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Abstract

In compact objects huge amount of mass is concentrated in a small volume. Those objects are
reservoirs of the gravitational energy, which can be transformed into radiation under proper
physical conditions. The stellar and galaxy evolution determines the formation of objects
known as white dwarfs, neutron stars and black holes. In those objects, the surrounding
matter may e�ciently accrete onto the compact object.

The behaviour of that matter is driven by non-linear processes, determined by the equa-
tions of hydrodynamics, and the ouer boundary conditions. It implies di�erent complicated
patterns of the temporal variability. The in�owing plasma frequently has large angular mo-
mentum, and forms a disk around the compact object. In this case the outward transfer
of angular momentum is needed to allow accretion. Disks formed around neutron starts and
stelar mass black holes are very hot, emitting strong X-ray radiation. Disks around supermas-
sive black holes in active galaxies are cooler. The dynamics of in�owing matter leads in some
cases to unstable behaviour. The thermal-viscous instability, accompanied with global stabi-
lizing mechanism like advection of heat, may result in limit-cycle oscillations. The observed
oscillation patterns cover many di�erent timescales, depending on the source parameters,
predominantly on the mass.

General theory of the accretion disks was presented in 1973 by Shakura and Sunyaev. Their
α disk theoryconveniently parametrizing the viscous torque still remains dominant e�ective
large-scale theory of the accretion disks. The true underlying mechanism was identi�ed later
on as the magnetorotational instability but numerical computations of 3-D models are time
consuming and cannot cover the time evolution of a geometrically thin, extended accretion
disk over many viscous timescales, combined with proper description of the disk heating and
cooling. The aim of this thesis is to study variable X-ray sources at di�erent black hole
mass scales and verify the existence of the radiation pressure instability, which drives the
thermo-viscous oscillations in black hole accretion disks.

In this thesis I confront the α-disk model with some recent observational results (2011 IGR
J17091-3624 heartbeat state and 2009-2014 HLX-1 lightcurve). I also verify the hypothesis
about the stabilizing role of the Iron Opacity Bump in active galaxies. Finally I discuss
physical scenarios within the framework of this model. I present the general model and
apply it to some observations. The resulting lightcurve properties (period and amplitude)
are confronted with accretion scenario parameters. These estimations help in determination
of the black hole mass and Eddington ratio, being an alternative method in comparison to
spectral modeling. It is used to determine the black hole mass of HLX-1 and can be applied to
other X-ray sources with periodic thermal variability. The model is extended by the e�ective
prescription for the wind ejection. Disk model in active galaxies is supplemented by the
atomic opacities. I show that both these e�ects can have in�uence on the variability patterns
and disk instability.

The thesis is organized as follows: In the Introduction the basic physical foundations
of black holes and accretion physics are presented. In Chapter 2, I derive the equations for the
accretion disks structure and dynamics. In Chapter 3, I focus on the example of microquasar
IGR J17091-3624, and anticorrelation between the wind out�ow and time variability. In
Chapter 4 I present the general model of modi�ed viscosity in accretion disks and method
for estimation of masses and other parameters of the sources from the X-ray lightcurves. In
Chapter 5, I apply the results from 4 to the newly discovered source HLX-1 and measure its
mass and accretion rate. In Chapter 6, I propose the extension of the model from Chapter 4,



including the e�ects coming from the atomic processes inside the plasma, which can moderate
the variability of the disk around the supermassive black holes.
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Chapter 1

Introduction

This thesis deals with the thermal phenomena in accretion disks, especially in the case
of black hole accretion. Black holes are present in the universe among all mass-scales,
being the sources of strong gravitational �eld. The gravitational �eld accelerates the
surrounding matter, creating the reservoirs of energy for the high energy radiation, e.g.
in the X-ray band. These proceses are re�ected both in time variability and spectra.

1.1. Physical foundations of the accretion disk theory

Photon-matter interactions determine the characteristic luminosity scale for an accretion
scenario. The characteristic limit is called Eddington Luminosity and is proportional
to the mass. Let's start with the analysis of the interaction between the matter and
the electromagnetic radiation. The physics of this precess is described by Maxwell
electrodynamics. Basic formulae from the electrodynamics are taken from Jackson,
J.D., Classical Electrodynamics, Wiley & Sons inc., 1999 textbook, and the formulae
connected with the theory of gravity, black holes and compact objects in this Chapter
are taken from Frank, J., King,S., Raine D. Accretion Power in Astrophysics. Since the
thesis is dedicated to thermal phenomena, which can be well described with only minor
contribution from both Special and General relativity, I use the classical language of the
vector �elds, instead of full di�erential geometry scenario which should be applied along
with relativistic e�ects known for higher energies. The electromagnetic phenomena are
described by the Maxwell equations, describing both electric E and magnetic induction
�elds B evolution and their reciprocal interaction with the equations:

(1.1) ∇ ·E = 4πρ

(1.2) ∇ ·B = 0

(1.3) ∇×B = j +
1

c

∂E

∂t

(1.4) ∇×E =
1

c

∂B

∂t
.

Let's start our approach from the generalization of the Coulomb's law involving the
moving particles, and regarding the �niteness of the speed of light c. We start from
solution of the Maxwell equations, with the formula for the time-dependent potential

5



from the electric charge q, taken from Jackson, J.D., Classical Electrodynamics, Wiley
& Sons inc., 1999 textbook.

(1.5) Φ(r, t) =

∫
d3r′

∫
dt′
ρ(x′, t)

|r− r′|
δ(|r− r′| − c(t− t′)).

Here δ is a Dirac delta, the functional with following property:
∫
dx′f(x′)δ(x′ − x) =

f(x). Computing the electric �eld from the potential E = ∇Φ, and taking into account
the case of single particle (electric monopole):

(1.6) E =

∫ t

−∞
dt′

q

|r− r′|2
r− r′

|r− r′|
δ(|r− r′| − c(t− t′)).

The �eld described in Eq. (1.6) for the case of particle moving with constant velocity
reduces to the Coulomb law in the frame comoving with the particle, where r is the
vector from the charge to the observer. Let us consider the accelerating or decelerating
particle with acceleration a. Due to the �niteness of the speed of light, r refers to the
expected position under the assumption of a constant velocity of the charge. Let us
assume that

1. accelerating period is short and lasts ∆t

2. the particle starts to accelerate with constant acceleration a and starts to accelerate
at t = 0

3. |r| = r

4. time t after the beginning of acceleration is equal to t = R/c

Direction of the acceleration follows the shape of �eld lines, being straight in the frame
of particle. In Eq. (1.6) E = q

4πε0r2
r
r , refers to 'old' position of the particle. For |r| =

R− c∆t the �eld refers to 'new' position of the charge. In the zone R− cδT < |r| < R
the transversal component of the electric �eld (Et) appears. This component is given
by the radial one (1.6) and the change of apparent position of charge divided by the
width of this 'apparent acceleration' zone. Thus:

(1.7) Et = Er × a∆t
R

c
sinα× 1

c∆t
= Er

aRsinα

c2
.

Combining Eq. (1.6) with Eq. (1.7) leads to the Larmor formula for transverse compo-
nent of the electric �eld of the accelerating charged particle

(1.8) Et =
qa sin θ

c2r
.

Since Et ≈ 1/r and Er ≈ 1/r2 the transverse component will be responsible for the
long-distance radiation of energy. The particle remains under the in�uence of incident
EM radiation

(1.9) Ei = E0 sin Ωt.

Thus the particle acceleration a = qEi

m = qE0 cos Ωt
m . Thomson cross section is de�ned as

a rate between the total radiated power and incident �ux of energy. The total radiated
power can be obtained from the Larmor formula (σ = Prad

I ), integrating over the sphere
with radius r.

(1.10) Prad =

∫ ∫
dφdθ sin θr2 1

8π
cE2

t (r, φ, θ) =
1

8π
E2
i

8π

3

q4

m2c4
.

The incident �ux is the �eld energy density times c

(1.11) I =
1

8π
cE2

0 .
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Thus

(1.12) σ =
8π

3

q4

m2c4
= 6.6× 10−29m2 × (m/me)

−2 × (q/e)4,

where me = 9.11× 10−28g is electron mass and e is the elementary charge.

1.1.1. The Eddington limit

The physical constants, like gravitational constant G, light velocity c or proton mass mp,
giving the strength of fundamental interactions are re�ected in the limiting values of the
luminosity of astrophysical sources. The combination of gravity and light-matter inter-
action results in the universal relationship between central object mass and a maximum
value of the luminosity for a stable source of radiation. This characteristic luminosity is
called Eddington luminosity (LEdd). The introduction of that quantity can be found in
Frank, J., King,S., Raine D. Accretion Power in Astrophysics textbook and is presented
in below. We assume that matter consists of protons and electrons. The electrons scat-
ter the radiation several million times more e�ectively than the protons (Eq. (1.12)).
On the other hand, the proton mass is 3 orders of magnitude larger than electron mass,
so the protons are more strongly attracted by the central mass. Let us consider the
central massive object with mass M , at the distance d, emitting the radiation with
luminosity L. The central massive object acts on protons with attractive force:

(1.13) Fg =
GMmp

d2
.

The radiation acts on the pair with repulsive force:

(1.14) Frad =
L

4πd2

1

c
σ.

From Eqs. (1.13) and (1.14) the maximum value of L for a given value of M can be
determined. This luminosity is called Eddington Luminosity (LEdd):

(1.15) LEdd =
4πGMmpc

σ
= 1.27× 1038ergs−1 M

M�
.

Since the Eddington luminosity scales with the mass, the broad universality of the
processes connected with accretion of matter onto a massive object can be expected. It
will be discussed more generally in the Chapter 4 for the case of accretion disk model
described in Chapter 2. Especially in case of black holes, all of them are parameterized
only by their mass and spin (Price's theorem, see e.g. Accretion power in Astrophysics).

1.1.2. The accretion e�ciency and dimensionless accretion rate

Accretion is a process of gradual setlement of the surrounding material onto the central
body. During the process of accretion, part of the gravitational potential energy of
in�owing matter is converted into radiation energy. The radiation usually covers some
parts of the electromagnetic spectrum, although in special cases the energy can be
released via the particle �ux, known as a wind or jet. The accretion e�ciency η is the
rate of emitted luminosity (L) to the total mass-energy �ux consumed by the central
object per unit of time (Ṁ): .

(1.16) η =
L

Ṁc2
.

For a given accretion scenario η is a constant value. The scenario is de�ned predomi-
nantly by boundary condition. Let us assume the matter falling down radially onto a
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compact object with radius Rstar. Kinetic energy of the particle is dissipated when the
particle hits the stellar surface. For this scenario, the accretion e�ciency is equal to:

(1.17) η =
GMstarm/Rstar

mc2
=
RSchw

2Rstar
,

where Schwarzschild radii RSchw is de�ned as follows, depening the black hole mass and
physical constants G and c:

(1.18) RSchw =
2GM

c2
.

In case of a known accretion e�ciency, the dimensionless accretion rate ṁ can be de�ned,
with the use of the Eddington luminosity de�ned in Eq. (1.15):

(1.19) ṁ =
Ṁc2

ηLEdd
.

1.1.3. Accretion in comparison to other powerful phenomena in high

energy astrophysics

For most of the accretion scenarios ṁ < 1 since this scenario likely satisfy the stability
criterion. However, we have to keep in mind that the condition was derived under the
assumption of spherical symmetry. For ṁ = 1 and typical e�ciency η = 1/16 (in case
of the non-rotating black hole), the characteristic timescale governing the evolution of
the central object is the Salpeter timescale t = M

Ṁ
= 2.8 × 107yrs, which is orders of

magnitude longer than characteristic timescales in unstable accretion disks.

In rapidly evolving sources, like Gamma Ray Bursts, dimensionless accretion rate ṁ can
be even orders of magnitude larger than 1. Gamma Ray Bursts are short events of rapid
and transient emission of the γ radiation. They are extremely powerful phenomena with
luminosity up to 1054 erg s−1 (Abdo et al., 2009). Short bursts are coming from the
neutron stars coalescence (Eichler et al., 1989). Recent detection of a short gamma ray
burst and a gravitational wave from the same source con�rmed this hypothesis (LIGO
Scienti�c collaboration , 2017) . For long bursts, the explanation is hypernova model
(collapsar), basing on the collapse of the massive stars (Paczy«ski, 1998). The GRBs
are more powerful than supernovae with power up to 1054 erg s−1 (Dong et al., 2016).
The enormous power of the GRBs enables observing them even at the cosmological
distances.

In case of stable accretion disks, their luminosity is at about 1036 − 1046 erg/s (see
Chapter 4 of this thesis). The accretion disks are less powerful than Gamma Ray
Bursts, although they are several orders of magnitude brighter than main sequence
stars, (e.g. luminosity of the Sun is L� = 2× 1033). The unique combination of strong
gravitational �eld, critical thermal equilibrium and rotation can result in long-lasting
activity of accretion disks, up to millions of years, in comparison to seconds in case of
GRBs. This results in great abundance of visible accretion disk sources.

1.1.4. An example - accretion onto a white dwarf and neutron star

Equation (1.17) indicates that the e�ciency of accretion process increases with a de-
crease of the compactness of the object. The oldest known class of the compact objects
are the white dwarfs, being a �nal stage of the evolution of main-sequence stars. White
dwarfs consist of the degenerated relativistic electron gas. Subramanyan Chandrasekhar
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Figure 1.1: The white dwarf dimensions (AfterFrank, J., King, A., Raine, D. Accretion Power
in Astrophysics).

determined the maximum mass of the white dwarf at the level of 1.44 M�. This value
is known as the Chandrasekhar limit. The dependence between size and mass of the
white dwarfs is shown in Fig. (1.1).

The white dwarfs in compact binary systems, known as Cataclysmic Variables, attract
the matter from the companion, which forms the surrounding disk. Due to the viscous
processes, described more precisely in Chapter 2, the disk reaches temperature 104−105

K, for which the Hydrogen ionization process appears. The transitions between neutral
and ionized hydrogen complicate the matter-radiation interaction. Cooling becomes a
non-monotonic function of the temperature, leading to the so called ionization instabil-
ity. The details of the process depend on the abundance of elements. The ionization
instability was the �rst well-reported example of the thermal instability in accretion disks
(Meyer & Meyer-Hofmeister, 1981). That instability leads to the limit-cycle oscillations
on timescales of month or years. The dwarf novae with their limit-cycle oscillations, be-
ing the sources radiating mostly in the optical domain, were known since 19th Century
(U Geminorum).

Temperature known for the dwarf novae disks is several orders of magnitude lower than
temperature of the innermost areas of Black Hole X-ray binaries accretion disks. The
typical white dwarf with mass of 1M�, which consists of the relativistic Fermi gas, has
a radius about 6× 108cm (6000 km). Comparing to the Schwarzschild radius 3× 105cm
(3 km) it gives an e�ciency η = 0.001. In comparison, the nuclear fusion reaction of
burning Hydrogen to Helium, has its e�ciency at the level of η = 0.007. The neutron
stars are much more compact objects, which consist of extremely degenerated nuclear
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Figure 1.2: The neutron star dimensions. Di�erent curves represent di�erent equations of
state.
(AfterFrank, J., King, A., Raine, D., Accretion Power in Astrophysics).

matter. The typical radius of the neutron star R = 10 km makes the accretion process
very e�ective at the level of η ≈ 0.1.

1.1.5. Black hole accretion - the General Relativistic limits

To describe the strong gravitational �eld around the compact stars or black holes, Gen-
eral Relativity is needed. General Relativity describes it in a much more detailed way.
In this Subsection I present the most important GR results, being the constraints on the
motion of matter. In the Newtonian gravity approach, the e�ective potential around a
massive body M , depending on the radial position of the minor body r(t), is de�ned in
a following way:

(1.20) Veff = E − 1/2(
dr

dt
)2,

where constant E is the total energy (both kinetic and potential). Denoting angular
momentum per unit mass of a minor body as h, Eq. (1.20) gains a form:

(1.21) Veff =
h2

2r2
− GM

r
.

Schwarzschild black hole

In the case of compact object, among the length-scales comparable to Schwarzschild
radii when GM/r ≈ c2, more detailed prescription is needed, derived exactly from the
General Relativity. Moreover, the absolute time t in Eq. (1.20) is replaced by the proper
time s. In particular, for a spherical body of mass M in vacuum (Schwarzschild black
hole) it turns out that:

(1.22)
1

c2
(
dr

ds
)2 + V 2

eff = E2.
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The proper time depends on the radial position and total energy, and it is given by the
formula:

(1.23)
dt

ds
= (1− 2GM

rc2
)−1

and the e�ective potential is given by:

(1.24) V 2
S ,eff = (1− 2GM

rc2
)(1 +

h2

c2r2
).

In Fig. (1.3) the formulae Eq.(1.21, 1.22, 1.24) are presented.The non-dimensional units
G = 1

2 , c = 1 andM = 1 are used. One of the approximations of Schwarzschild e�ective
potential from Eq. (1.24) is the Paczy«ski-Wiita potential:

(1.25) VPW,eff = − GM

r − 2GM
c2

+
h2

2r2
.

From the Eq. (1.24) and positiveness of the second derivative of the second potential
(d

2Veff
dr2 ) > 0) the limitation for the stability of circular orbit around black hole at r = 3

can be derived. Exactly the same value is obtained from Schwarzschild solution and from
Paczy«ski-Wiita potential. There is no innermosta stable orbit in Newtonian potential.
This innermost stable orbit determines the radiative e�ciency of an accretion disk.

Kerr black hole

If the black hole itself possesses angular momentum the details of this discussion, like
the e�ective potential or Innermost Stable Circular Orbit value are somewhat altered
quantitatively but not qualitatively. A rotating black hole (the Kerr solution) is char-
acterized by a mass M and angular momentum per unit mass H. Black holes are usually
expressed in terms of parameters with the dimensions of lengths: m = GM

c2
and a = H

c .
To show the universality, we can de�ne also non-dimensional black hole spin parameter
a∗ = a

m , ranging from −1 to 1 for all the physical cases. For the Kerr black hole the
horizon occurs at r = m +

√
m2 − a2. Here the e�ective potential for motion in the

equatorial plane can be de�ned as the minimum value of the energy per unit mass for
which motion is possible at each radius r, and is given by:

(1.26) Vkerr =
A1/2(B + C)1/2 +D

C

Where A = r2−2mr+a2, B = r2h2, C = ((r2+a2)+2a2m)r and D = ahm respectively.
Location of the innermost stable circular orbit for the Kerr black hole is given by formula
(Fig. 1.5):

(1.27) rISCO = m[3 +A2 ±
√

(3−A1)(3 +A1 + 2A2)]

where A1 = 1 + (1 − a2

m2 )1/3((1 + a
m)1/3 + (1 − a

m)1/3) and A2 =
√

3 a2

m2 +A2
1. Here in

± the + sign refers to particles orbiting in the same direction as rotation of the hole,
while the − sign occurs for counter-rotating particles (the case of retrograde spin). This
is presented in Fig. (1.5).
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Figure 1.5: The innermost stable circular orbit in the rotating Black Hole equatorial plane in
Schwarzschild radii for di�erent spin parameter a∗.
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1.2. Observational appearance of the black hole accretion

disks

1.2.1. Black holes, accretion disks and X-ray sources

A black hole, being a �nal product of the massive star evolution, can be several times
more massive than the Sun, while a black hole in the galaxy nucleus is millions or even
billions times more massive than Sun. Another class of black holes are the Intermediate
ones, described in this thesis in Chapter 5. Some of the black hole binaries in our Galaxy
are called microquasars, because of the properties similar to quasars (ejection of the the
collimated jets, observed in the radio band, see Mirabel et al., 1991), although they are
less luminous (L ≈ 1037− 1038 erg s−1). According to observational data, some of these
objects exhibit the periodic time variability, and their luminosity changes many times
during a single observation.

