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Abstract

This thesis is devoted to one of the most important problems in quantum computing, i.e. the
universality problem. It reduces to deciding, if a finite set of gates operating on a system of
qudits allows to construct an arbitrary operation on the qudits with an arbitrarily small error.
This problem has a great practical significance as only a few quantum gates can be realized
experimentally quite easily. From a mathematical point of view, universality is a problem of
generating an infinite group, like a group of unitary or orthogonal transformations, by a finite
number of group elements.

This thesis is a part of a project financed by the National Science Center and devoted to univer-
sality, optimality and control in quantum computing DEC-2015/18/E/ST1/00200. The main
aim of our study was to formulate an algorithm for deciding universality of an arbitrary set of
quantum gates. We required from our algorithm to be easy to apply and return the answer
after a finite number of iterations.

Our thesis is organized as follows. In Chapter 1 we present basic concepts from theory of
quantum computing. We describe a simple model of a quantum computer and give a mathe-
matically strict definition of universality. In this chapter we also present a detailed structure
of this thesis. Chapter 2 includes all the mathematical concepts that are used in this thesis. In
Chapters 3 and 4, that are the core of this thesis, we present the results of our study. Chapter
3 includes a method that allows to decide universality for particular sets of one-qubit gates,
whereas the approach presented in Chapter 4 can be applied for arbitrary set of quantum gates.
The mathematical tools used in both chapters comes from various areas of mathematics, from
field theory to representation theory of compact, semisimple Lie groups. Finally, we include in
Appendix some results that are outside main thread of this thesis, but which supplement the
main results.
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Streszczenie

Tematem niniejszej pracy jest jeden z ważniejszych problemów w teorii obliczeń kwantowych,
czyli problem uniwersalności bramek kwantowych. Polega on na określeniu, czy ze skończego
zbioru bramek działających na układzie kwantowym można wygenerować dowolną operację
unitarną na tym układzie. Problem ten ma ogromne znaczenie praktyczne, jako że tylko
niewielka liczba bramek kwantowych może być zrealizowana eksperymentalnie w stosunkowo
prosty sposób. Wszystkie pozostałe operacje na układzie muszą być w takim wypadku uzyskane
jako zlożenie bramek podstawowych. Z drugiej strony, z matematycznego punktu widzenia
problem uniwersalności jest problemem generowania nieskończonej grupy ze skończonej, niewiel-
kiej liczby elementów.

Niniejsza rozprawa została zrealizowana w ramach grantu badawczego dotyczącego uniwersal-
ności, optymalności i steorowania w obliczeniach kwantowych, finanowanego przez Narodowe
Centrum Nauki DEC-2015/18/E/ST1/00200. Głównym celem badań było opracowanie algo-
rytmu do badania uniwersalności dowolnego zbioru bramek kwantowych. Wymagane było, aby
algorytm był łatwy do zaimplementowania i zawsze zwracał wynik po skończonej liczbie iteracji.

Praca składa się z czterech rozdzialów, podsumowania oraz Appendixu. W rozdziale 1 definiu-
jemy podstawowe pojęcia z teorii obliczeń kwantowych, omawiamy zasadę działania komputera
kwantowego i podajemy matematyczną definicję uniwersalności. Na końcu tego rozdziału przed-
stawiamy również szkic całej rozprawy. Rozdział 2 zawiera matematyczne pojęcia i twierdzenia,
które wykorzystane zostały w naszej pracy. W następnych dwóch rozdziałach, które stanowią
głwną część pracy prezentujemy wyniki. Rozdział 3 zawiera dowód uniwersalności dla pewnych
szczególnych zbiorów bramek, natomiast w rodziale 4 przestawiliśmy podejście, które może być
stosowane dla dowolnych zbiorów bramek. Narzędzia użyte w tych dwóch rozdziałach pochodzą
z różnych obszarów matematyki, od teorii rozszerzeń ciał po teorię reprezenacji półprostych,
zwartych grup i algebr Liego. Na końcu zamieścilimy Appendix z dodatkowymi wynikami oraz
informacjami, które znajdują się poza glównym tematem pracy.
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Symbol Explanation
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< S > Set generated by S
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Chapter 1

Introduction

Quantum computing belongs to the fastest developing areas of physics. A great interest in this
topic in recent years comes from the fact, that they have many possible applications in various
areas of science and economy, e.g. in [65]:

• quantum cryptography [34, 35, 74],

• simulating quantum systems in natural sciences and medicine,

• encoding and decoding in quantum communication,

• quantum machine learning and deep learning in business and robotics,

• solving computationally hard mathematical problems.

