 | j⟩. (B.24)

Using the fact that ∑
d−1
q=0 ω (r− j)q = dδr, j, the above expression simplifies to

W †
1 |r⟩1,2 = ω

δ j,0− j
2 | j⟩. (B.25)
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Recall that | j⟩ are the eigenvectors of Zd and thus we obtain that W †
1 O1,2W1 = Zd. Now,

the action of W †
1 on the eigenvectors of O1,3, |r⟩1,3, given explicitly in Eq. (B.21) can be

expressed as

W †
1 |r⟩1,3 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j− 1

m )q
ω

− j
2 | j⟩. (B.26)

Using the following relation derived from the sum of a geometric series

d−1

∑
l=0

ω
(r−k− 1

m )l =
1−ω

− d
m

1−ω
r−k− 1

m
= 2isin

(
π

m

)
ω

− d
2m

1−ω
r−k− 1

m
, (B.27)

and (B.23), the expression (B.26) simplifies to

W †
1 |r⟩1,3 =

2i
d

sin
(

π

m

)
ω

− d
2m

d−1

∑
j=0

(−1)δ j,0
ω− j

2

1−ω
r− j− 1

m
| j⟩

= |r⟩Td,m
. (B.28)

As a consequence, W †
1 O1,3W1 = Td,m.

Let us now consider the second party. The action of W †
2 on the eigenvectors of O2,2,

|r⟩2,2, given explicitly in Eq. (B.21) can be expressed as

W †
2 |r⟩2,2 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j)q+(d−1)( 2

m−r)− j
2 | j⟩, (B.29)

and, after employing the fact that ∑
d−1
q=0 ω (r− j)q = dδr, j, the above expression simplifies to

W †
2 |r⟩2,2 = (−1)δ j,0ω

(d−1)( 2
m− j)− j

2 | j⟩. (B.30)

Recall that | j⟩ are the eigenvectors of Zd and thus we obtain that W †
2 O2,2W2 = Zd. Now,

the action of W †
2 on the eigenvectors of O2,3, |r⟩2,3, given explicitly in Eq. (B.21) can be

expressed as

W †
2 |r⟩2,3 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j− 1

m )q+(d−1)( 2
m−r)− j

2 | j⟩, (B.31)

which can be simplified using Eq. (B.27) to

W †
2 |r⟩2,3 = ω

(d−1)( 2
m−r)|r⟩T . (B.32)
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As a consequence, W †
2 O2,3W1 = Td,m. Let us now consider the parties indexed by odd

numbers. The action of W †
odd on the eigenvectors of Onodd ,2, |r⟩nodd ,2, given explicitly in Eq.

(B.21) can be expressed as

W †
odd|r⟩nodd,2 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j)q

ω
− j

2 | j⟩, (B.33)

which by again employing the fact that ∑
d−1
q=0 ω (r− j)q = dδr, j, simplifies to

W †
odd|r⟩odd,2 = (−1)δ j,0ω

− j/2| j⟩. (B.34)

Analogously for Oodd,3, we have that

W †
odd|r⟩odd,3 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j− 1

m )q
ω

− j
2 | j⟩. (B.35)

which by again utilising the sum (B.27) simplifies to

W †
odd|r⟩odd,3 = |r⟩T . (B.36)

As a consequence, W †
odd Oodd,3Wodd = Td,m. Let us finally consider the parties indexed by

even numbers. The action of W †
ev on the eigenvectors of Onev,2, |r⟩nev,2, given explicitly in

Eq. (B.21) can be expressed as

W †
ev|r⟩ev,2 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j)q+(d−1)( 2

m−r)− j
2 | j⟩, (B.37)

which by again employing the fact that ∑
d−1
q=0 ω (r− j)q = dδr, j, simplifies to

W †
ev|r⟩ev,2 = (−1)δr,0ω

(d−1)( 2
m−r)− r

2 |r⟩. (B.38)

As a consequence, W †
ev Oev,2Wev = Zd. Analogously for Oev,3, we have that

W †
ev|r⟩ev,3 =

1
d

d−1

∑
j,q=0

(−1)δ j,0ω
(r− j− 1

m )q+(d−1)( 2
m−r)− j

2 | j⟩, (B.39)

which by employing the sum (B.27), simplifies to

W †
ev|r⟩ev,3 = ω

(d−1)( 2
m−r)|r⟩T . (B.40)

As a consequence, W †
ev Oev,3Wev = Td,m.
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Appendix C

Proofs of some observations relevant to

Chapter 5

Observation 5.1. The matrix

Z̃ = ZA + γ(ααα)1 = [1+ γ(ααα)]1−
d−1

∑
k=1

δk(ααα)Zk
d (C.1)

with γ and δk defined in Eq. (5.2) is positive and invertible.

Proof. Let us first observe that that the above matrix (C.1) is diagonal in the compu-

tational basis as well as hermitian which stems from the fact that δ ∗
k = δd−k and that

Z†
d = Zd−k

d . To show that this matrix is positive and invertible, we compute its eigenval-

ues and show that they are strictly positive. For this purpose, we plug in the explicit form

of δk and evaluate its diagonal elements in the computational basis as

λl = 1+ γ(ααα)+
γ(ααα)

d

d−1

∑
k=1

d−1

∑
i, j=0
i ̸= j

αi

α j
ω

k(l− j) for l = 0, . . . ,d −1, (C.2)

such Z̃ = ∑l λl|l⟩⟨l|. After simple manipulations and rearrangements, the above expression

simplifies to

λl =
γ(ααα)

αl

d−1

∑
i=0

αi. (C.3)

Let us note that γ(ααα) and αi’s are strictly positive for all i’s. Thus, we can conclude that

all the eigenvalues of the matrix (C.1) are positive and as a consequence the matrix (C.1)

is invertible.
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Observation 5.2. Let us consider that the elements of two POVM’s {Ib} and {Rb} are

related as

Ib ≥±TrB′′ [(1B′ ⊗La
B′′)Rb] , (C.4)

such that La
B′′ is a matrix given in (5.111) and {Ib} is an extremal rank-one POVM.

Then,

TrB′′ [(1B′ ⊗La
B′′)Rb] = λ

′
b|µb⟩⟨µb|. (C.5)

Proof. As the POVM {Ib} is extremal and of rank-one, we can express each of its elements

as Ib = λb|µb⟩⟨µb| for all b. Choosing a particular b and the corresponding vector |µb⟩,
we can construct an orthonormal basis {|φi⟩} with i = 0, . . . ,d − 1 such that |φ0⟩ = |µb⟩.
Now, multiplying the above inequality (C.4) with ⟨φ j| from left and |φi⟩ from right hand

side, we arrive at

∀i, j ⟨φ j|Ib|φi⟩ ≥ ±⟨φ j|TrB′′ [(1B′ ⊗La
B′′)Rb] |φi⟩. (C.6)

For i ̸= 0 or j ̸= 0 the above expression yields

0 ≥±⟨φ j|TrB′′ [(1B′ ⊗La
B′′)Rb] |φi⟩, (C.7)

which is only possible if ⟨φ j|
[
(1B′ ⊗La

B′′)Rb
]
|φi⟩ = 0 for any i ̸= 0 or j ̸= 0 and thus we

can straightforwardly conclude Eq. (C.5). Moreover, for i = j = 0, Eq. (C.6) gives

λb ≥±⟨µb|TrB′′ [(1B′ ⊗La
B′′)Rb] |µb⟩, (C.8)

which additionally imposes that λb ≥±λ ′
b.
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