1.2.2. X-ray astronomy

With the launch of the Uhuru satellite, which happened 47 years ago, the new age
in the history of astronomy began. The development of space research allowed for
performing observations in X-rays, which are invisible from the Earth surface because
of the huge optical thickness of the Earth atmosphere, caused by the Thomson scattering
(see Chapter 1). During the last decades, the systematic progress in the technologies
of X-ray observations led to discoveries of many new objects. One of the most studied
sources is microquasar GRS 1915+105, located some 12 kiloparsecs from the Earth. This
source is ejecting very fast blobs of plasma, which move with apparently superluminal
motion. The most prominent results for X-ray lightcurves of this microquasar were
obtained using the X-ray satellite RXTE (Belloni et al., 2000).

The RXTE satellite 1, operating in years 1995-2012, consisting of the set of 5 propor-
tional counters is characterized by the very good time resolution, up to 125 microseconds,
which allows for precise study in the time domain, e.g. on the Standard 1 data types.
The examples of X-ray observations from the SWIFT satellite are presented in this the-
sis in Chapters 3 and 5. The SWIFT satellite is a new generation device, operating
since 2004. SWIFT contains three telescopes - UVOT for the observations in optical
and UV band, XRT for X-ray band and BAT for γ ray band, dedicated to the bursts.
The XRT device is Wolter Type I X-ray telescope, a di�erent construction which allows
imaging in contradiction to the proportional counter arrays. In this thesis I will focus
on the X-ray observations from RXTE PCA and SWIFT XRT, which will be used to
present the variability patterns of the accretion disks X-ray sources.

X-ray part of the electromagnetic spectrum is the topic of our observational interest.
Following the Longair, M., High Energy Astrophysics, Cambridge University Press, 2011
textbook, we can de�ne the X-ray band as covering the part of electromagnetic spectrum
from 10 pm (200 keV) up to 10 nm (0.2 keV), more energetic than UV radiation, but
less energetic than γ radiation. X-ray radiation is the ionizing radiation, nevertheless in
comparison to UV they have less complex interactions with the atoms, except for highly
ionized heavy elements. Some examples of the typical BH accretion disk spectra are
presented in Fig. (1.8). In contradiction to γ rays, X-rays do not lead to the creation

1https : //heasarc.gsfc.nasa.gov/docs/xte/XTE.html
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Figure 1.6: Rossi X-Ray Time Explorer - the X-ray satellite working in years 1995-
2012, characterized by the very good time resolution (up to 125µs.) (https :
//en.wikipedia.org/wiki/Rossi_X − ray_Timing_Explorer/media/F ile : Rxte.jpg)
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Figure 1.7: SWIFT- the X-ray satellite working since 2004 (https :
//pl.wikipedia.org/wiki/Swift_(satelita)/media/F ile : Nasa_swift_satellite.jpg)

Figure 1.8: Typical spectrum of the accretion disk J.Frank, A.King, D.Raine, Áccretion power
in Astrophysics
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of elementary particles and nuclear processes. The peak temperatures of the blackbody
spectra for those energies correspond to 106 − 109K. Thus the temperatures at the
order of few millions K are expected. In the standard sub-Eddington accretion disk,
around the stellar-mass black hole, the temperature reaches the values on the order of
T ≈ 106 − 107K.

1.2.3. X-ray data

The sources emit �ux of photons, each one with given energy Eν = hν. The total
�ux of photons coming from a given source depends on time and energy I(E, t). After
integration of the �ux over the broad range of energy, like 0.3− 10 keV, the lightcurve
is de�ned as LX(t) =

∫ Emax

Emin
dEI(E, t). If we set a narrow energy channel (e.g. several

eV) and integrate it over the long time T (e.g. 16 seconds), we get the spectrum
I(E) =

∫ T
0 I(E, t)dt. The lightcurves are used for researching the dynamics of the

source 2. The spectra provides us information about the averaged state of the sources
and can be studied in many di�erent ways. The continuum provides us the information
about the temperature of sources and another ongoing processes e.g. Comptonization.
This process is characteristic for presence of corona. The emission from corona is non-
thermal and forms the power-law tail. The states of sources can be divided into the
Soft and Hard (see e.g. Pahari et al. (2014)). In Fig. (1.11) we show the comparison
of Soft and Hard states for the Cyg X-1 source. The soft states are dominated by the
thermal almost black body radiation from accretion disks (up to few keV), with a tail
due to non-thermal electrons, extending above 1 MeV, and hard states, dominated by
Comptonized radiation from mostly thermal electrons from the corona. The spectral
lines are characterised by photon energy and line intensity. The photon energy provides
information about the atomic transition (like absorption by the H-like iron)3 or its shift
(redshift or blueshift) being a track of the observed motion of the matter (e.g. the
accretion disk wind). The line intensity can provide us information about the absorbing
or emitting matter 4.

1.2.4. Classi�cation the X-ray binaries

X-ray binaries are the binary systems, which consist of the compact object (neutron
star, black hole) and a main sequence star. Another classi�cation divides those sources
into the Low Mass X-ray Binaries and High Mass X-ray Binaries (LMXBs and HMXBs)
regarding the mass of the donor star (-3000which can be less or more than several solar
masses). The common type of HMXBs are the Be X-ray binaries, where donor is the
Be star. An example of that object is LSI + 61303 (Gregory et al., 1979), which is a
variable radio source.

In the LMXBs, the matter is transferred to disk via Roche lobe, in contrast to HMXBs,
where the matter is transferred via stellar wind. In some Neutron Star X-ray Binaries
like LMC X-4 and SMC X-1 (names come from the Large Magellanic Cloud and Small
Magellanic Cloud galaxies), the in�ow proceeds via Roche lobe.

2In Chapters 3 and 5 the lightcurve data are presented, Chapters 4 and 6 are devoted to the possible
approximation of the lightcurves

3An example of the Iron line absorption is presented in Chapter 3
4See Chapter 3
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Figure 1.9: Scheme of di�erent types of X-ray data which are being provided by the X-ray
observatories
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Figure 1.10: Comparison of the observed spectra in Soft, Intermediate and Hard states from
the Cyg X-1 source (Gierli«ski et al., 1999). For more details about these observations, see
(Gierli«ski et al., 1999).

In the Low Mass X-ray binaries the donor is normally a main sequence star with mass
M ≈M�. The well-known microquasar GRS 1915+105 is an example the Low Mass X-
ray binary, with the rapid rotation of the central object. Furthermore, the sources can be
divided also into transient (being active only temporarily, like X-Ray companion of the
V404 Cygni) and persistent (being active through many years of continous observations).
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Figure 1.11: Schematic sketch to scale of 21 black hole binaries (see scale and legend in
the upper-left corner). The tidally-distorted shapes of the companion stars are accurately
rendered in Roche geometry. The black holes are located in the center of the disks. A disk's
tilt indicates the inclination angle i for the binary, where i = 0 corresponds to a system that
is viewed face-on; e.g. i = 21 for 4U1543 − 47 (bottom right) and i = 75 for M33X − 7
(top right). The size of a system is set by the orbital period, which ranges from 33.9 days for
the giant system GRS1915 + 105 to 0.2 days for tiny XTEJ1118 + 480. Three well-studied
persistent systems (M33 X-7, LMC X-1 and Cyg X-1) are located in the upper−right corner.
The other 16 systems are transients. (Figure courtesy of J.Orosz)
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Chapter 2

Optically thick and geometrically

thin accretion disks and local

thermal instability

In this Chapter I present an introduction to accretion disk theory, done in classical paper
of Shakura and Sunyaev (Shakura & Sunyaev, 1973). The idea of α viscosity will be
presented in the next Chapter. The general form of the equations of visco-thermal disk
dynamics presented in this Chapter, follows Janiuk, Czerny & Siemiginowska (2002).

2.1. Optically thick and geometrically thin accretion disks

In general the very basic parameters of accretion process include the central object
mass, amount of mass falling down per unit of time and the matter angular momentum.
More detailed studies can include also the BH spin. The mass scale spreads from a few
solar masses (X-ray binaries), through newly discovered Intermediate Mass Black Holes
(IMBH) up to supermassive black holes in the centers of Active Galactic Nuclei.

2.1.1. BH masses

The Hawking radiation process sets the lower limit for the black hole being able to
survive cosmological timescales.The mass of such a black hole is about 1015g. The
primordial black holes (Hawking, 1971; Carr & Hawking, 1974; Page, 1976), with masses
1015 − 1026 g can give a possible contribution to the dark matter, however, as it has
been shown by Abramowicz et al. (2009), collisions between the stars and primordial
black holes, are in practice undetectable. The black holes with the stellar masses are
the �nal products of the massive stars evolution. Their masses exceed TOV (Tolmer-
Oppenheimer-Volko�) limit (about 2 M�), being the maximum possible mass for the
neutron stars. The heaviest known stellar-mass black hole is GW150914 object, being
a result of binary black hole merger, having mass about 62 M� (Abbott et al., 2016).
Another interesting class of black holes are the Active Galactic Nuclei, with masses
spread from 106 up to 1010M�. On the axis of mass, between those two classes of Black
Holes are IMBHs.
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2.1.2. Angular momentum

One of the �rst well described cases of behaviour of matter was the spherical accretion
problem (Bondi et al., 1952). The Bondi accretion de�nes the characteristic radius,

depending on the sound speed cs: rB =
√

2GM
c2s

, called Bondi radius. The low-angular

momentum �ows, which accrete almost radially and relatively weakly feel the centrifugal
barier can model e.g. the weakly-active galaxy centers like the Sagittarius A* in the
Milky Way, with detectable oscillating shocks (Sukova & Janiuk, 2015). The upper limit
for the angular momentum for stable solution is connected with equilibrium between the
centrifugal force and gravitational attraction. It results in Keplerian disk, being a stable
radial con�guration, with the slow radial drift of the (Paczy«ski & Bisnovatyi-Kogan,
1981). This thesis is focused on disks rotating with Keplerian angular velocity.

(2.1) Ω =

√
GM

r3
.

In principle, the model described in Janiuk, Czerny & Siemiginowska (2002) used the
angular velocity connected with Paczy«ski-Wiita potential circular orbits ΩPW = Ω(1−
rSchw
r )−1. but during the tests no signi�cant change in the lightcurve shape has been

noticed. in Janiuk, Czerny & Siemiginowska (2002) used the : Figure (2.1) presents
di�erent types of accretion �ows. The S-shaped branch of the stationary solution refers
to the optically thick, geometrically thin accretion disk model, described in Chapters
3, 4 and 5. At low densities, another branch of solutions is found. It is optically thin,
quasi-spherical and hot �ow. The advection is dominant cooling mechanism. This work
is focused on theory of Keplerian, optically thick and geometrically thin disks and its
application to the observed X-ray sources.The Paczy«ski-Wiita potential is used since,
as I showed, it well catches the properties of the extact Schwarzschild solution. In the
studies of the time evolution the hydrostatic equilibrium is assumed, so I neglect sound
waves, concentrating on the thermal and viscous evolution. Also the advection term
is included, as in stationary solutions of Abramowicz et al. 1988 (Abramowicz et al.,
1988) since it provides e�cient cooling mechanism during outbursts. The heat di�usion
in radial dimension is regarded as negligible and skipped, along with the short-time
solutions in the form of sound waves.

2.2. The stationary model

2.2.1. Local parameters

We describe the disk in the cylindrical coordinates system (r, z, φ). Model used in this
thesis is 1.5 dimensional, which means that in numerics we integrate over one spacial
dimension (radius) and rotation of the matter is included in the value of Ω driving the
viscous dissipation. The disk is described by thermodynamical quantities: temperature
T , density ρ, pressure P , and thickness H. To simplify the formulae, we introduce the
surface density Σ, being the bulk density integrated over the height. To measure the
amount of heat produced and emitted in the disk we introduce following parameters:

� q+ - heat production per volume unit

� q− - cooling per volume unit

� Q+ - heat production per surface unit (q+ vertically integrated)
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Figure 2.1: Stability curves (in terms of non-dimensional ṁ and surface density Σ [g cm−2].
Di�erent types of accretion disks (Bjoernsson et al., 1996). The optically thick, geometrically
thin disks can be found for high values of Σ and ṁ < 1. ADAF = Advection Dominated
Accretion Flow.
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� Q− - heat emission per surface unit (q− vertically integrated)

We assume that the disk consists of the gas and radiation, thus the pressure is described
by the equation of state:

(2.2) P = Pgas + Prad,

where

(2.3) Pgas = aρT,

and

(2.4) Prad = bT 4,

where a = kb
mh

, b = 4σB
3c , kb - Boltzmann constant, mh - proton mass, σb - Stefan-

Boltzmann constant and c - speed of light. We perform the disk intergation in vertical
direction and use the equatorial values of density and temperature, and integration
constants C1, C2 and C3 de�ned as in Janiuk, Czerny & Siemiginowska (2002):

(2.5) C1 =

∫ H
0 dzP (z)

PequatorialH
,

(2.6) C2 = (

∫ H
0 dzρ(z)F (z)

ρequatorialF (0)H
)−1,

(2.7) C3 =

∫ H
0 dzρ(z)z

ρequatorialH2
.

In Equation (2.6) F (z) is the local energy �ux for given z from the two-dimensional
model. For all the computations for purpose of this thesis the values are assumed as
follows: C1 = 1.25, C2 = 6.25 and C3 = 0.17.

2.2.2. Stress tensor and heating rate

The heating of the accretion disk is driven by the viscous processes, being turbulent in
origin. The more detailed prescription of the viscosity is presented in Chapter 4. These
processes are described by the kinematic viscosity ν. This quantity determines the stress
tensor. Its most important component, in case of viscous dissipation Keplerian disk is
Trφ:

(2.8) Trφ = νr
∂Ω

∂r
.

We can also integrate the stress tensor vertically:

(2.9) τrφ =
1

2H

∫ H

−H
dzTrφ.

So, the bulk heating rate in the equatorial plane and the heating rate per surface unit
are as follows:

(2.10) q+(z = 0) = Trφ(z = 0)r
∂Ω

∂r
,

(2.11) Q+ = τrφr
∂Ω

∂r
H.
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2.2.3. Inner boundary condition

Due to the existence of the Innermost Stable Circular Orbit, which results from the
detailed GR computation for the black hole metric resulting in e�ective potentials pre-
sented in the Chapter 1, the inner boundary condition is needed to reproduce the real
physics in the model, re�ecting it the global disk structure via the shear stress. The
torque τF acting on mass ring at radius r is as follows:

(2.12) τF = 2πr2τrφ.

On the other hand, the torque is responsible for the dissipation of angular momentum
Ṁr2Ω, where Ṁ is accretion rate, and Ω is angular velocity:

(2.13) Ṁr2Ω = τF .

Combining Eq. (2.12) and Eq. (2.13) results in the formula for the locally generated
stress τ̄ localrφ :

(2.14) τ̄ localrφ =
ṀΩ

2π
.

The total τ totrφ consists of the local shear stress and the stress connected with the bound-
ary condition:

(2.15) τ̄ totrφ = τ̄ localrφ + τ̄ boundaryrφ .

Boundary term τ̄ boundaryrφ is the integration constant from the angular momentum con-
servation equation. Free boundary condition for the innermost radius rmin is given by:

(2.16) τ̄ totrφ = 0

The total emitted �ux is equal to shear stress times the radial gradient of angular
velocity:

(2.17) F = τ̄ totrφ r
∂Ω

∂r
.

Applying the formula for the angular velocity from Eq. (2.1) to Eq. (2.17) formula for
the �ux is derived:

(2.18) F =
3GMṀ

8πr3
(1−

√
rmin

r
).

In our description, we assume the hydrostatic equilibrium, which gives a constraint:

(2.19) Peq = C3ρΩ2H2,

where C3 is a constant de�ned in Eq. (2.7).

2.2.4. Stationary model and time dependent model

Full computation of above model, with one special assumption that the stress tensor
is proportional to the total pressure was done by Shakura & Sunyaev (1973). This
thesis involves the dynamical phenomena, using the (perturbed) equilibrium solutions
of the stationary model only as initial conditions for variable models described in the
subsequent Chapters.
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2.2.5. Heating and cooling

In stationary models, heating and cooling rates determine the structure of the disk,
being equal to each other (Q+ = Q−). For all the cases (both stationary and non-
stationary) the heating ratio is equal to FTOT presented in Eq. (2.18). The cooling is
thermal and inversely proportional to the local vertical optical thickness (Q− ∝ T 4/τ),
where optical thickness τ = κΣ. From Eqs. (2.9, 2.11) we can write the formula for the
heating rate per unit time per surface unit:

(2.20) Q+ = C1Trφr
∂Ω

∂r
H,

and the radiative cooling rate per unit time per surface unit is

(2.21) Q− = C2
4σBT

4

3κΣ
.

where κ is the opacity coe�cient. In most cases I assume that it is dominated by the
Thomson scattering, i.e equal to 0.34 cm2 g−1 (see Eq. 1.12).

2.3. Time-dependent equations

2.3.1. Di�usion equation

The �rst of two equations governing the behaviour of the disk is so-called di�usion
equation. It can be derived from the continuity equation in the cylindrical coordinate
system:

(2.22)
∂Σ

∂t
=

1

r

∂(rΣvr)

∂t
.

The out�ow (actually, mostly in�ow) velocity depends on the local kinematic viscosity
ν:

(2.23) vr = − 3

Σ
r−1/2 ∂

∂r

[
νΣr1/2

]
.