For many years theoretical models of quantum computation were ahead of experiments and pro-
totypes of quantum computers. The main problem for their designers is possibly ideal isolation
of a quantum system from the environment, otherwise the quantum system subjects to quantum
decoherence, which can be thought as information loss from the system [60]. Another obstacles
are difficulty with precise control of quantum objects and a very high cost of cooling to tem-
peratures close to the absolute zero. These problems have resulted in the development of many
computational models. It is worth emphasizing that quantum computers have recently been not
only theoretical concepts, but genuinely existing devices, e.g. Bristlecone1 by Google or IBM
Q, that belong to circuit quantum computers, or D-Wave as an example of a quantum annealer.

Below we present the main concepts and the main motivation of our thesis. In the follow-
ing sections we explain a simple model of quantum computation and introduce a concept of
universality and optimality. All the presented definitions will be used in Chapters 3 and 4.
Throughout the following sections we will assume the notation that is conventional in quantum
information theory.

1.1. Basics of quantum computing

In this section we present the model of a quantum computer that we use in this thesis and
define the concepts of universality and optimality in quantum computing.

1Bristlecone is the largest currently existing quantum processor, that operates on 72 qubits
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1.1.1. Basic facts from theory of computation

Theory of computation is a subject of theoretical computer science and it answers the question,
how efficiently problems can be solved using the appropriate algorithm and model of computa-
tion [78]. The best known model of computation is the Turing machine, which was proven to
solve an arbitrary computable problem and simulate every physical process (more details can
be found e.g. in Chapter III in [60]). However, the Turing machine was defined as a device
with an infinite size and infinite memory capacity. A more realistic and commonly used model
of computation is a circuit model.

Definition 1.1. A circuit is a model of computation in which input values goes through wires
and a sequence of gates, i.e. objects computing a function on an input value.

In classical information theory gates are called logic gates, e.g. of XOR, NOT, AND etc., and
they implement Boolean functions on input values. An example Boolean circuit is depicted in
Figure 1.1. A set of logic gates is called universal if it can be used to construct an arbitrary

Figure 1.1: A Boolean circuit adding two bits, denoted by A and B.

logic gate. Examples of universal one-element sets of gates are NAND and NOR [60].

1.1.2. What is a quantum computer?

From a purely theoretical point of view a quantum computer is a device that operates on an
isolated system of d-level quantum objects called qudits. All the currently existing quantum
computers are built from qubits, i.e. objects that have two available degrees of freedom. Phys-
ical realizations of qubits include e.g. photons, electrons, low-energy ions. However, the ability
to effectively manufacture optical gates using e.g. optical networks that couple modes of light
[14, 64, 67] is a natural motivation to consider not only qubits but also higher dimensional
systems in the quantum computation setting (see also [61, 62] for the case of fermionic linear
optics and quantum metrology).
Throughout this thesis, we ignore technical details and restrict ourselves only to the general
idea of quantum computers. More details concerning these topics can be found in Chapter 7 in
[60].