Combining these two equations results in the �nal formula:

(2.24)
∂Σ

∂t
=

1

r

∂

∂r
[3r1/2 ∂

∂r
(r1/2νΣ)].

2.3.2. Energy equation

Starting from the energy conservation equation in the general form, we connect entropy
S, local cooling q− and local heating q+:

(2.25) T [
∂

∂t
+ (vr

∂

∂r
)]S = q+ − q−.

The �rst necessary input for the model is to determine the thermodynamical parameters
of the gas. Adopting the equation of state (gas plus radiation, Eq. 2.2), the internal
energy u is as follows:

(2.26) u =
3

2
aT + 3

bT 4

ρ
.

De�ning β =
Pgas

P , leads to the following formula for the rate of change of internal energy
density

(2.27) du =
P

ρ
((12− 10.5β)d log T − (4− 3β)d log ρ).
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Since the internal energy can change via bulk work, dw = − p
ρ2dρ, or heat processes TdS

the energy conservations gives us:

(2.28) TdS = du− p

ρ2
dρ.

With the formula for the entropy:

(2.29) TdS =
P

ρ
((12− 10.5β)d log T − (4− 3β)d log ρ),

the equation (2.25) gains the form:

(2.30) (12− 10.5β)[
∂ log T

∂t
+ vr

∂ log T

∂r
] + (4− 3β)[

∂ log ρ

∂t
+ vr

∂ log ρ

∂r
]+ = q+ − q−.

From Eq.(2.30), putting ρ = Σ
H , we obtain �nally:

(2.31)
∂ log T

∂t
+vr

∂ log T

∂r
=

4− 3β

12− 10.5β
(
∂ log Σ

∂t
−∂ logH

∂t
+vr

∂ log Σ

∂r
−vr

∂ logH

∂r
)+

Q+ −Q−
(12− 10.5β)PH

which is equivalent to Eq. (33) in Janiuk, Czerny & Siemiginowska (2002) under assump-
tion that disk is not strongly deformed (radial derivative of H is small in comparison to
derivative of Σ).

2.4. Radiation pressure instability

We can investigate the stability of the disk, focusing on both the viscous and thermal
phenomena. Both the computations and observed X-ray phenomena considered in this
thesis cover the timescales long in comparison to the local dynamical timescale. We
advocate in this thesis that the radiation pressure instability, appearing on the ther-
mal/viscous timescales is the most probable explanation of the limit-cycle oscillation in
many accretion disks sources. The α−prescription of Shakura & Sunyaev (1973)1leads
to conclusion that the thermal and viscous processes described by the Eqs.(2.24, 2.31)
appears in separated timescales and the thermal timescale is several orders of magnitude
shorter than viscous timescale, so in thermal timescale Σ ≈ const. Thus we can write a
condition for the thermal instability:

(2.32)
∂ logQ+

∂ log T
>
∂ logQ−
∂ log T

.

In the most standard prescription, the cooling rate is proportional to the fourth power
of the temperature (radiative cooling according to the Planck blackbody emission) 2, so

(2.33)
∂ logQ−
∂ log T

= 4.

The heating rate is much more complex, since in the Eq. (2.20), under assumption
of constant Σ, Q+ ∝ TrφP . Shakura & Sunyaev (1973) assumed that the disk is
turbulent and Trφ is proportional to the total pressure Trφ ∝ P . Thus for high enough
temperatures, where the radiation pressure term in the equation of state (Eq.2.2) prevails
(P ∝ T 4), we get that Q+ ∝ T 8, so with Eq.(2.33), we conclude that the disk will be
blown by the radiation pressure.

Disk instability under radiation pressure has been discovered by Pringle, Rees & Pachol-
czyk (1973). A year later Lightman & Eardley (1974) showed that radiation pressure

1which is described in more detailed way in Chapters 3 and 4
2For more detailed prescription of the cooling rate in accretion disks see Chapter 6
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dominated disks are also viscously unstable, and both radiation and viscous stability
of α-disk was studied by Shakura & Sunyaev (1976). However, the presence of disk
instability does not mean that radiation pressure dominated disks does not exist. The
stabilization of the disk is provided by the advection term introduced by Muchotrzeb
Paczy«ski (1982) and Abramowicz et al. (1988) and present in Eq. (2.31) via the radial
derivatives. Combined e�ect of the thermal radiation pressure instability and advection
leads to the limit-cycle oscillations with characteristic timescales and amplitudes, which
found con�rmation in numerous sources 3 4 5.

3An example of the radiation pressure instability of IGR J17091 is presented in Chapter 3
4An example of the radiation pressure instability of HLX-1 intermediate-mass black hole is presented in

Chapter 5
5For more detailed discussion about the disk viscosity see Chapter 4
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Chapter 3

Microquasar IGR J17091-3624 as an

example of oscillating accretion disk

In this Chapter we introduce the code GLADIS (Global Accretion Disk Instability Sim-
ulation), used also for some computations in Chapters 4, 5 and 6. Particularly in
this Chapter, we apply it to explain the heartbeat oscillation of the microquasar IGR
J17091-3624, discovered in this source in X-ray observations with RXTE in early 2011,
(Altamirano et al., 2011a). Using the code, described in this Chapter, we model the
accretion disk evolution responsible for the X-ray emission of the modeled source. We
show that the variable wind out�ow plays a role in regulating the amplitude and period
of these oscillations.

3.1. The alpha disk model

In the standard α-model of the accretion disk (Shakura & Sunyaev, 1973), the non-zero
component τrφ of the stress tensor is assumed to be proportional to the total pressure.
The latter includes the radiation pressure component, which scales with temperature
as T 4 and blows up in hot, optically thick disks for large accretion rates. In general,
an assumption about the dependence of τrφ on the local disk properties leads to a
speci�c prediction of the behaviour of the disk heating. This in turn a�ects the heating
and cooling balance between the energy dissipation and radiative losses. Such a balance,
under the assumption of hydrostatic equilibrium, is calculated numerically with a closing
equation for the locally dissipated �ux of energy given by the black hole mass and global
accretion rate. The local solutions of the thermal balance and structure of a stationary
accretion disk at a given radius may be conveniently plotted in the form of a so-called
stability curve of the shape S. Here, distinct points represent a �xed annulus in a
disk, with temperature and surface density determined by the accretion rate. For small
accretion rates, the disk is gas pressure dominated and stable. The larger the global
accretion rate, the larger part of the disk will be a�ected by the radiation pressure and
the extension of the instability zone grows in radius. The hottest areas of the disk are
heated rapidly, the density decreases, as the local accretion rate grows; more material is
transported inwards. The disk annulus empties because of both increasing accretion rate
and decreasing density, so there is no self-regulation of the disk structure. However, the
so called `slim-disk' solution (Abramowicz et al., 1988), where the advection of energy
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Figure 3.1: An example of the stability curve of the accretion disk (M = 10M�, r = 82
Schwarzschild radii).

provides an additional source of cooling in the highest accretion rate regime (close to
or above the Eddington limit), provides a new stable branch. Hence, the advection of
some part of energy allows the disk to survive and oscillate between the hot and cold
states. Such oscillating behaviour leads to periodic changes in the disk luminosity. To
model such oscillations, obviously, the time-dependent structure of the accretion �ow
needs to be computed, instead of the stationary solutions described by the S-curves.

3.1.1. Value of α viscosity parameter

The physical parameters of the model are the black hole mass, accretion rate (Eddington
ratio) at the outer edge of the disk, and α viscosity. The �rst two parameters can be
constrained from observation, but the value of α is chosen arbitrarily. In principle, it can
be in the range 0 < α < 1. Our choice of α = 0.02 as a reference value was motivated by
observations of AGNs. Siemiginowska & Czerny (1989) interpreted the quasar variability
as the local thermal timescale at a radius corresponding to the observed wavelength in
the accretion disk, and they determined the value of 0.1 for a small sample of quasars.
The same method, for larger sample objects (Palomar-Green quasar sample), gave the
constraints 0.01 < α < 0.03 for sources with luminosities 0.01LEdd < L < LEdd (Starling
et al., 2004). Values in the range 0.104 < α < 0.337 were found for blazars from
their intra-day variability (Xie et al., 2009) but those variations, even if related to the
accretion disk, might be coming from Doppler-boosted emission and the timescale is
then under-estimated. The stochastic model of AGN variability (Kelly et al., 2009;
Kozªowski, 2016) allows for determination of the characteristic timescales and their
scaling. Kelly et al. (2009) give the value of the viscosity parameter α = 10−3 estimated
at the distance of 100 RSchw , but the actual value implied by Eq. (5) in Kelly et al.
(2009) is 0.2. This value would be lower if the radius was smaller. More precise results
come from Kozªowski (2016)

(3.1) τchar[years] = 0.97

[
M

8× 108M�

]0.38±0.15

.

This characteristic timescale is obtained at a �xed wavelength band, or disk temperature,
and the location of a �xed disk temperature T in the Shakura-Sunyaev disk also depends
on the black hole mass. We thus identify this timescale with the thermal timescale, and
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Np period error variance duration of outburst error variance No

25 441.163 52.7 341.63 10.682 0.384432 2.5209 44
30 684 77.9 397.3 29.2857 3.81897 19.8076 27
40 1199 47.6 184.4 57.0582 2.8143 11.2537 16
50 1342 43.8 158.0 70.664 3.4465 12.8924 15
75 1381 21.1 76.0 76.6695 2.1083 7.8827 14
100 1402 18.5 64.2 78.5713 2.0588 7.42309 13

Table 3.1: Resulting heartbeat outbursts modeled with di�erent grids. First column Np, gives
the number of grid points. Last column, No, gives the number of outbursts in time interval
of 20 ks

obtain an expression for the viscosity parameter

(3.2) α = 0.4(
T

104K
)−2

[
M

8× 108M�

]0.12±0.15

.

We see that the viscosity does not depend on the black hole mass within the error. The
variability study of Kozªowski (2016) was perfomed predominantly in the r band of the
Sloan Digital Sky Survey (SDSS), centered at 6231 Å, with quasars being mostly at
redshift 2. The conversion between the local disk temperature and the maximum disk
contribution at a given wavelength is given approximately as hν = 2.43kT (where h
and k are the Planck and Boltzmann constants). Therefore, the dominant temperature
in the Kozªowski (2016) sample is about 28 000 K, and the corresponding viscosity
parameter is 0.044 for the black hole mass ∼ 8.0×108M� and 0.015 for ∼ 8.0×104M�.
Thus we assume the parameter α = 0.02 in the model which we study in this and the
next Chapters.

3.2. The code GLADIS

The heartbeat oscillations in IGR J17091 can be explained via intrisnsic oscillations of
an accretion disk driven by the thermal-viscous instability. Using time-dependent code
GLADIS 1, the evolution of an accretion disk responsible for the X-ray emission of the
source is modeled with respect to the variable wind out�ow. The code GLADIS was
subsequently developed and applied in a number of works to model the evolution of
accretion disks in Galactic X-ray binaries and AGNs (Janiuk & Czerny, 2005; Czerny
et al., 2009; Janiuk & Misra, 2012).

3.2.1. The grid tests

The code allows for computations with a variable time-step down to a thermal timescale,
adjusting to the speed of local changes of the disk structure. At �rst, we tested it and
found that the denser grid results in perfectly regular �ares. First, we tested the code
parameterized with the accretion rate equal to the Eddington one, and central object
mass of M = 10M�. The grid covers the area from the inner radius Rin equal to 3
Schwarzschild radii to external radius equal to 100 Schwarzschild radii. In Table 3.1 we

1whose basic framework was initially described by Janiuk, Czerny & Siemiginowska (2002)
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summarize the tests of our numerical grid. We see that denser grid leads to a better
regularity of outbursts. For number of grid points equal to 100 the average period is
equal to 1401.92 with variance of periods between outbursts equal to 64.1, which is
less that 5 per cent. We conclude that outbursts are regular in our model and may
accurately describe the heartbeat e�ect. This result will be used in this Chapter and
the next Chapters.

3.3. Winds, jets and coronae - behind the standard accretion

disk model

The accretion disk consists of highly-energetic plasma. Like any gas in thermal equilib-
rium in a gravitational well (e.g. like the Sun or other main sequence stars) the plasma
in accretion disks contains some particles which are fast enough to escape from the
gravitational �eld.

If the partile velocity at a given radius r exceeds the escape velocity, the �ux of particles
leaves the accretion disk in a form of wind.

If the partile energy at a given radius r is not large enuogh to make the particle
velocity largen than escape velocity, the particles are freed from the disk �ow and form
a quasi-staic corona, being responsible for the non-thermal emission. The contribution
of coronae dominates the source spectrum in the hard X-ray band (over 10 keV) of
the soft states. The power law X-ray emission in the hard states likely comes from
the innermost optically thin ADAF and/or very compact source, located close to the
symmetry axis and possibly related to a failed jet.

In some of the disk states, the most energetic particles escape. Presence of the magnetic
�eld helps in collimation of the wind �ux. In some of the accretion disk sources, like
Active Galactic Nuclei - quasars, and X-ray binaries - microquasars, the wind out�ow
is observed apart from very powerful jets with signi�cant radio emission.

The wind forms an additional plasma present in the accretion disk neighbourhood. It
can be detected via the absorption spectral lines, responsible for the transition between
di�erent ionization states of the elements. In case of the highly ionized heavy elements
like Iron, their spectral lines reach the band of soft X-rays (e.g. about 6.9 keV for Kα
line of Fe XXVI, the Hydrogen-like Iron). The movement of the wind particles is visible
in the shift of the lines, and line intensity contains information about the wind column
density. Those quantities can be measured if the instrument resolution is good enough
for detection of the spectral lines. The observations of the spectral lines taken from
the Chandra HETG detector are important for the estimation of the wind strength in
various X-ray sources (Miller et al., 2006; Netzer, 2006; King et al., 2012).

3.4. Possible interplay between wind and limit-cycle oscilla-

tions

The wind can play stabilizing role, holding back the e�ects from the radiation pressure
instability. During the ejection, the local accretion rate and local density drops and
the disk remains locally stable, especially in the hottest and most crucially instability-
contributing annuli. As a result, the powerful instability is suppresed by the dropping
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Figure 3.2: Scheme of the wind ejection from the accretion disk
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optical depth making the cooling processes much more e�cient in comparison to the
viscous heating. This phenomenon found its con�rmation in observations.

3.5. IGR J17091 microquasar

3.5.1. The discovery

The IGR J17091 microquasar has been discovered by Kuulkers et al. (2003) thanks to
the data from the Integral satellite. This source has been classi�ed as a black hole
candidate. It is a moderately bright transient X-ray binary with peak �ux level about
10 mCrab. Existence of IGR J17091-3624 has been previously con�rmed in the archival
data from TTM-KVANT (Revnivtsev et al., 2003) and BeppoSAX Wide Field Camera
(in 't Zand et al., 2003). The source presents various variability patterns (Altamirano
et al., 2011a), being similar to the GRS 1915+105, although the source is less luminous.
There are many possible explaination of this source faintness is smaller BH mass.

3.5.2. IGR J17091 mass

For the purpose of models in this Chapter, we followed the results of Rebusco et al. (2012)
which were obtained from the features of the high frequency Quasi Period Oscillations.
Other method, used later by Iyer et al. (2015) determined its mass between 8.7 and
15.6 M�, and the discussion about the exact mass value of the IGR J17091-3624 is still
open. Nevertheless, the huge universality of the thin accretion disk model preserves
the nature of the oscillation from the bias connected with the mass determination and
the qualitative conclusions about wind-heartbeat correlation are general and, to some
extent, are unsensitive on black hole mass. 2

3.5.3. The time variability

Altamirano et al. (2011a) found several variability patterns of IGR J17091. The outburst
from February, March and April 2011 have been recorded both by the SWIFT and
RXTE satellite. The source peak increased up to 120 mCrab. The RXTE data showed
a continous progression of quasi-periodic �are-like events with frequency 25 − 30 mHz
(Altamirano et al., 2011b). Altamirano et al. (2011b) classi�ed the variability of IGR
J17091 with the same scheme as Belloni et al. (2000) for GRS 1915+105, which has
been classi�ed into several variability classes. The �ux intensity of IGR J17091-3624 is
many times weaker than in GRS1915+105. It is thought that this can be caused by the
lower BH mass in IGR J17091-3624 (Rebusco et al., 2012) or retrograde spin of IGR
J17091 (Rao & Vadawale, 2012). To determine the timing behaviour of IGR J17091
and presence or absence of periodical �are-like events associated with the heartbeat
state during a period that includes the four XMM-Newton and Chandra observations
(April 2011 - October 2012), the analysis of the data collected by Swift/XRT 0.2 −
10keV lightcurve was performed using the standard XRT pipeline. An example of the
Swift/XRT heartbeat state observation of IGR J17091 is shown in Fig. (3.3).

2For the more detailed discussion about the relationship between the black hole mass and lightcurve pa-
rameters see next Chapter
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Figure 3.3: X-ray light curve of the source IGR J17091 as observed by Swift/XRT.The obser-
vation ID is 31921041.
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The characteristic feature of the IGR J17091 is particularly fast and ionized wind ob-
served during its soft spectral state (King et al., 2012). According to King et al. (2012)
the wind, detected via Fe XXV (He-like) and Fe XXVI (H-like) blueshifted absorption
lines gains the velocities up to 9000 and 15000 km s−1. These values are signi�cantly
larger (an order of magnitude) than previously observed in stellar-mass black holes.
According to the combined results from the SWIFT/XRT lightcurve and both Chan-
dra and XMM-Newton spectral lines, the bluepresence of wind is anti-correlated with
bluethe presence of the heartbeat oscillations. The observational con�rmation of that
correlation is presented in Fig. (3.4). The same correlation in the model is presented in
Fig. (3.6).

3.5.4. The model of the wind

For the IGR J17091 modeling purpose, the variant version of the GLADIS code has been
used with additional wind prescription (Janiuk, Czerny & Siemiginowska, 2002). We
adopted a function that assumes the following wind-launching power, blueapproaching
unity with growing Eddington ratio ṁ:

(3.3) fout = 1− 1

1 +Aṁ
The blueparameter A regulates bluethe amount of energy lost in the out�ow, so the
energy remaining bluein the disk is only a fraction of that produced bluein the disk.
blueTherefore, in the energy conservation equation (2.31), the heating ratio Q+ is re-
placed by Q+(1− fout). The total ejection rate (the bluefraction of energy lost through
the wind) in presented in Fig. (3.5) So the energy conservation equation gains the form:
(3.4)
∂ log T

∂t
+vr

∂ log T

∂r
=

4− 3β

12− 10.5β
(
∂ log Σ

∂t
−∂ logH

∂t
+vr

∂ log Σ

∂r
−vr

∂ logH

∂r
)+
Q+(1− fout)−Q−

(12− 10.5β)PH

This assumption resulted in signi�cant bluereduction of the ourburst amplitude. In Fig
(3.6) we present two lightcurves for di�erent wind parameters A. In Fig.(3.7) we present
the blueglobal outburst properties - periods and relative amplitudes for chosen set of
given A and ṁ.

3.6. Average mass loss, density, and column density of the

wind

The mass-loss rate, describing the amount of matter escaping from the disk per unit of
time per unit of disk area in the vertical direction is equal to the ratio of the locally
generated �ux in the accretion disk, with a fraction determined by fout in Eq. (3.3),
to the energy charge per particle, ṁz = Fout/(∆E/mp). The local �ux is given by Eq.
(2.18). The energy change per particle is on the order of the virial energy ∆E = BkBTvir,
so it results in the �nal formula (in [g s−1 cm−2])

(3.5) ṁz = B−1 3

4

1

r
Σvrf(r)fout

with fout given by Eq. (3.3). The total mass loss is given by ṁz over the disk is:

(3.6) Mwind =

∫ Rmax

Rmin

drṁz4πr.
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Figure 3.4: Swift/BAT 15 - 50 keV light curve shown on the background of a timeline sketch
created from the Swift/XRT, RXTE/PCA,Chandra , and XMM data analysis, showing
the anticorrelation between the wind and heartbeat in IGR J17091 The second Chandra
observation (second green arrow) shows a fast, ionized wind, while the �rst XMM-Newton
observation (�rst red arrows) and the �rst Chandra observation (�rst green arrow) lie in the
heartbeat zone and do not show any detectable wind out�ow. During the last XMM-Newton
observation (second red arrow), the source is in a hard state. The parts with no �are are
marked with red-oblique-dashed lines. Finally, the green-oblique-dashed lines bluemark
periods without bluededicated observations.

Modi�ed Julian Days and date:

MJD 55600 = 8th February 2011
MJD 55800 = 27th August 2011
MJD 56000 = 14th March 2012
MJD 56200 = 30th September 2012
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Figure 3.5: Dependence of the wind ejection rate on the wind strength parameter (Eq.(3.3))

We assume that outer radius of the accretion disk is equal to 4 × 104Rg, which is the
largest possible size in the IGR J17091, as estimated from the parameters of the binary.
The smallest radius, Rmin, according to the Schwarzschild solution, could be located at
the marginally stable orbit around the black hole, that is, at 6GM

c2
, for a nonrotating

black hole.

We computed results for several values of the smallest radii from which the wind is
launched, to �t its observational parameters. The actual mass loss will be at this order,
or somewhat smaller, as the wind particles may be accelerated to obtain kinetic energy
not necessarily equal to the virial energy, but rather having a velocity a few times their
escape velocity at the radius r. Therefore the upper limit for the wind column density
is calculated, depending on our model parameter A.

3.7. Comparison between the wind model and observations

of IGR J17091

3.7.1. Spectral line analysis

King et al. (2012) reported about the particularly fast and ionized wind observed during
the soft spectral state. Two detected lines (6.91 and 7.32 keV) can be associated with
blueshifted He-like Iron Fe XXV and H-like Iron Fe XXVI with velocities 9000 and 15000
km s−1. To sum up, the wind consists of two components:

1. �rst, faster, ejected with velocity vw,1 = 15700± 600 km s−1

2. second, slower, ejected with velocity vw,2 = 9700+800
−700 km s−1

According to above, those two components can correspond with two di�erent ejection
zones - faster component corresponds to lower radii and slower component correspond
to larger radii. The photoionization modeling of the data presented in Fig. (3.8) allows
the estimation of mass loss rates at the level of 2.7× 1017 g s−1 and 4.2× 1017 g s−1 in
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Figure 3.6: Model lightcurves for di�erent jet ejection power A for MBH = 6Modot, α = 0.02,
ṁ = 0.1. Upper panel: Model lightcurve for A = 0. Middle panel: Model lightcurve for
A = 10. Lower panel: Model lightcurve for A = 100
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Figure 3.7: Dependence of the outburst amplitudes and periods on the wind strength A.
Shaded regions mark observed amplitudes and timescales of the microquasar heartbeats. Dif-
ferent colors mark di�erent values of the parameter, as indicated in the plot. Models were ran
for ṁ between 0.1 and 0.4. In general, the lower the accretion rates, the shorter the outbursts,
as long the instability occurs.
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case of the quiescence state and 2.5× 1016 g s−1 and 3.9× 1016 g s−1 in the heartbeat
variable state 3. For this Chapter, we adopted the black hole mass in the IGR J17091
microquasar to be equal of 6M�.

3.7.2. Mass loss and ejection radii

Studying the radial pro�les of the local accretion rate can help estimate of the wind
ejection zones. The innermost area of the accretion disk in the heartbeat states is
strongly thermally unstable. The dynamical processes results in complicated temporal
and spacial behaviour of vertical ejection rate ṁz(r).

For radii below 70 Schwarzschild radii, the dependence of ṁz(r) derived from Eq. (3.5)
is a complicated function, while at larger radii it scales with radius as a simple power
law with index −1.8. Therefore this relation and its normalization to best-�t model for
the heartbeat oscillating disk was �tted, that is, with A = 15. After simple integration:

(3.7) Ṁwind(r,Rmax) = 1.635× 1016(R0.2
max − r0.2)

g

s

where in the above the argument r = Rmin ≤ 70 is expressed in Schwarzschild radii
units. From this relation, the extension of the wind-launching zone is constrained, taking
into account the radius r determined by the velocity of the wind equal to the escape
velocity at that radius, which can be constrained by the spectral analysis (provided the
wind is detectable in the data). Thus for the two wind components the minimal radii are
at the ranges of Rmin,1 = 380 RSchw and Rmin,2 = 950 RSchw respectively. Furthermore,
the strong dependence of the wind mass-loss rate on the strength parameter can be
noted. With A = 300, a stable disk solution is found in our simulations, while the
mass-loss rate Ṁwind wind is about ≈ 12 times higher than for our heartbeat model
with A = 15. Such a strong wind de�nitely stabilizes the heartbeat oscillations, while it
should give clear observable signatures in the Chandra spectra, such as those which are
presented in Fig. 3.8. Taking the values of the wind velocities and mass-loss rates to
be the same as those in the 12406 Chandra observation, the wind-launching zones are
estimated at the level 950 − 4200 and 380 − 4700 Schwarzschild radii for the �rst and
second wind components.

3.7.3. Wind density

The wind mass-loss changes in time as a result of the outbursts. Averaging the solutions,
the total mass loss caused by the wind is obtained at the level of Ṁwind = 3 × 1016 −
2× 1017g s−1. The wind density at Rmax is equal to:

(3.8) ρwind(Rmax) =
Ṁwind

4πR2
maxvesc

where vesc is the escape velocity at Rmin. In best-�t heartbeat model, which is obtained
with A = 15 to reproduve the oscillations amplitude and period,the density of the wind
is equal to ρwind = 2×10−16−7.2 = 2×10−16 g cm−3, depending on the wind-launching
radius. Assuming that wind consists of protons, regarding the fact that ρwind ≈ R−2 the
column density of the (spherically symmetric) wind is calculated. The observable column

3Those values are estimations are the upper limits, since no signi�cant wind component for that source has
been found
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Figure 3.8: Chandra ACIS-S HETG spectra for observations 12406 (upper panel) and 12405
(lower panel) in the 6− 7.5 keV energy range.
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Rmin Ṁwind [g s−1] ρwind [g cm−3] NH [cm−2]
3 2.18 · 1017 2.0 · 10−16 5.66 · 1021

70 8.84 · 1016 3.9 · 10−16 1.10 · 1022

150 7.68 · 1016 5.0 · 10−16 1.07 · 1022

350 6.04 · 1016 7.1 · 10−16 2.00 · 1022

2000 3.06 · 1016 7.2 · 10−16 2.04 · 1022

Table 3.2: Exemplary results of the disk/wind model. The parameters are accretion rate
ṁ = 0.1, wind strength A = 15, black hole massM = 6M�, wind extension Rmax = 40000Rg.
The column density is calculated assuming f1 = 0.0015.

number density of particles is then be given by NH = ρwind(Rmax)Rmax(fmp)
−1, where

f is the �lling factor, in principle unknown. The �lling factor is a correction describing
the geometry of the gas distribution. The resulting wind mass-loss rate and density for
wind strength parameter A = 15 and several values of the inner radius at which the
wind is launched are summarized in Table 3.2.

3.8. Discussion

3.8.1. General picture for the IGR J17091

In microquasar IGR J17091 the wind consists of two di�erent components. The time-
dependent radiation pressure dominated disk instability model implemented by the
GLADIS code reproduces the anti correlation between the wind ejection rate and the
occurrence of heartbeat oscillations.

Now, the question remains whether the bound wind, ejected with the velocities that
are below the escape velocity for a black hole with accretion disk, is observationally de-
tectable. This part of the �ow, also crucial for stabilizing the accretion disk oscillations,
could contribute to the hard X-ray corona (see Fig. 3.2).

In general, the coronae in X-ray binaries are visible as the power-law tails in the spectra
in hard X-ray band, being the most signi�cant in the hard states (See Fig. 1.11).

Indeed, as Fig. (3.4) shows, there are no strong correlation between the �aring and non
�aring activity and the 15 − 50 keV hard X-ray emission. A slight drop in the hard
X-ray emission can be noticed during the �aring states.

3.8.2. Viability of the radiation pressure instability model in the con-

text of wind

The best-studied example of the radiation pressure instability in action is the micro-
quasar GRS 1915+105, which in some spectral states exhibits cyclic X-ray outbursts that
�t limit-cycle oscillations of an accretion disk well. This source has been known for 20
years, and only recently another microquasar of that type was discovered. This is IGR
J17091, the second excellent candidate source that shows radiation-pressure-driven vari-
ability on observable timescales.
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In addition, other selected Galactic X-ray binaries that were discussed in more de-
tailed way in Janiuk & Czerny (2011) support that there are Prad instabilities in their
accretion disks. Nevertheless, many sources accretes at a high accretion rate to even
Eddington rate ratios that show no limit-cycle oscillations on timescales adequate for
the radiation pressure instability. Some stabilizing mechanisms need to be considered to
explain the apparent stability of the high accretion rate sources. One plausible mecha-
nisms discussed in the literature possibly a�ecting the stability of accretion disks is the
jet or wind out�ow.

The luminosity outbursts for the pure radiation pressure instability are too large with
respect to the amplitudes observed in IGR J17091. The most plausible scenario is
that the energetic wind is launched from the accretion disk and partially stabilizes it,
depending on its strength and mass-loss rate. The range of plausible wind strengths
based on the timescales and amplitudes of the disk �ares they allow was determined.
The wind may either partially stabilize the disk oscillations to produce regular outbursts,
but of moderate amplitudes, or even completely stabilize the disk.

In the spectroscopic observations, it may not always be detectable because of its high
ionization state or because the velocities required very close to the black hole are below
the escape velocity; in that case, the MHD mechanism instead drives the formation of a
quasi-static bound corona above the disk. However, the observed winds agree well with
the scenario described by our model.

Nevertheless, the wind is only one out of the possible stabilizing e�ects in the accretion
disks. More detailed discussion on the accretion disks stability will be presented in the
next Chapter.

3.9. Conclusions

Our �nal conclusions from the comparison of the wind-heartbeat interplay are as follows:

1. The heartbeat oscillations of the X-ray luminosity of IGR J17091 detected during
its outburst in 2011 are attributed to the radiation pressure instability of the
accretion disk.

2. The out�ow launched from the disk at the cost of part of the locally dissipated
energy �ux is a plausible mechanism to regulate the amplitude of these oscillations.

3. The strong out�ow may stabilize the disk and completely suppress the heartbeat.

4. The observed properties of the wind detected from IGR J17091 in the state without
the heartbeats allowed us to constrain the the mass-loss rate at large distances in
the disk.
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Chapter 4

Generalized model with modi�ed

viscosity

4.1. Introduction

This Chapter presents a general model of the visco-thermal instabilities in the accretion
disks, extending the previous approach. Chapter 3 was devoted to modeling of one
source - microquasar IGR J17091. We showed anticorrelation between the limit-cycle
oscillations and the wind out�ow, veri�ed by the spectral and timing analysis. Never-
theless, the model presented in Chapter 3 involved only the special case of detectable
wind. In the absence of detectable wind, the X-ray lightcurve appears to be only probe
of the internal accretion disk and black hole parameters.

Because of the ubiquity of accretion disks sources this topic deserves more detailed
studies. Black hole masses range from stellar mass black holes in X-ray binaries, through
intermediate mass black holes (IMBHs), up to the supermassive black holes in quasars
and active galaxy centers (AGNs). The geometrically thin, optically thick accretion disk
that is described by the theory of Shakura and Sunyaev is probably most relevant for the
high/soft spectral states of black hole X-ray binaries, as well as for some active galaxies,
such as Narrow Line Seyfert 1s and numerous radio quiet quasars (Brandt et al., 1997;
Peterson et al., 2000; Foschini et al., 2015).

The topic of this Chapter is dependence between the non-diagonal terms of stress tensor
Trφ ( determining the viscous dissipation in accretion disk) on the pressure-contributing
factions - gas pressure Pgas and radiation pressure Prad. In the simplest possible case,
the viscous dissipation might be proportional to the total pressure.

The accretion disk is described by 5 local variables - thickness H, density ρ, temperature
T and pressures Prad and Pgas. The following assumptions:

1. Thermal equilibrium between gas and radiation

2. Equations of state

3. Hydrostatic equilibrium in vertical direction

reduce the numbers of local parameters in the hydrodynamical model (neglecting the
magnetic �eld extra degrees of freedom) to 2, so any possible phenomenological pre-
scription for Trφ can be written as a function on the gas and radiation, or gas and total
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pressure. To simplify, we can write

(4.1) Trφ = αPf(β)

where β =
Pgas

P is gas-to-total pressure ratio, and f is a regular continous function
tending to 1 if only β tends to 1. The case of f(β) = 1 has been included in the the simple
albeit powerful α prescription for the viscosity in the accreting plasma, introduced by
Shakura & Sunyaev (1973) and used in Chapter 3 to determine heating in the accretion
disk. This simple scaling of viscous stress with pressure is also reproduced in the more
recent numerical simulations of magnetised plasmas (Hirose et al., 2006; Jiang et al.,
2013; Mishra et al., 2016), however being not capable to model the global dynamics and
�t the observations. In this thesis, we advocate the global model governed by the set of
equations (2.24, 2.31) being able to reproduce the observable e�ects like regular changes
in disk luminosity like ρ − class variability of the sources GRS 1915 and IGR J17091.
In particular, the function f can model such e�ects like the stabilizing in�uence of the
magnetic �eld on the disk.

In this Chapter I study a broad range of theoretical models of radiation-pressure-driven
�ares and prepare the results to confront with observational data. The appearance
of the radiation pressure instability in hot parts of accretion disks can lead to signi�-
cant outbursts for all scales of the black hole mass. Temperature and heat production
rate determine the outburst frequency and shape. Di�erent e�ective prescriptions for
turbulent viscosity a�ect the instability range and the outburst properties. Thus, by
confronting the model predictions with observed �ares, the constraints can be put on
those built-in assumptions. In the current Chapter we make a systematic study showing
how the model parameters modify the local stability curve and global disk behaviour.
The parameter space of the model is expanded. The methodology is modi�ed, extended
by the parameter µ, which allows for a continuous transition between the gas and ra-
diation pressure dominated cases. The wind out�ow is neglected, though, as in many
sources the observable constraints for its presence are too weak.

In this Chapter, the key parameters characterising the data are determined. This ap-
proach makes the dependence of the models on the parameters much more clear, and it
allows for much easier comparison of the model with observational data.

4.2. Observational universality of disk oscillations

4.2.1. X-ray binaries

The time-dependent e�ects connected with non-stationary accretion are clearly impor-
tant. In particular, a number of observational facts support the idea of a cyclic activity
in the high-accretion-rate sources. One of the best studied examples is the microquasar
GRS 1915+105, which in some spectral states exhibits cyclic �ares of its X-ray luminos-
ity, well �tted to the limit cycle oscillations of an accretion disk on timescales of tens
or hundreds of seconds (Taam et al., 1997; Belloni et al., 2000; Neilsen et al., 2011).
Those heartbeat states are known since 1997, when the �rst XTE PCA observations of
this source were published (Taam et al., 1997), while recently yet another microquasar
of that type, IGR J17091-3624, was discovered (Kuulkers et al., 2003; Capitanio et al.,
2009). The heartbeat states were also found for this source (Altamirano et al., 2011a;
Capitanio et al., 2012; Pahari et al., 2014; Janiuk et al., 2015). Furthermore, a sample
of sources proposed in Janiuk & Czerny (2011) was suggested to undergo luminosity
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oscillations, possibly induced by the non-linear dynamics of the emitting gas. This sug-
gestion was con�rmed by the recurrence analysis of the observed time series, presented
in Suková et al. (2016).

One possible driver of the non-linear process in the accretion disk is its thermal and
viscous oscillation induced by the radiation pressure term; it can be dominant for high
enough accretion rates in the innermost regions of the accretion disk, which are the
hottest. The timescales of such oscillations depend on the black hole mass, and are on
the order of tens to hundreds of seconds for stellar mass BH systems.

4.2.2. Active Galactic Nuclei

For a typical supermassive black hole of 108M�, the process would require timescales
of hundreds of years. Therefore, in active galactic nuclei (AGNs) the evolution under
the radiation pressure instability can not be observed directly. Nevertheless, statistical
studies may shed some light on the sources' evolution. For instance, the Giga-Hertz
Peaked quasars (Czerny et al., 2009) have very compact sizes, which would directly
imply their ages. In the case of a limit-cycle kind of evolution, these sources would in
fact not be very young, but `reactivated'.

4.2.3. Intermediate-Mass Black Holes

Another class of objects, which are claimed to contain the BH accretion disk, are the
Ultraluminous X-ray sources (ULXs). ULXs are a class of sources that have a luminosity
larger than the Eddington one for the heaviest stellar-mass objects (> 1040 ergs s−1).
Therefore, ULXs are frequently claimed to contain accreting black holes with masses
larger than the most massive stars and lower than AGNs (103 − 106M�). They are
called intermediate-mass black holes (IMBHs). In some of such sources, the radiation
pressure instability were found.

4.3. Model

4.3.1. Expression for the stress tensor - di�erent prescriptions

The di�culty in �nding the proper physical description of the turbulent behaviour of gas
in the ionised area of an accretion disk led to the adoption of several distinct theoretical
prescriptions of the non-diagonal terms in the stress tensor term Trφ. Gas ionisation
should lead to the existence of a magnetic �eld created by the moving electrons and ions.
The magnetic �eld in the disk is turbulent and remains in thermodynamical equilibrium
with the gas in the disk. For a proper description of the disk viscosity, di�erent complex
phenomena should be included in Trφ. For a purely turbulent plasma we can expect the
proportionality between the density of kinetic energy of the gas particles and the energy
of the magnetic �eld (Shakura & Sunyaev, 1973). However, the disk geometry allows
the magnetic �eld energy to escape (Sakimoto & Coroniti, 1989; Nayakshin et al., 2000).
Following Shakura & Sunyaev (1973), one can therefore assume that the non-diagonal
terms in the stress tensor are proportional to the total pressure with a constant α:

(4.2) Trφ = αP.
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On the other hand, Lightman & Eardley (1974) proved the instability of the model
described by Shakura & Sunyaev (1973). Following that work, Sakimoto & Coroniti
(1981) proposed another formula which led to a set of stable solutions without any
appearance of the radiation pressure instability:

(4.3) Trφ = αPgas.

Later, Merloni and Nayakshin motivated by the heartbeat states of GRS 1915+105,
investigated the square-root formula. Their results are presented in paper (Merloni &
Nayakshin, 2006). The formula is given by:

(4.4) Trφ = α
√
PPgas.

This prescription was introduced by Taam & Lin (1984) in the context of the Rapid
Burster and used later by Done & Davis (2008) and Czerny et al. (2009) both for
Galactic sources and AGNs. In the current work, a more general approach is applied,
along with the introduction of the entire family of models, with the contribution of
the radiation pressure to the stress tensor parameterised by a power-law relation with
an index µ ∈ [0, 1]. We therefore construct a continuous transition between the disk,
which is totally gas pressure dominated, and the radiation pressure that in�uences
the heat production (Szuszkiewicz, 1990; Honma et al., 1991; Watarai & Mineshige,
2003). The formula for the stress tensor is a generalisation of the formulae in Equations
(4.2), (4.3), (4.4) and is given by:

(4.5) Trφ = αPµP 1−µ
gas .

In this work, the behaviour of the accretion disk with the tensor formula (4.5) is in-
vestigated for a very broad range of black holes and di�erent values of µ. A similar
analysis has been performed also by Merloni & Nayakshin (2006) for di�erent values of
α (here, α is �xed with a constant value, which is at the level of 0.02). Regarding the
existence of a magnetic �eld inside the accretion disk, the viscosity can be magnetic in
origin, and can reach di�erent values for di�erently magnetised disks. As the strong
global magnetic �eld can stabilise the disk (Czerny et al., 2003; S�adowski, 2016), the
parameter µ can be treated as an e�ective prescription of magnetic �eld.

4.3.2. Parameters and characteristics of the results

Starting from the time-dependent computations from a certain initial state, the disk
evolves for some time until the disk develops a speci�c regular behaviour pattern. Di�er-
ent variability patterns (a constant luminosity of the disk, i.e. stable solution, �ickering,
or large �ares) depend on the input parameters. We parameterise the models by the
global parameters: the black hole mass M , the external accretion rate, as well as the
physical prescription for the stress, α and µ. In this study we mostly limited our mod-
elling to a constant (arbitrary) value of α = 0.02, since the scaling with α is relatively
simple, and we wanted to avoid computing the four-dimensional grid of the models. We
discussed our motivation in Chapter 3, and here we also perform a limited analysis of the
expected dependence on this parameter. Those parameters are not directly measured
for the observed sources. In the current work, we focus on the unstable accretion disks.
We thus construct from our models a set of output parameters that can be relatively
easily measured from the observational data: the average bolometric luminosity L, the
maximum bolometric luminosity Lmax, the minimum bolometric luminosity Lmin, the
relative amplitude of a �are, A = Lmax

Lmin
), and the period, P . In order to parameterise

the shape of the light curve, a dimensionless parameter ∆ is introduced. The ∆ is equal
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Value Symbol

Black hole mass M

Accretion rate ṁ

First viscosity parameter α

Second viscosity parameter µ

Table 4.1: Summary of the model input parameters

Value Symbol

Bolometric luminosity L

Period P

Amplitude (Lmax/Lmin) A

Flare duration to period ratio ∆

Table 4.2: Summary of the characteristic quantities used to describe the accretion disk �ares

to the ratio of the �are duration to the period. Flare duration is de�ned as the time
between the moments where the luminosity is equal to (Lmax +Lmin)/2 on the ascending
slope of the �are, and the luminosity (Lmax + Lmin)/2 on the descending slope of the
�are. We then compare L, A, P and ∆ obtained for several distinct black hole mass
scales. In Table 4.1 the model input parameters are summarized. The accretion rate
ṁ is presented in Eddington units ṁ = Ṁ

ṀEdd
. The Eddington accretion rate ṀEdd is

proportional to the Eddington luminosity, and inversely proportional to the accretion
e�ciency ṀEdd = LEdd

ηc2
. Accretion e�ciency is assumed at the level of η = 1

16 for all

models and ISCO at the level of 6GM
c2

.

In Table 4.2 we summarise the probed characteristics of the accretion disk �ares are
summarized.

4.4. Local stability analysis

We �rst perform a local stability analysis in order to formulate basic expectations and
limit the parameter space. In general, the disk is locally thermally unstable if for some
temperature T and radius r, the local heating rate grows with the temperature faster
than the local cooling rate:

(4.6)
d logQ+

d log T
>
d logQ−
d log T

.

In this analysis, the timescales were considered as di�erent for the thermal and viscous
phenomena which is justi�ed for a thin disk.

4.4.1. Stability and timescales

For thin, opaque accretion disks, there appears a strong timescale separation between
thermal (connected with the local heating and cooling) and viscous phenomena. The
thermal timescale, for a disk rotating with angular velocity Ω, is tth = α−1Ω−1. The
appearance of viscous phenomena, connected with the large-scale angular momentum
transfer is connected with the disk thickness, so that tvisc = tth

R2

H2 . We focus now
on the thermal phenomena. On thermal timescales the local disk surface density is
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constant, and only the vertical in�ation is allowed. Therefore, for the thermal timescale
Σ ≈ const. From Eqs. (2.20) and (4.5):

(4.7) Q+ =
3

2
C1αP

µP 1−µ
gas HΩ.

Assuming that the disk maintains the vertical hydrostatic equilibrium H = P/(C3ΣΩ2),
and de�ning x =

Pgas

Prad
+ 0.5. Eq. (4.7) can be rewritten as:

(4.8) Q+ = α
3

2C3ΣΩ2
P 1+µP 1−µ

gas =
3

2

α

C3ΣΩ2
P 2

rad(x+ 1/2)1+µ(x− 1/2)1−µ.

Then, if we assume a constant Σ regime:

(4.9)
dx

dT
= −7

2

(x+ 1/2)(x− 1/2)

2xT
,

we get

(4.10)
d logQ+

d log T
= 1 + 7µ

1− β
1 + β

,

where β =
Pgas

P = x−1/2
x+1/2 . Finally, from Eq. (4.10) and Eq. (4.6):

(4.11)
d logQ+

d log T
> 4,

which is ful�lled if the condition:

(4.12) β <
7µ− 3

7µ+ 3

is satis�ed (Szuszkiewicz, 1990). This gives the necessary condition for the instability
for the case of µ-model, so that the instability occurs only if µ > 3/7.

4.4.2. Magnetised disk and its equivalence to µ model

The existence of strong magnetic �elds can stabilise the radiation-pressure dominated
disk (Zdziarski & Svensson, 1994; Czerny et al., 2003; S�adowski, 2016). We can assume
a signi�cant magnetic contribution to the total pressure P , de�ning it as follows:

(4.13) P = Prad + Pgas + Pmag.

Let us de�ne the disk magnetisation coe�cient β′ = Pmag

P . The formula (4.13) was put
into the Shakura-Sunyaev stress-energy tensor (i.e. for µ = 0 in Eq. 4.8), and then:

(4.14)
d logQ+

d log T
= 8(1− β′).

Here, the value of β′ = 1
2 means that there is an equipartition between the energy

density of the gas, radiation and magnetic energy density. It corresponds to the complete
stabilisation of the disk, so that d logQ+

d log T ≤
d logQ−
d log T . From the formula (4.12), β′ and µ

can be connected as follows:

(4.15) µ = 1− 8

7
β′.

Regarding the observed features, the model of the magnetised disk is equivalent to the
µ model for the radiation-pressure dominated disks in terms of appearance of thermal
instability.
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4.4.3. Disk magnetisation and �are amplitude

The energy equation (2.31) can give us a direct connection between the heating rate
and pressure. Under assumption that the heating rate dominates the cooling rate:

(4.16)
dT

dt
= CT 7(µ−1),

where C is a constant, since in thermal timescale we can neglect viscous processes like
radial �ow. C depends on local values of Σ and Ω. This simple, �rst-order di�erential
equation gives us the following dependence on the heating growth:

(4.17)
d log T

d log t
=

1

7(1− µ)
.

It explains why �ares can be possibly sharper for bigger µ.The above formula gives a
linear, approximate estimation of the solution of the full, non-linear model, presented
in the following Sections of this Chapter. This feature is directly con�rmed in the Fig.
(4.10). It can also give another criterion for determination of a proper value of µ, and
can be used as a test for the validity of µ-model in confrontation with the observational
data. Most of the luminosity comes from a hot, inner thermally unstable region of the
disk (r ≈< 70rSchw), and the colder, outer thermally stable region gives only minor
contribution to the total luminosity:

(4.18)
d logL

d log t
=

4

7(1− µ)
.

Regarding the timescale separation, and assuming that the �aring of the disk is stopped
by the viscous phenomena after t ≈ tvisc, we get the following formula for the dependence
between the relative amplitude A = Lmax

Lmin
and the viscous to thermal timescales rate:

(4.19) logA =
4

7

1

1− µ
log

[
tvisc

tth

]
.

Furthermore, a useful formula that connects the presence of magnetic �elds can be
derived along with the amplitude of the limit-cycle oscillations:

(4.20) logA =
1

2

1

β′
log

[
tvisc

tth

]
.

In the rest of this Chapter, a more detailed analysis of the relation between the outburst
amplitude and other light curve properties on the µ parameter will be presented, which
is possibly corresponding to the scale of magnetic �elds.

4.5. Results - stationary model

First, an exemplary set of stationary models was computed, to verify the expected pa-
rameter range of the instability. Eq. (4.12) gives the relation between the maximum
gas-to-total pressure ratio and the minimum value of the µ parameter. Numerical com-
putations are performed for an intermediate black hole mass of 3 × 104M�, and I plot
the stability curve at the radius R = 7.82RSchw = 15.74GM

c2
= 6.88× 1010cm. The disk

is locally unstable if the slope ∂Σ
∂T is negative (Eq. (4.6)). It gives the necessary, but not

the su�cient condition for the global instability, as for the appearance of the signi�cant
�ares, the area of the instability should be su�ciently large. We compute the S-curves
(see Chapter 3), which are presented in Fig. (4.1) for di�erent values of µ. The wider
µ, the bigger the negative slope area on the S-curve, and therefore the larger the range
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Figure 4.1: Local stability curves for µ = 0.51, µ = 0.55, µ = 0.59 and µ = 0.63. Parameters:
M = 3× 104M�, α = 0.02, and ṁ = 0.7. The chosen radius is R = 7.82RSchw = 15.74GM

c2
=

6.88× 1010 cm, corresponding to the inner, hot area of the disk. The curves depend strongly
on the µ parameter, and larger µ provides a larger negative derivative range corresponding to
the unstable state.

of the instability. However, only the hot, radiation-pressure-dominated area of the disk
remains unstable, and for larger radii the S-curve bend moves towards the enormously
large, super-Eddington external accretion rates. In e�ect, for su�ciently large radii, the
disk remains stable. The same trend is valid also for stellar mass (microquasars) and
supermassive (AGN) black holes (Janiuk & Czerny, 2011).

4.6. Results - time dependent model

This section is focused on the numerical computations of the full time-dependent model.
The full computations of the radiation pressure instability models was performed since
the stability curves give us only the information about the local disk stability. How-
ever, the viscous transport and the radial temperature gradients deform the local disk
structure, and the time evolution of the disk at a �xed radius resulting from the global
simulations does not necessarily follow the expectations based on local stability analysis.

Figures 4.2 and 4.3 present the stability curves (red) and the global solutions of the
dynamical model plotted at the same single radius (green).
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Figure 4.2: T and Σ variability for the model with µ = 0.5 for a typical IMBH accretion disk.
The computation shows a weakly developed instability. Parameters: M = 3 × 104M�, α =
0.02, and ṁ = 0.25. The plot is made for the radius R = 7.82RSchw = 15.74GM

c2
= 6.88×1010

cm. The red curve represents the stationary model and the green dots show local values of
the temperature for the time-dependent computation.
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Figure 4.3: T and Σ variability for the model with µ = 0.6 for a typical IMBH accretion disk.
The models present a strongly developed instability, leading to huge outbursts. Parameters:
M = 3 × 104M�, α = 0.02, and ṁ = 0.25 for the radius R = 7.82RSchw = 15.74GM

c2
=

6.88×1010cm. The red curve represents the stationary solution and the green dots show local
values of the temperature and density in the dynamical model. The points occupy both the
upper and lower branches of the S-curve. Green points represent the most common states of
the disk, while blue vectors represent directions of the most common rapid changes of local
T and Σ.
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Stronger bending of the shape of the light curves appears for larger µ resulting in
broader development of the instability, visible in the shape of light curves (Figs. 4.4,
4.5). Low values of µ cause the presence of the instability within a small range of radii,
therefore the instability is additionally dumped by the stable zones. The time-dependent
solution never sets on the stability curve, the covered area in Fig. (4.2) is very small,
and the corresponding global light curve shows only small �ickering. The growth of
the instability for large values of µ results in the dynamical values of T forming two
coherent sets (see Figure 4.3), and the solution follows the lower branch of the stability
curve. This part of the evolution describes the prolonged period between the outbursts.

To compare the model with data, the model behaviour should be known for the large
ranges of parameters. Grid of models was run for typical stellar mass M = 10M�, for
intermediate black hole mass M = 3× 104M�, and for supermassive black holes (M =
108M�). The viscosity parameter has been adopted at the level of α = 0.02 throughout
all the computations, and accretion rates ranged between 10−1.6 and 10−0.2 in Eddington
units. For each mass, the relations between period, amplitude, and duration divided by
period has been presented.

According to Czerny et al. (2009), the threshold accretion rate (the su�cient rate for
the �ares to appear) is at the level of 0.025 for AGNs. For our models, the critical value
of accretion rate is at the level of 0.025− 0.1 of the Eddington rate. Below, our results
are presented through a set of mutual correlations between observable characteristics of
the �ares, P , A, and ∆ (see Table 4.2), and the model parameters, ṁ, M, and µ.

4.6.1. Light curve shapes

Here the di�erent characteristic modes of the �ares are presented. Because of the non-
linear dynamics of the system it is expected that the �ares will form di�erent patterns
of variability, which should be comparable to the observed patterns. For that non-linear
system we can distinguish between the �ickering behaviour and the strong �ares. In
Figures 4.4 and 4.5 typical cases of �ickering and outburst �ares are presented. The
di�erence between the �ickering and outburst modes lies not only in their amplitudes;
which can be seen in Figure 4.5. The long low luminosity phase, when the inner disk
area remains cool, is not present in the �ickering case, presented in Fig. 4.4. The latter,
corresponds to the temperature and density variations presented in Fig. (4.2), where
the surface density of the disk does not change signi�cantly. In contrast, Fig. (4.5)
presents the case where the surface density changes signi�cantly and Σ needs a long
time to grow to the value where rapid heating is possible. In the case of �ickering we
can distinguish two phases of the cycle: (i) heating, when the temperature in the inner
regions of the disk is growing rapidly, and (ii) advective, when the inner annuli cool
down signi�cantly, and are then extinguished when the disk is su�ciently cool. Now,
after a strong decrease of advection, the heating phase repeats again. In the case of the
burst, the phases (i) and (ii) are much more developed and advection is able to achieve
instantaneous thermal equilibrium of the disk, in contradiction to �ickering, where the
disk is always unstable. The instantaneous equilibrium leads to the third phase (iii),
di�usive, when the surface density in the inner annuli of the disk is growing up to the
moment when the stability curve has a negative slope, and the cooling rate, Q−, is
signi�cantly smaller in comparison to the heating rate, Q+. Then, the phase of heating
repeats.
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Figure 4.4: Typical �ickering light curve for intermediate mass black hole and smaller µ
(M = 3× 104M�, µ = 0.5, ṁ = 0.25)

Figure 4.5: Typical outburst light curve for intermediate mass black hole and larger µ (M =
3× 104M�, µ = 0.6, ṁ = 0.25).
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4.6.2. Amplitude maps

Figure 4.6 shows dependencies between the accretion rate, µ coe�cient, and �are am-
plitude. The black area corresponds to cases of stable solutions without periodic �ares.
The violet area corresponds to a small �ickering, and red and yellow areas correspond
to bright outbursts. Since for a given accretion rate and µ the AGN disks are much
more radiation-pressure-dominated (Janiuk & Czerny, 2011), the critical values of the
accretion rates in Eddington units are the lowest for AGNs. Thus, the stabilising in�u-
ence of a magnetic �eld is more pronounced for the microquasars, than for AGNs. Our
results include di�erent variability patterns. As shown in Figure 4.6, for a given set of
µ and accretion rate, the relative amplitude varies by many orders of magnitude (from
small �ares, changing the luminosity by only a few percent, up to the large outbursts
with amplitudes of ∼ 200 for microquasars, ∼ 1000 for intermediate black holes, and
∼ 2000 for AGN). The �are amplitude grows with accretion rate and with µ. To pre-
serve the average luminosity on sub-Eddington level, also the light curve shape should
change with at least one of these parameters. Let ∆ be the �are duration to period
ratio, as de�ned in Table 4.2. To preserve the average luminosity L, the energy emitted
during the �are plus energy emitted during quiescence (between the �ares) should be
lower than the energy emitted during one period. Since the radiation pressure instabil-
ity reaches only the inner parts of the disk, the outer stable parts of the disk radiate
during the entire cycle, maintaining the luminosity at the level of Lmin. This level can
be computed from Eq. (2.18) since the outer border of the instability zone is known.

4.6.3. Amplitude and period

In Figure 4.7, the dependence between period and amplitude for the microquasars,
intermediate mass black holes and AGN, is presented respectively. In general, the am-
plitude grows with the period P , µ, and accretion rate ṁ. Figure 4.7 was made for
the three grids of these models which result in signi�cant limit-cycle oscillations (i.e.
Lmax/Lmin > 1.2). In these computations regular and rectangular grids was used. For
M = 10M� andM = 3×104M�, α = 0.02 (as explained in Sect. 3.1.1), and the viscos-
ity parameter ranges were µ = {0.44, 0.46, ..., 0.80} and log ṁ = {−1.6, ...− 0.4,−0.2}.
For M = 108M� we chose a di�erent range and sampling, µ = {0.44, 0.45, ..., 0.56}, but
the same range of ṁ. The range of ṁ was adjusted to cover all the values for which
the instability appears. The values of µ were chosen to consist of supercritical ones,
according to Eq. (4.12) (i.e. larger than µcr = 3/7). The upper cut-o� of µ (i.e. 0.8 for
XRBs and IMBHs, and 0.56 for AGNs) was chosen because of computational complexity
that arises for larger µ. Nevertheless, the observed properties of the sources (see, e.g.
Table 4.5 in Section 4.8) suggest that in any case the values of µ are limited.

The results shown by points in Fig. (4.7) can be �tted with the following formula:

(4.21) logP [sec] ≈ 0.83 log
Lmax

Lmin
+ 1.15 logM + 0.40.

Here P is the period in seconds and M is the mass in Solar masses. The above general
relation gains the following forms, being applicable for the sources with di�erent black
hole mass scales:

(4.22) logPMICR [sec] ≈ 0.83 log
Lmax

Lmin
+ 1.15 log

M

10M�
+ 1.55,
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Figure 4.6: Amplitude map for di�erent values of accretion rates and µ for the accretion
disk around a stellar-mass black hole (M = 10M�, upper panel), around an intermediate-
mass black hole (M = 3 × 104M�, middle panel), and around a supermassive black hole
(M = 108M�, bottom panel). Black regions represent no �ares and a lack of instability.
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for the microquasars (see �t on Fig. 4.7), then

(4.23) logPIMBH [days] ≈ 0.83 log
Lmax

Lmin
+ 1.15 log

M

3× 104M�
+ 0.53

for intermediate mass black holes (see �t on Fig. 4.7), and �nally

(4.24) logPAGN [years] ≈ 0.83 log
Lmax

Lmin
+ 1.15 log

M

108M�
+ 2.1

for active galaxies (see �t on Fig. 4.7).

From the formula (4.21) the values of masses of objects can be estimated, if the values of
P and A are known. The period-amplitude dependence is universal, and, in the coarse
approximation, does not depend on µ. The positive correlation between period and
amplitude indicates that those observables originate in one nonlinear process, operating
on a single timescale. Although the variability patterns can vary for di�erent accretion
rates, for a given mass, the period and amplitude are strongly correlated and can describe
the range of instability development. It can, in general, be adjusted by the speci�c model
parameters, but the basic disk variability pattern is universal in that picture.

4.6.4. Amplitude and width

In Figure 4.8 the relation between the �are amplitude and its width is presented. Both
values are dimensionless and show similar reciprocal behaviour for the black hole ac-
cretion disks �ares across many orders of magnitude. The value of ∆ can help us to
distinguish between di�erent states of the source. It should also be noted that ∆ depends
on the amplitude of the outburst only for small amplitudes, while for the larger ones, ∆
remains approximately constant. The most convenient classi�cation is to introduce the
`�ickering' mode (A < 50), which corresponds to the large ratio of the �are duration
to its period (∆ > 0.15), and the `outburst' mode (A > 50 ), which corresponds to the
small �are duration to period ratio (∆ < 0.15). The latter appears for high µ and ṁ,
while the former occurs for low µ and ṁ.

4.6.5. Width, period, and µ

In Fig. (4.9) the relation between the period of �ares and width of �ares is presented.
The timescale of �are scales is approximately inversely proportional to the mass. Ac-
cording to Fig. (4.9), the �are duration to period rate ∆ only weakly depends on the
value of accretion rate. The dependence on µ is more signi�cant for all the probed
masses. Thus, the �are shape is determined mostly by the microphysics of the turbu-
lent �ow and its magnetisation, which is hidden in the µ parameter, and not by the
amount of in�owing matter expressed by the value of accretion rate ṁ. In Figure 4.10,
the result from Fig. (4.9) are presented along with linear log �ts connecting the values
of ∆, µ, and the black hole mass M , which can be described by the formula:

(4.25) − log ∆ = (1.9 + 1.2 logM)(µ− 3/7).

From Eq. (4.25), it can be concluded that the �are shape depends predominantly on the
disk magnetisation. Equation (4.25) enables to estimate the behaviour of the sources
even for the values of µ higher than those used in Figure 7. As a result, larger µ
correspond in general to narrower �ares. This e�ect is even more pronounced for larger
black hole masses. Therefore, the outburst �ares are more likely to occur for larger
values of µ.

61



Figure 4.7: Dependence between period and amplitude of �ares for a stellar-mass black hole
(M = 10M�, upper panel), an intermediate-mass black hole (M = 3 × 104M�, middle
panel), and a supermassive black hole (M = 108M�, bottom panel). Computations were
made for a range of µ but values for a di�erent µ lie predominantly along the main correlation
trend resulting in a very low scatter.
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Figure 4.8: Dependence between the amplitude and width of �ares for a stellar-mass black
hole (M = 10M�, upper panel), an intermediate-mass black hole (M = 3×104M�, middle
panel), and a supermassive black hole (M = 108M�, lower panel). The ranges of µ are
given for each �gure. The colour lines represent isolines for di�erent µ. The scatter is now
larger than in Fig. (4.7).
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Figure 4.9: Upper panel: Dependence between period and width of �ares for a stellar-mass
black hole (M = 10M�). The graph was prepared for a range of µ ∈ [0.44 : 0.8]. Middle

panel: Dependence between period and width of �ares for an intermediate-mass black hole
(M = 3× 104M�). The graph was prepared for a range of µ ∈ [0.44 : 0.8]. Bottom panel:
dependence between period and width of �ares for a supermassive black hole (M = 108M�).
The graph was prepared for a range of µ ∈ [0.44 : 0.56]. The colored lines represent isolines
for di�erent µ.
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Figure 4.10: Dependence between width, µ parameter and mass. One triangle represents
one model. Triangles represent the model for the stellar-mass black hole accretion disks
(M = 10M�), squares represent the model for the intermediate mass black hole accretion
disks (M = 3 × 104M�) and diamonds represent the model for the supermassive black hole
accretion disks (M = 3 × 108M�). Lines consisting of corresponding shapes (diamonds,
squares, triangles) represent �ts for each mass.
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4.6.6. Amplitude and accretion rate

In Figure 4.11 the dependence between relative amplitudes and accretion rates ṁ for
the stellar mass, intermediate mass, and supermassive black holes is shown respectively.
The dependence is monotonnic for any of µ and mass. Because of the nonlinearity
of evolution equations with respect to ṁ, any simple scaling relation between ṁ and
amplitudes nor periods can not be presented.

4.6.7. Limitations for the outburst amplitudes and periods

In Figures 4.8 and 4.9 the dark areas in top panels mark our numerical estimations for
the possibly forbidden zones in the case of microquasar accretion disks. From those
�gures, we extract following �tting formulae:

(4.26) 0.3×A−0.5 < ∆ < 2A−0.5

(4.27) 3× (P [s])−0.6 < ∆ < 50× 16P [s]−0.6.

Eqs. (4.26) and (4.27) result in the following estimation for P and A

(4.28) 1.96×A0.83 < P [s] < 630×A0.83.

In Figures 4.8 and 4.9, middle panels show the estimated range of the possibly forbidden
zones in the case of the accretion disks around the intermediate-mass black holes. From
those �gures:

(4.29) 0.07×A−0.5 < ∆ < 2.5×A−0.5

(4.30) 0.3(P [days])−0.6 < ∆ < 9× P [days]−0.6.

Eqs. (4.29) and (4.30) result in the following estimation for P and A:

(4.31) 0.0021×A0.83 < P < 7500×A0.83.

Finally, the dark shaded areas mark our estimations for the possibly forbidden zones
for the case of supermassive black hole accretion disks (bottom panels). We get the
following formulae from those �gures:

(4.32) 5×A−0.5 < ∆ < 70×A−0.5

(4.33) 0.35× (P [years])−0.6 < ∆ < 2.5× (P [years])−0.6.

Eqs. (4.32) and (4.33) result in the following estimation for P and A:

(4.34) 4.67×A0.83 < P < 16.6×A0.83.

4.7. Disk �are estimations

We derive the general estimations for the oscillation period P , its amplitude A and
relative duration ∆ thanks to computing a large grid of models. It has been achieved
despite the uncertainty of the scaling parameter µ.

The results are summarized in Table 4.3.

We compare the allowed values of duration to period ratios (columns 3 and 4), periods
(columns 5 and 6), and �are durations (columns 7 and 8). Three values of relative
amplitude for each source was represent possible limitations for periods and duration
times. The amplitude A = 2 represents faint �ares, like those in the microquasar IGR
J17091 (See Chapter 3). The amplitude A = 10 corresponds to a more developed
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Figure 4.11:
Upper panel: Dependence between amplitude and accretion rate for a stellar-mass black
hole (M = 10M�).
Middle panel: Dependence between amplitude and accretion rate for an intermediate-mass
black hole (M = 3× 104M�).
Bottom panel: Dependence between amplitude and accretion rate for stellar-mass black hole
(M = 108M�). The graph was prepared for a range of µ. We can see simple unambiguous
dependence for di�erent µ-models.
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Flare characteristic quantities for microquasars:
A ∆ P [s] P∆ [s]
*2 0.212 - 1 3.48 - 1120 0.739 - 1120
**10 0.0949 - 0.632 13.3 - 4260 1.26 - 2690
***100 0.03 - 0.2 89.6 - 28800 2.69 - 5760

Flare characteristic quantities for IMBHs:
A ∆ P [days] P∆ [days]
*2 0.0494 - 1 0.533 - 5330 0.00264 - 5330
**10 0.0221 - 0.79 0.203 - 20282 0.00449 - 16030
***100 0.007 - 0.25 1.37 - 13700 0.0960 - 34300

Flare characteristic quantities for AGNs:
A ∆ P [years] P∆ [years]
*2 0.248 - 1 24.9 - 12100 6.16 - 21100
**10 0.111 - 0.796 94.7 - 46500 10.5 - 36300
***100 0.0035- 0.25 640 - 311000 22.4 - 77700

Table 4.3: Range of duration values for three kinds of source. The values for microquasars are
expressed in seconds, values for IMBHs in days and values for AGNs in years. Flare regimes
* - small �icker, ** - intermediate, *** - burst

Source Mass [M�] *P∆0.1 **P∆1

Microquasar 10 33s 595 s
IMBH 3× 104 days 8.59 153 days
AGN 108 596years 10603 years

Table 4.4: Mean �are duration values for three kinds of source. The values are taken from
Eq. (4.42). * - duration for L = 0.1LEdd, ** - duration for L = LEdd

instability case, like that in the ρ states of object GRS1915 (Belloni et al., 2000). The
amplitude A = 100 is connected with the huge bursts, as in HLX-1 (see next Chapter).
The timescales presented in the Tables are on the order of minutes for the microquasars,
of months for the ULXs, and of millenia for the AGN, which corresponds to their
viscous timescale. The period is strongly dependent on the amplitude and can change
by several orders of magnitude for each mass. The estimations given here were made for
the values of µ which are su�cient for the outbursts, but do not determine exactly the
value of this parameter. Figure 4.14 (see next Section) presents a universal dependence
between duration times and bolometric luminosities for the X-ray sources of di�erent
scales (microquasars with M = 10M�, IMBHs with M = 3 × 104M�, and AGN with
M = 108M�). Exact duration values from the �t presented in Eq. (4.42) are shown in
Table 4.4. For microquasars, the values included in Table 4.3 correspond to the typical
values for small and intermediate �ares, the same for the case of IMBHs. In case of AGN,
the appearance of big �ares is necessary to verify our model with the observational data
presented in the Figure 4.14.

4.8. Summary and discussion

In this Chapter, the accretion disk instability induced by the dominant radiation pres-
sure has been studied along with the use of the generalised prescription for the stress
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Source ID P A ∆ CMα µ*
IGR νI 45s 2.5 0.15 6.38 0.717

IGR ρIA 30s 3.5 0.3 3.52 0.634

IGR ρIB 30s 4 0.4 3.198 0.589

GRS νG 90s 4 0.1 8.31 0.763

GRS ρGA 45s 5 0.25 3.87 0.661

GRS ρGB 40s 4.5 0.4 3.77 0.583

HLX - 400d 2.5 0.14 1.88× 105 0.534

AGN∗ - 105y 100 0.1 1.6× 108 0.515

Table 4.5: Characteristic quantities of the RXTE PCA light curves for Galactic sources pre-
sented in Altamirano et al. (2011a) (columns 3, 4, 5) supplemented with HLX and AGNs,
and estimations of the mass− α relations and magnetisation of sources (columns 6, 7). No-
tation: IGR = IGR J17091, GRS = GRS 1915, HLX = HLX-1, AGN - typical value for
the sample of AGNs presented in (Czerny et al., 2009). The OBSIDs of the light curves
are as follows: νI = 96420 − 01 − 05 − 00 (ν state), ρIA = 96420 − 01 − 06 − 00 (ρ
state), ρIB = 96420 − 01 − 07 − 00(ρ state) ,νG = 10408 − 01 − 40 − 00 (ν state) ,
ρGA = 20402 − 01 − 34 − 00 (ν state) and ρGB = 93791 − 01 − 02 − 00 (ρ state), * -
Values for a typical AGN. CMα is the mass-alpha parameter de�ned in Eq. (4.40)

tensor. Power-law dependence has been adopted along with an index µ, to describe
the contribution of the radiation pressure to the heat production. In other words, the
strength of the radiation pressure instability deepens with growing µ. We computed
a large grid of time-dependent models of accretion disks, parameterised by the black
hole mass, and mass accretion rate. We used the values of these parameters, which
are characteristic for the microquasars, intermediate black holes, or AGN. One of our
key �ndings is that this model can be directly applicable for determination of the black
hole mass and accretion rate values. We also found that the critical accretion rate, for
which the thermal instability appears, decreases with growing µ (see Figure 4.6). Also,
the amplitudes of the �ares of accretion disks in AGN are larger than the amplitudes
of �ares in microquasars and in IMBHs. The �are period grows monotonously with its
amplitude, for any value of mass (see Figure 4.7). The outburst width remains in a
well-de�ned relationship with its amplitude (see Figure 4.8). We also found that there
is a signi�cant negative correlation between µ and the ratio of the �are duration to
the variability period, ∆. On the other hand, the dependence between the outburst
amplitude A and the mass accretion rate ṁ is non-linear and complicated. Our results
present di�erent variability modes (Figures 4.4 and 4.5). The �ickering mode is pre-
sented in Fig. 4.4. In this mode the relative amplitude is small, and �ares repeat after
one another. In the burst mode the amplitude is large, and the maximum luminosity
can be hundreds of times greater than minimum. An exemplary light curve is shown
in Fig. (4.5). In this mode long separation between the �ares can be observed (i.e. an
extended low luminosity state), dominated by the di�usive phenomena. A slow rise of
the luminosity is the characteristic property of the disk instability model.

4.8.1. Mass - α relation

Since the thermal and viscous timescales strongly depend on α, which has only ad-hoc
character and does not constitute any fundamental physical quantity, α is the parameter
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describing development of the MHD turbulence in the accretion disk. Thus α should,
to some extent, vary depending on the source and its state; for example, the value of
α for the AGN accretion disks can di�er from its value for the disks in X-ray binaries.
In Fig. (4.12) di�erent light curve shapes for six di�erent values of α are presented. In
Fig. 4.13 the dependence of the light curve observables on α is presented. The formula
describing �ts in Fig. (4.13) is as follows:

(4.35) logOX = bX logα+ cX ,

where OX = A, P[seconds], or ∆. The coe�cients are as follows bA = 2.25± 0.11, cA =
0.85± 0.05, bP = −0.3± 0.05, cP = 1.85± 0.07, b∆ = −0.29± 0.03, c∆ = −0.87± 0.05.
The grids of models deliver some information about the correlation between the observed
light curve features and the model parameters. From the Eq. (4.21) we determine the
mass of an object directly from its light curve:

(4.36) M [M�] = 0.45P [s]0.87A−0.72.

The ∆−µ−M dependence from Fig. (4.10) and Eq. (4.25), combined with Eq. (4.36)
gives us the exact estimation on µ

(4.37) µ = 3/7 +
− log ∆

1.49 + 1.04 logP − 0.864 logA
.

According to Eqs. (4.36) and (4.37) and Eq. (4.35) we obtain the following:

(4.38) M [M�] = 0.45P [s]0.87A−0.72(
α

0.02
)−1.88,

(4.39) µ = 3/7 +
− log ∆ + 0.87 log( α

0.02)

1.49 + 1.04 logP − 0.864 logA
.

For the purpose of this work, we made an assumption that α = 0.02 is constant, however,
it can not be true in any kind of the accretion disk source, so in result our method leads
to the signi�cant degeneracy between the mass and alpha. So on, we can de�ne the
exactly determinable mass-alpha parameter CMα

(4.40) CMα =
M

M�
(
α

0.02
)1.88.

4.8.2. Radiation pressure instability in microquasars

Quantitatively, our numerical computations, as well as the �tting formula (4.21), give
the adequate description of the characteristic `heartbeat' oscillations of the two known
microquasars: GRS 1915+105, and IGR 17091-324. Their pro�les resemble those ob-
served in the so-called ρ state of these sources, as found, for example, on 27th May,
1997 (Pahari et al., 2014). For the microquasar IGR J17091, the period of the observed
variability is less than 50s, as observed in the most regular heartbeat cases, that is, in
the ρ and ν states (Altamirano et al., 2011a). The ν class is the second most regular
variability class after ρ, much more regular than any of the other ten classes described
in Belloni et al. (2000) (α, β,γ, δ, θ, κ, λ,µ, φ, χ). The ρ state is sometimes described as
extremely regular (Belloni et al., 2000), with a period of about 60− 120 seconds for the
case of GRS1915. The class ν includes typical Quasi-Periodic Oscillations with relative
amplitude larger than 2 and a period of 10− 100s. Those results are applied to model
heartbeat states qualitatively. Eqs. (4.21) and (4.25) allow us to determine the values
of BH masses for the accretion disks and the µ parameter. The results are given in
Table 4.5. For the ρ-type light curves the parameter CMα of IGR J17091-3624 can be
estimated at the level of 3.2− 3.5, and GRS 1915+105 at the level of 3.7− 3.9.
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Figure 4.12: Light curves for six di�erent values of α for M = 10M�, ṁ = 0.64, and µ = 0.6.
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Figure 4.13: Dependence between the α parameter and observables forM = 10M�, ṁ = 0.64,
and µ = 0.6 for α ∈ [0.01 : 0.32].
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source ID *M M
M�

α

IGR νI 6.38 3.95− 4.45** 0.0155− 0.0165

IGR ρIA 3.52 3.95− 4.45** 0.0213− 0.0227

IGR ρIB 3.198 3.95− 4.45** 0.0223− 0.0238

IGR νI 6.38 8.7− 15.6*** 0.0235− 0.0321

IGR ρIA 3.52 8.7− 15.6*** 0.0323− 0.0441

IGR ρIB 3.198 8.7− 15.6*** 0.0330− 0.0446

GRS νG 8.31 9.5− 10.7 0.0214− 0.0228

GRS ρGA 3.87 9.5− 10.7 0.0322− 0.0343

GRS ρGB 3.77 9.5− 10.7 0.0327− 0.0348

Table 4.6: Determination of α values based on the known IGR and GRS mass values (Rebusco
et al., 2012; Steeghs et al., 2013; Iyer et al., 2015) and mass-α relation presented in Table 4.5.
Descriptions of the sources, their states and OBSIDs are presented in Table 4.5. * - Mass -
α factor ( M

M�
( α

0.02)−1.88). ** - IGR mass estimation from Rebusco et al. (2012) and (Steeghs
et al., 2013) *** - IGR mass estimation from Iyer et al. (2015).

We also determine µ = 0.58 − 0.63 for IGR J17091-3624 and 0.58 − 0.66 for the GRS
1915, respectively. From the ν-type light curves values of CMα parameters and µ are
signi�cantly larger. Our model thus works properly for the periodic and regular oscilla-
tions, which are produced in the accretion disk for a broad range of parameters, if only
the instability appears. Irregular variability states α, β, λ and µ should be regarded as
results of other physical processes. The explanation of class κ of the microquasar GRS
1915 variable state (Belloni et al., 2000) which presents modulated QPOs, seems to be
on the border of applicability. In general, the method is correct for estimation of the
order of magnitude, although not perfect for exact determination of the parameters due
to the nonlinearity of the model. For this Chapter a constant value of α = 0.02 was
assumed, which could not be true for all values of masses. For a source with known
mass, such as GRS 1915 (Greiner et al., 2001; Steeghs et al., 2013), previous estimations
as a limitation for the value of α can be used, as presented in Section 4.8.2. Steeghs
et al. (2013) estimated the mass of GRS1915 at the level 10.1 ± 0.6M�. From the
high-frequency QPO comparison method used by Rebusco et al. (2012) the GRS/IGR
mass ratio, which is at the level of 2.4 can be known. Combining the results of Rebusco
et al. (2012) and later the GRS 1915 mass estimation from Steeghs et al. (2013), for
the IGR J17091 we get M = 4.2 ± 0.25M�. Results of Iyer et al. (2015) suggest the
probable mass range of IGR J17091 is between 8.7 and 15.6M�. From Tables 4.5 and
4.8.2 we conclude the possible dependence between α and the variability state or the
source type. For the ν state of IGR it has been found α ≈ 0.0155 − 0.0165, for the ρ
state of this source α ≈ 0.021− 0.024, for the ν state of GRS α ≈ 0.021− 0.023 and for
the ρ state of GRS α ≈ 0.032−0.035. Those values can change under the assumption of
the BHs spin, which can be near to extreme in the case of GRS 1915 and very low, even
retrograde in the case of IGR J17091 (Rao & Vadawale, 2012). In our current model
the presence of accretion disk corona is neglected.

Following the mass estimation done by Iyer et al. (2015), results in quite a consistent
model for both microquasars' ν and ρ variability states - α ≈ 0.023 for the ν state and
α ≈ 0.033 the ρ state, under assumption of the mass of IGR at the level of 9− 10M�,
that is, close to the lower limit from results of Iyer et al. (2015).
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The above results under the assumption of negligible in�uence of coronal emission on
the light curve. According to Merloni & Nayakshin (2006), power fraction f emitted by
the corona is given by the following formula:

(4.41) f =
√
α

[
P

Pgas

]1−µ

.

For our model with α = 0.02, the values of f are low, where f = 0.141( P
Pgas

)1−µ, which
for the values of µ investigated in the paper ful�lls the inequality of 0.0125 < f < 0.141,
assuming a threshold maximal value of the gas-to-total pressure rate β =

Pgas

P from
Eq.( 4.12). According to the fact that the heartbeat states are strongly radiation-pressure
dominated and the coronal emission rate is lower for lower values of the µ parameter
(which are more likely to reproduce the observational data), the coronal emission can
be regarded as negligible.

4.8.3. Disk instability in supermassive black holes

In the scenario of radiation pressure instability, with a considerable supply of accreting
matter, the outbursts should repeat regularly every 104−106 years (Czerny et al., 2009).
From the grid of models performed in Czerny et al. (2009), done for µ = 0.5 (τrφ =
α
√
PPgas) and 107M� < M < 3× 109, they obtained the following formula expressing

correlation between the duration time, α parameter and bolometric luminosity Lbol:

(4.42) log(
Tdur

yr
) ≈ 1.25 log(

L

ergs−1
) + 0.38 log(

α

0.02
) + 1.25 logK − 53.6

which, for the special case α = 0.02 and neglecting the bolometric correction, has the
following form:

(4.43) log
Lbol

ergs−1
= 0.8 log(Tdur/s) + 42.88.

The formula (4.43) also found its con�rmation in observational data for di�erent scales
of BH masses, as presented in Fig. (4.14). This applies despite the assumption of
µ = 0.5 since the expected dependence on µ is weak. Combining Eqs. (4.21) and (4.25),
we get:

(4.44) log(Tdur/s) = (1.15− 1.2(µ− 3/7)) logM + 0.83 logA− 1.9µ+ 0.83.

Basing on the Fig. (4.14) the approximate dependence can be assumed:

(4.45) logA = 0.4 logM + 0.25,

since for the same model input parameters (e.g. log ṁ = −0.2, α = 0.02 and µ = 0.56)
the amplitude could be even a hundred times larger for the case of AGNs than for
microquasars. Combining Eqs. (4.44) and (4.45) and adopting Lbol = ṁLEdd,� where
LEdd,� = 1.26× 1038erg s−1:

(4.46) log(Tdur/yr) = (1.91− 1.2µ)(logL− logLEdd� − log ṁ)− 6.68.

The Eq. (4.46) can be inverted:

(4.47) logL =
1

1.91− 1.2µ
log(Tdur/yr) + 37.1 +

6.68

1.91− 1.2µ
+ log

ṁ

0.1
.

The above Equation is a generalised version of the results from Czerny et al. (2009).
In Fig. (4.14) the observational points from Wu et al. (2016) are presented, along
with the theoretical lines as a result from Eq. (4.47) for several values of µ. There is an
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Figure 4.14: Correlation between the bolometric luminosity and the outburst duration for
di�erent-scale BHs. Thick lines represent the best �t fromWu et al. (2016), and the prediction
from Czerny et al. (2009). Thin lines represent Eq. (4.47) for several di�erent values of µ,
assuming ṁ = 0.1.
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assumption that the Eddington accretion rate and the accretion e�ciency are roughly in-
dependent for di�erent BH masses. The proportionality coe�cient in Eq. (4.42) changes
from 1.25 to 1.91− 1.2µ.

The coe�cient in Eq. 4.42 is equal to 1.19 for µ = 0.6. For most of the known AGNs,
except for the Low Luminosity AGNs, their luminosity in Eddington units is over 0.02
(McHardy et al., 2006), and the sources remain in their soft state, so the radiation
pressure instability model should apply. The weak sources claimed to be AGNs, such
as NGC4395 and NGC4258 (Lasota et al., 1996; Filippenko & Ho, 2003) are claimed
to be in the hard state, being not described accurately by the accretion disk model
of Shakura-Sunyaev. It should be possible to study the evolution of those sources
statistically. Based on the known masses, accretion rates, and timescales for AGN, the
luminosity distribution for the samples of AGN with similar masses or accretion rates
can be acquired. This should allow us to reproduce an average light curve for a range of
masses and accretion rates for a survey of the known AGNs (Wu, 2009). The averaged
light curve for a big ensemble of AGN will help us to provide expected luminosity
distributions or luminosity-mass, luminosity-duration relations for the AGNs existing
in the universe. However, high-amplitude outbursts may complicate the study since the
detection of the sources between the �ares may be strongly biased as the sources become
very dim. Existence of the likely value of µ ≈ 0.6, proven by comparison of Eqs. (4.42)
and (4.46), could also help in mass determination of newly discovered objects.

Another interesting situation comprises the so-called Changing-Look-AGN, such as
IC751 (Ricci et al., 2016). Although most AGN have a variability timescale on the
order of thousands of years, the shape of model light curves (sharp and rapid luminosity
increases) could suggest that, for some cases, luminosity changes can be observed.

4.8.4. Conclusions

A possible application of the modi�ed viscosity model is proposed as a description of
a regular variability pattern (heartbeat states) of black hole accretion disks for the
microquasars, IMBHs and AGNs. The model works for optically thick, geometrically
thin disks and determines the range and scale of the radiation pressure instability. The
parameter µ, which describes viscosity, in a more general way, taking into account
the relative contribution of pressure component, can reproduce a possibly stabilising
in�uence of the strong magnetic �eld in the accretion disk. Nonlinearity of the models
causes appearance of di�erent modes of the disk state (stable disk, �ickering, outbursts).
Thanks to the computation of large grid of models, quantitative estimations for the
variability periods and amplitudes were presented. The model light curves reproduce
several di�erent variability patterns. Also, many observables, such as, L, P , A, and ∆,
can be used directly to determine the physical parameters, like α, µ,M , and ṁ. Finally,
our model can be successfully applied to the mass and accretion rate determination for
the intermediate-mass black hole candidate HLX-1, which will be presented in the next
Chapter.
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Chapter 5

The Ultraluminous X-ray source

HLX-1

5.1. Introduction

The last years brought more examples of occurence of the radiation pressure instability.
The timescales for Active Galactic Nuclei are still too long to observe even only one
limit-cycle, even for the least massive objects. However, the model-based formulae
from Chapter 4, can be applied to the class of accretion disk sources surrounding the
Intermediate-Mass Black Holes (103 − 106 solar masses). This Chapter involves the
case of newly discovered Intermediate-Mass Black hole HLX-1 as an example of such a
source. In this Chapter, we use the method de�ned previously to determine the mass
and accretion rate of that source, independetly on the previous spectral-based analysis.
We suggest the radiation pressure instability as a mechanism driving the observed limit-
cycle oscillations in this source.

5.2. Ultraluminous X-ray sources

The Ultraluminous X-ray sources (ULXs) are X-ray sources that exceed the Eddington
limit for accretion on stellar-mass black holes. This class does not contain the Active
Galactic Nuclei since their cases are well described and classi�ed into Quasars or Narrow
Line Seyfert I galaxies. So this term involve mostly the sources with luminosities at the
level 1039 − 1044 erg s −1. Among these sources we can extract several classes with
a distinct nature. The two most important are ULXs containing the Neutron Stars
presenting the beamed emission and Intermediate Mass Black Holes (King & Lasota,
2016). Examples of these sources are X-ray pulsars A0538-665, SMC X-16 and GRO
J1744-28 (Bachetti et al., 2014). Breaking the Eddington limit, de�ned in Section 1 is
possible only breaking the symmetry of emitting matter. In case of disk or spherical
geometry breaking the limits of the standard accretion models forbids the long-lasting
emission. However, the case of beamed geometry (with the radiation �ux proportional
to ∝ 1

r ) does not result in one value of critical luminosity being a combination of
the physical constants. In such case, the critical luminosity depends on shape and can
exceed the Eddington limits tens of times. One of these sources M82 X-2 with luminosity
L ≈ 1.8 × 1040. Since this thesis is dedicated to systems with thin accretion disks, we
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will focus on the case of the Intermediate-Mass Black Holes. Some of the IMBH ULXs
like M74X − 14 (CXOUJ013651.1 + 154547), HLX − 1 and 47 Tucanae, see Krauss
et al. (2005); Farrellet al. (2009); Kilitzan, Baumgardt & Loeb (2017), were recently
detected via the spectral analysis. In one of the objects - HLX-1 there appeared a series
of documented �ares in the X-ray domain, showing the persistent and repetitive nature
of that source, which can be regarded as a scaled-up microquasar.

5.3. HLX-1 Intermediate Mass Black Hole

In case of black hole masses ranging from 103 to 106, the Eddington limit is at the level of
1041−1044 erg s−1, and the accretion disk sources with such luminosities can undergo the
limit-cycle oscillation driven by the radiation pressure instability. In previous Chapter
we estimated the properties of limit-cycle oscillation and also estimated the critical value
of Eddington Ratio, ṁ, necessary for the oscillations. Huge universality of the results
presented in previous Chapter makes it possible to give estimations on the period,
amplitude and shape of the ligthcurve. Thus we can predict that the accretion disk
sources with luminosities 1039−1044 erg s−1 can perform the limit-cycle oscillations, for
a range of their black hole masses. According to results presented in previous Chapter,
for an Intermediate Mass Black Hole, the period of such oscillations should be between
days and years, and duration of one �are - between hours and year, and the peak
luminosity to minimum luminosity ratio (A) can exceed tens or even hundreds, contrary
to microquasars. One out of such sources is presented in below.

HLX-1 is the best known case of a ULX being an IMBH candidate, which has undergone
six outbursts spread in time over several years with an average period of about 400
days, a duration of about 30-60 days, and a ratio between its maximum and minimum
luminosity Lmax/Lmin of about several tens. The average bolometric luminosity is equal
to ((ΣiLi∆ti)/(Σi∆ti)), where Li is the luminosity at a given moment and ∆ti is the
gap between two observation points.

5.3.1. HLX-1 bolometric correction

The SWIFT XRT observed luminosity is at the level of 1.05×1042×(K/5) erg s−1, where
K is the bolometric correction. The exact value of the bolometric correction is strongly
model-dependent. The �ts of the thermal state with the diskbb model (Servillat et al.,
2011) imply a disk temperature Tin in the range of 0.22 − 0.26 keV, which, combined
with the 0.2-10 keV �ux and the distance to the source, implies a black hole mass of
about 104M�, if the model is used with the appropriate normalization, and a bolometric
correction is of 1.5 for the 0.3 − 10 keV spectral range. The use of the diskbb model
for larger black hole mass, 105M�, implies an inner temperature, Tin of 0.08 keV, much
lower than observed, but then a much larger bolometric correction at 6.6. However,
the larger mass cannot be ruled out on the basis of the spectral analysis since it is
well known that the disk emission is much more complex than the diskbb predictions,
and in particular the inner disk emission has colour temperature much higher than the
local black body by a factor 2 - 3 e.g. (Done & Davis, 2008),Sutton, Swartz & Roberts
(2017)). Thus the overall disk emission may not be signi�cantly modi�ed for the outer
radii, and the hottest tail can still extend up to the soft X-ray band.

78



Figure 5.1: The HLX-1 lightcurve. Horizontal axis presents observation time time in Modi�ed
Julian Days (MJDs). Vertical axis represents �ux registered by the SWIFT XRT device.
Modi�ed Julian Days and date:

MJD 5.5× 104 = 18th June 2009
MJD 5.6× 104 = 14th March 2012
MJD 5.6× 104 = 9th December 2014
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Figure 5.2: Comparison between the SWIFT XRT light curve of HLX-1 and the models.
Model parameters: µ = 0.54, α = 0.02, ṁ = 0.009 ∗K and M = 1.9 × 105M�. The value of
the bolometric correction is given in each panel.

5.3.2. HLX-1 mass and accretion rate determination

The model to data comparison (Fig. 5.1), being the result of our analysis, is presented
in the Figure 5.2. We can rewrite the Eqs. (4.36) and (4.37) from Chapter 4. Those
equations �nd their application to the HLX-1 mass determination from the lightcurve
parameters

(5.1) M [M�] = 0.45P [s]0.87A−0.72.

The ∆− µ−M dependence from Fig (4.10) and Eq. (4.25), combined with Eq. (4.36)
gives us the exact estimation on µ

(5.2) µ = 3/7 +
− log ∆

1.49 + 1.04 logP − 0.864 logA
.

The best-�t model of the HLX-1 gives the observables

� P = 400 days,

� A = 20,

� ∆ = 0.13.

Assuming α = 0.02 results in the following black hole mass and µ determinations:
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� M = 1.9× 105M�,

� µ = 0.54.

Exact value of the Eddington ratio depends on the bolometric correction and is equal
to ṁ = 0.009 ∗ K. This results depend on K because of the huge nonlinearity of the
model grid (resulting in a large plateau in the luminosity-Eddington rate dependence).
That nonlinearity is responsible for existence of some variability patterns with modest
qualitative di�erences between the lightcurve parameters in each class.

5.3.3. Explanation of the HLX-1 light curve irregularity

The light curve of HLX-1, presented in the Fig. (5.1), despite very regular values of
peak luminosity (log L

ergs−1 between 42.5 and 42.6), presents signi�cant variability of
the �are duration. According to our model, for any constant input parameter (mass,
Eddington rate, α and µ), period, duration, and amplitude should remain constant. To
our knowledge, the only explanation for such a phenomenon is variation in the input
parameters. The variability of the central object mass is too faint (approx. 10−8 per one
cycle for any accreting source) to be visible. The variability of ṁ is possible, bearing in
mind the fact that accretion rate of HLX-1 (order of 10−3M� per one duty cycle) can
be signi�cantly disturbed by the tidal disruption of the minor bodies such as planets
with mass ranging from 10−6M� to 10−3M�. A detailed description of this process
can be found in Evans & Kochanek (1989), and Del Santo et al. (2014) presented its
application for the case of phenomena inside the globular clusters. The Eddingtion rate
ṁ is a global parameter, strongly connected with the accretion disk neighbourhood (ṁ
can change rapidly in the case of tidal disruption). In contradiction, µ and α are the
local parameters describing the MHD turbulence. As α can be connected with the rate
of the typical velocity of turbulent movement to the sound speed (Shakura & Sunyaev,
1973), µ can represent the magnetisation of the disk, as shown by the Eq. (4.15). In
the HLX-1 observation, out of the four observables, only the ∆ parameter was changing
signi�cantly between di�erent �ares. According to Eq. (4.39) this follows from changing
µ. Speci�cally, the growth of µ from 0.48 to 0.56 is responsible for ∆ decreasing from
0.4 to 0.1 . According to those results, µ was growing during the sampling time, which
can be explained by a decrease in disk magnetisation.
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Figure 5.3: The parameters of the HLX-1 on the background of other X-ray sources. Black line
represent �t from Eq. (4.47) in case of µ = 0.54, green squares - sample of the AGNs. Triangle
and square show the microquasars GRS 1915+105 and IGR J17091-3624, respectively. The
plot illustrates a universal correlation between the luminosity and timescales of variability, as
predicted by the radiation pressure instability model.
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Chapter 6

In�uence of the Fe ions on the

accretion disk stabilization in AGN

6.1. Introduction

As concluded from the previous Chapter, the radiation pressure instability in accretion
disks is a powerful, universal phenomenon driving the limit-cycle oscillations at all scales
and being limited by some stabilizing, possibly magnetic processes in the accretion disks
viscosity.

However, also other stabilizing mechanisms in the accretion process have been invoked,
apart from the viscosity prescription itself. For instance, the propagating �uctuations
in the �ow (Janiuk & Misra, 2012) may suppress the thermal instability, or at least
delay the development of the instability (Ross, Latter & Tehranchi, 2017). As recently
discussed by Jiang et al. (2016), a possible stabilizing mechanism for the part of an
accretion �ow might be the opacity changes connected with the ionization of heavy
elements. Using the shearing-box simulations of MRI-driven �uid in the gravitational
potential of supermassive black hole (a particular value of black hole mass, M = 5 ×
108M�, was used), Jiang et al. (2016) have shown that the �ow is stable against the
thermal instability, if the opacity includes transitions connected with absorption and
scattering on Iron ions. This is because the cooling rate, which includes now not only
the Thomson scattering (constant) term, but also the absorption and line emission in
the Roseland mean opacity, will depend strongly on density and temperature in some
speci�c regions of the disk. In fact, as will be discussed below in a more detailed way,
the dominant term from opacity changes may completely stabilize the �ow locally. The
simulations of Jiang et al. (2016) showed that e�ect but they did not describe the global
evolution of the �ow, which is the subject of present Chapter

In the Chapter 4 the broad grid of models was studied to show that the global evolution
of the accretion �ow under the in�uence of radiation pressure instability is a univer-
sal phenomenon in the black hole accretion disks across the mass scale. It has been
claimed, that the in�uence of the opacity changes on the global time evolution of the
�ow is essential, although does not prevent the instability from developing. Examples
of lightcurves produced by our numerical simulation illustrate this. This Chapter is or-
ganized as follows: in Sect. 6.2 the analytical condition for local thermal instability are
presented, in Sect. 6.3 the values of κ opacities for the typical accretion disk densities
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and temperatures and range of the Iron Opacity Bump are discussed. Its in�uence on
global disk behaviour is described in Sect. 6.4.

In this Chapter, the model described in Chapter 4 is extended, with respect to the atomic
opacities. Basing on the accretion disks theory, presented in Chapters 2 and 3, and
modi�ed viscosity prescription form Eq. (4.12), described and tested in Chapter 4 and
applied in Chapter 5 for the mass and accretion rate determination of the Intermediate
Mass Black Hole HLX-1, we �nally make an attempt to generalize our model even
more, regarding the thermal instability of the optical thickness τ = κΣ, coming from
the atomic contribution to the κ opacity function. Basing on the tabelarized database
(Alexander et al., 1983; Seaton et al., 1994; Rozanska et al., 1999), we try to �nd
stabilizing and destabilizing e�ects among all the mass-scale for the Black Hole accretion
disks, from the lightest stellar mass black holes (order of magnitude of one solar mass)
to the heaviest Active Galactic Nuclei (order of magnitude of ten bilion solar masses).

6.2. Local thermal stability in accretion disks

The domination of radiation pressure in the accretion disk leads to the thermal instabil-
ity (Pringle, Rees & Pacholczyk, 1973; Lightman & Eardley, 1974; Shakura & Sunyaev,
1976; Janiuk, Czerny & Siemiginowska, 2002). At the instability the heating rate Q+

grows faster with temperature than cooling rate Q−. The appearance of local thermal
instability is given by the condition:

(6.1)
d logQ−
d log T

<
d logQ+

d log T
.

The analysis performed in Chapter 4, under the assumption on constant surface density
during thermal timescales leads to following formula on heating rate derivative:

(6.2)
d logQ+

d log T
= 1 + 7µ

1− β
1 + β

,

where β = Pgas/P . For the case of this work, α = 0.02 and µ = 0.56, being typical for
the IMBH and AGN disks are �xed. These values has been chosen since the dynamics
of the outbursts of the disk matches the observed properties of the sources as shown in
Chapter 4. These values reproduce the correlation between the bolometric luminosity
and outburst duration known for the observed sources, especially microquasars and
Intermediate Mass Black Holes.

The radiative cooling rate depends on disk surface density Σ and physical constants
Stefan-Boltzmann σb and speed of light. The radiative cooling rate is given by formula
from Eq. (2.21). For the radiation pressure dominated disk, combined with Eqs.(6.1)
and (6.2), from Eq. (2.21) for µ = 0.56 we obtain the condition:

(6.3)
d logQ−
d log T

< 4.92.

In the model used in Chapters 3, 4 and 5 only Thomson scattering (described in Chapter
1) was assumed, which resulted in the appearance of global radiation pressure instability
among sub-Eddington accretion disks. The recent results of Jiang et al. (2016) are based
on stabilizing in�uence of the Iron opacity components. To confront the results of their
short time, local 3D MHD shearing-box simulation, we propose the global model, used
in previous Chapters.

84



Assuming κ being in general not constant function of ρ and T , the formula for log
derivative of Q− is following:

(6.4)
d logQ−
d log T

= 4 +
∂ log κ

∂ log T
− 4− 3β

1 + β

∂ log κ

∂ log ρ
.

The Eq. 6.4 shows possible stabilizing in�uence of the negative slope of κ dependent on
T and destabilizing in�uence of the positive slope of κ. Also the dependence on ρ has
inluence on disk stability. The value of κ itself is not important in the local stability
analysis. In case of unstable disk, less e�cient cooling being an e�ect of the greater κ
lowers the temperature of unstable equilibrium solution, and enlarge the temperature
of stable solution, which can modify the duty cycle quantitatively but not qualitatively.
Similarly to Chapter 4 of this thesis, the necessary value for the thermal instability is
as follows:

(6.5) β <
7µ+ 3− ∂ log κ

∂ log T + 4∂ log κ
∂ log ρ

7µ− 3 + ∂ log κ
∂ log T − 4∂ log κ

∂ log ρ

.

The thermal stability parameter s can be de�ned:

(6.6) s =
d logQ+

d log T
− d logQ−

d log T
.

Using the Eqs. (6.2) and (6.4), Eq. (6.6) can be written as follows:

(6.7) s = −3 + 7µ
1− β
1 + β

− ∂ log κ

∂ log T
+

4− 3β

1 + β

∂ log κ

∂ log ρ
.

The s parameter is connected with the Lyapunov exponent for the system described by
the energy equation in the accretion disk with stress tensor given by Eq. (4.5). The
value s > 0 means locally thermally unstable disk, s ≤ 0 - locally thermally stable.
Assuming µ = 0.56 and β << 1 for ρ = 10−8g cm−3 and T = 105 K, s = −11, which
corresponds to local thermal stability. Nevertheless, for this density the parameter s
gains positive values for T > 3 × 105 K. Below this temperature, for T > 1.75 × 105

K, the disk is locally thermally stable because of the negative slope of the bump. For
temperatures in the range 1.1− 1.75× 105 K, the disk is locally thermally unstable.

6.3. The variable κ - Iron Opacity Bump

The opacity κ is the local function describing interaction of photons with matter from
accretion disks. Under the assumptions of local thermal equilibrium, radiation and gas
contribution to the total pressure, and local vertical hydrostatic equilibrium, both the
heating and cooling rates can be described as a function of radius r, local density ρ and
local temperature T . Although the radius r, a�ecting the angular momentum transport
is important for the heating rate in the α-disk model, it a�ects the stability analysis
only indirectly, via the parameters of stationary solutions. In Fig. (6.1) the pro�les of
the total opacity for solar metallicity are presented, computed as a function of density
and temperature (Alexander et al., 1983; Seaton et al., 1994; Rozanska et al., 1999).
The combined conditions (6.2) and (2.21) to the opacity values results in the signi�cant
local stabilization for the temperatures of 1−4×105 K and densities about 10−8g cm−3

typical for the AGN accretion disks.

The κ function was �tted with following formulae:

κ = κTh + κpl + κbump

κTh = 0.34cm2g−1,
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Figure 6.1: The opacity κ functions including atomic components. The data are taken from
(Alexander et al., 1983; Seaton et al., 1994; Rozanska et al., 1999).
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(6.8) κpl = 4.6× 1023ρT−3.5,

κbump = 39.8ρ0.2(0.8 exp−(
T − 1.75× 105K

8.2× 104K
)2

+6.3 exp−(
T − 4× 104K

3× 104K
)2).

The negative stabilizing slope of the Iron Opacity Bump is visible in the Figure 6.1. In
Fig. (6.2) in the upper panel we show the opacities directly from the tables (Alexander
et al., 1983; Seaton et al., 1994; Rozanska et al., 1999), and in the lower panel we present
the analytical approximation of opacity function from Eq. (6.8). The detailed results
of the dynamical model are presented below.

6.4. Global model

6.4.1. Values of ρ and T

In Fig. (6.3) we present typical values of ρ and T for a wide range of accretion disks,
computed via the GLADIS code. For the values of ρ and T in the upper left corner, the
power law term of κ dominates, but matter with this parameter is too dense and too
cold for central areas of sub-Eddington accretion disks. The oblique belt below presents
typical values of ρ and T for the accretion disks with di�erent masses. This area, for
5.1 < log T < 5.4, is covered by the Iron Opacity Bump, with stabilizing negative slope
(See Sect. 6.2). According to these results, the stabilizing e�ect of the negative slope
of the Iron Opacity Bump can be visible only for the Active Galactic Nuclei accretion
disks with M ≈ 108 − 109M�.

6.4.2. Results for the full model with bump

The simulations of the global disk behaviour are performed using the time-dependent
global code GLADIS (see Chapter 3 for more details). For the purpose of this Chapter
we adopted the version with stress tensor input presented in Chapter 4 in Eq. (4.5). To
reproduce the conditions from Jiang et al. (2016), we adopted the following parameters:

� M = 5× 108M�

� ṁ = 0.03

� α = 0.02

� µ = 0.56

The major change in the numerical model in comparison to Chapter 5 is replacing
constant Thomson κ with Eq. (6.8). Similarly to Jiang et al. (2016), it has been
assumed that the source accretes at the = 0.03 of the Eddington rate. The results of
the time-dependent model are presented in Fig. (6.4). The local shearing-box simulation
resulted in signi�cant stabilization of the disk (Jiang et al., 2016). However, the global
model does not con�rm these results. The stabilization of the disk, which appears
according to local prediction, is not found in global models considering a large range of
radii. Fig. (6.4) presents the pro�le of the stability parameter s de�ned in Eq. (6.6). For
the inner area of the disk, Thomson component of opacity dominates and temperature
is too large to expect any form of stabilization. Outer area of the disk are characterized
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108M�, ṁ = 0.03 (same as in Jiang et al. (2016)).

90



model amplitude A period P [yrs] width ∆

κ with bump 16.1 12635 0.0023
Thomson κ 156 70197 0.0044

Table 6.1: The table describing the �are parameters for the model from Fig. (6.5) with κ
described by formula (6.8) (second row) and only Thomson κ (third row).

by the larger value of total opacity temperature about 1.5 − 2 × 105K and negative
values of s (the bump temperatures). The signi�cant gradient of s is correlated with
the gradient of temperature and gradient of κ in the opposite direction. The stability
parameter, presented in Fig. (6.4) can reach values between −3 and −3 + 7µ (0.92 for
our choice of µ). In Fig. (6.4) the typical pro�le of the s parameter is presented. As
the bump is approximately Gaussian function, centered at 1.75× 105 K, with standard
deviation σ = 0.82 × 105 K, it is expected that the strongest e�ect of the stabilizing
slope would be visible for such temperatures. The combined outcome of the stabilizing
in�uence of the negative slope of the bump and destabilizing in�uence of the positive
slope of the bump for the dynamical model is presented in Fig. (6.5). In contrast to the
results of Jiang et al. (2016), the Iron bump does not stabilize the disk.

However, it complicates the lightcurve pattern (many small short �ares preceding main
outbursts instead of one simple �are), due to the complexity of the photon absorption
process, but the inner regions of the disk remains hot enough to perform the limit-cycle
oscillations. In e�ect, the bump partially stabilizes the disk - the amplitude Lmax/Lmin

decreases from 156 for model with constant κ (bottom panel Fig. 6.5) to 16.1 for model
with bump (upper panel of Fig. 6.5). The detailed analysis of the lightcurve shape is
presented in Table 6.1.

Since the timescales presented in Fig. (6.5) are much longer than the duration of
observation (lasting up to several decades), it is impossible to �nd such a lightcurve
using the direct method. For such a black hole mass, during the phase of fastest growth
of the luminosity, the luminosity change can reach 1 per cent per year. The shape of
the lightcurve can be re�ected in the Eddington rate statistics - similar objects, being in
the di�erent phase of the limit-cycle presented in Fig. (6.4) can emit the radiation with
di�erent luminosity and spectra. However, in case of much smaller black hole masses
new timescales are perhaps accessible to observations. For example, digitalization of
Harvard plates (Grindlay et al., 2012) 1 will bring lightcurves on the order of a hundred
years and perhaps the outbursts of AGN disks can be discovered.

6.5. Conclusions

In Chapter 4 the large grids of models were described, con�rming the universality of
radiation pressure instability across the BH mass-scale. In this Chapter we the opacity
prescription has been changed to examine the heavy atoms in�uence on the accretion
disk instability. Comparison between two models presented in Table 6.1 leads to the
conclusion that heavy atoms stabilize the disk partially, but do not imply that the vari-
ability vanishes. This stabilizing e�ect manifests itself rather in a signi�cant period and
amplitude decrease, without a relative broadening of the outbursts with respect to their

1http://dasch.rc.fas.harvard.edu/
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Figure 6.5: Results of the time-dependent model for M = 5× 108M�, ṁ = 0.03 (same as in
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separation. Additionally, some mild precursors, being an outcome of a non-monotonic
pro�le of the s parameter distribution, are also visible. That partial stabilization, being
an important e�ect for the Active Galactic Nuclei, has only weak in�uence on the radi-
ation pressure among all BH mass-scale in accretion disk under the assumption of Solar
metallicity. In case of sources with di�erent metallicity, this e�ect can change its extent.
Finally, there is a conclusion that the radiation pressure driven limit cycle oscillations,
su�ering some disturbances from the Iron Opacity Bump in case of the AGN disks are
also expected.
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Chapter 7

Summary

Development of X-ray satellites allowed for detection of hot matter in direct black hole
vicinity, forming the accretion disks in close binary systems, contributing to a proof
of existence of such extremely compact objects. Improvement of the timing resolution
allowed for the observations of the lightcurves of X-ray binary systems, with a good
accuracy time coverage. Among all the detected variability patterns, the most regu-
lar ρ and ν states as de�ned for the classical prototype of high−ṁ microquasar GRS
1915 + 105 are consistent with the hypothesis of the internal, disk origin � radiation
pressure instability. Advection of heat prevents the disk from breaking into rings, and
along with the viscous processes regulate the thermal instability and lead to observed,
regular limit-cycle oscillations. The nonlinearity of the process results in broad diver-
sity of the variability patterns. However, the most fundamental outburst properties, like
relative amplitudes and outburst shapes can be connected to the basic physical source
parameters, such as Eddington ratio ṁ. This is one of the important aspects of my
Thesis.

In this thesis I performed a broad study of the accretion disks radiation pressure driven
oscillations. I have studied the range of e�ective models. Under the assumption, that
origin of the viscous dissipation in the accretion disk is turbulent, and the viscosity can
only depend on the total and gas pressure, the formula τrφ = αPµP 1−µ

rad covers all the
physical cases of the gas and radiation pressure dominated disks.

From the physical point of view, the accretion disk plasma is driven by the joint Maxwell
and hydrodynamic equations and the most probable mechanism suppressing the thermal
instability can be global, strong magnetic �eld. Another possible stabilizing mechanism
for the accretion disk is wind out�ow, possible to be con�rmed by the spectral analysis,
which has been shown in Chapter 3. The wind can also be driven by magnetic �elds.

The numerical computations in this thesis were based on the 1.5− dimensional global
accretion disk GLADIS code (Global Accretion Disk Instability Simulation). Although
the code is based on simpli�ed assumptions and does not account for the short-timescale
dynamical phenomena like shocks or vertical/radial oscillations, it supplies su�cient
possibility to study the global accretion disk behaviour in the long thermal and viscous
timescales, being commonly observed by the X-ray satellites.

In this thesis (Chapter 4) I have studied the dependence between the input param-
eters and �are characteristics for the broad range of numerical models. For some of
the observables like period and relative amplitude, the signi�cant correlations between
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the input parameters like central object mass and α viscosity were found. Also the
dependence between the µ stabilizing parameter and the lightcurve has been tested.
Those two empirical formulae, along with the broader set of our results, allowed for
the construction of the new, spectrum-independent method of the mass and accretion
rate determination, based only on the lightcurve shape. The universal character of the
Eddington luminosity, along with some previous studies on the possible range of the
value of the α parameter, allowed for strict determination of the mass for the newly
discovered source HLX-1. This object belongs to Ultraluminous X-ray sources, being
the Intermediate Mass Black Hole candidate.

Applying this method, the mass of HLX-1 has been determined on the level of 1.9 ×
105M� (Chapter 5). The future development of the X-ray observing devices, like the
ATHENA project will enable the broader studies of the nature of the limit-cycle oscil-
lation of the microquasars.

Along with Chapter 3 (dedicated to example of one microquasar), and Chapter 5 (ded-
icated to Intermediate Mass Black Hole), Chapter 6 is dedicated to the Active Galactic
Nuclei. The special e�ect occurring in cooler matter (T ≈ 105K) is not present in
the hotter microquasar accretion disks (T ≈ 107K) and humble in the IMBH disks
(T ≈ 106K). This e�ect, named Iron Opacity Bump has an in�uence on the local ther-
mal stability of the disk, but the global stability is governed by the interplay of the local
instability and global di�usion. In e�ect, in contradiction to local shearing-box simula-
tion results (Jiang et al., 2016), this e�ect change only the �ares shape and timescales
and stabilizes the disk only partially.
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