The necessary ingredient for a quantum computer to realize quantum algorithms is the ability
to perform an arbitrary unitary operation on the system of qudits. In quantum information
community such operations are typically called quantum gates. One can distinguish two types
of operations: one-qudit gates that act on a single qudit and n-qudit gates acting on n-qudits
simultaneously. An n-qudit gate is called nontrivial (or, equivalently, entangling) if it does not
transform a separable state to a separable state. A commonly used entangling gate that act on
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two qubits is the CNOT gate, that changes a state of the second qubit depending on the state
of the first qubit as follows:

CNOT : |00〉 7→ |00〉, CNOT : |01〉 7→ |01〉,
CNOT : |10〉 7→ |11〉, CNOT : |11〉 7→ |10〉

In what follows we will denote by H the Hilbert space corresponding to the system of qudits,
on which our quantum computer operates. H has a structure of a tensor product:

H = H1 ⊗ . . .⊗Hn, (1.1)

where Hi ' Cd, i = 1, . . . , n are one-qudit Hilbert spaces. Hence unitary operations performed
on single qubits are elements of the group SU(Hi) ' SU(d)2. Similarly the qudit gates acting
on the qubits represented by Hi1 , . . . ,Hik belong to SU(Hi1 ⊗ . . .⊗Hik) ' SU(dk). One- and
many-qudit quantum gates are building blocks of quantum circuits. An example of a quantum
circuit is presented in Figure 1.2. A circuit-based quantum computer is one of possible models
of quantum computation and it is the only model considered throughout this thesis.

Figure 1.2: An example quantum circuit built from a one-qudit gate, denoted by U3, a two-
qudit gate U1 and a three-qudit gate U2. An output state is an entangled state of |q1〉, |q2〉, |q3〉.

1.1.3. Universality

Deciding universality of a set of quantum gates is a problem of great importance in quantum
computing [6, 12, 6, 8, 13, 20, 23, 27, 32, 54, 75, 76]. An analogous problem is known also in
group theory as a problem of generating a group from its finite subset, a.k.a. of finding topo-
logical generators of a group [31, 33, 51]. In this section we present the concept of universality
and give its interpretation in the context of quantum computers.

Let

S = {g1, . . . , gn} ⊂ SU(d), (1.2)

be a finite subset of SU(d) or, equivalently, a finite set of qudit gates.

Problem 1.1. Is it possible to construct every gate g ∈ SU(d) from elements of S with an
arbitrarily small error ε?

2More precisely, unitary operations on the system H belong to the group U(H), however we restrict ourselves
to SU(H) by neglecting global phases of qudits.
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In order to answer this question notice, that every composition of g1, . . . , gn is again a one-qudit
gate. In quantum information community such compositions are called words. Throughout this
thesis we will denote the set of words of length l by Sl

Sl = {ga1ga2 . . . gal : ai ∈ {1, . . . , n}}, (1.3)

and the set of words of length 1 ≤ k ≤ l by < S >l

< S >l=
l⋃

k=1

Sk. (1.4)

Definition 1.2. [26, 60] A set generated by S is the set of all possible words constructed from
the elements of S:

< S >:=
∞⋃
l=1

Sl. (1.5)

An attentive reader may notice, that it is impossible to express an arbitrary gate g ∈ SU(d) as
a word of a finite length. Instead, we allow to approximate quantum gates with a nonzero error
ε, where ε is defined as a distance3 in SU(d) between the approximated gate g and an element
of <S >l for some l. In particular, we can introduce the concept of a net.

Definition 1.3. [26] Let G be a Lie group and H be its finite subset. H is an ε−net of G if
for every g ∈ G there is h ∈ H such, that

||g − h|| ≤ ε, (1.6)

where || · || is a distance between two group elements.

Definition 1.4. [26]A set < S >⊂ G is dense in a group G if for every ε > 0 there is a set
< S >l⊂< S > that forms an ε-net in G.

S − dense⇔ ∀ε > 0, ∀g ∈ SU(d), ∃h ∈< S >: ||g − h|| < ε. (1.7)

Intuitively speaking, S ⊂ G is dense in G if every element of G can be approximated with an
arbitrary accuracy using elements of < S >. By analogy to classical information theory such
sets are often called universal.

Definition 1.5. A set S ⊂ G is universal if < S > is dense in G.

It is worth stressing, however, that < S > usually does not have a group structure. The
condition for < S >⊂ G to be a Lie group is provided by Cartan’s closed subgroup theorem.

Theorem 1.1 (Cartan [19, 59]). If H is a closed subgroup of a Lie group G, then H is an
analytic submanifold of G, with the induced analytic structure, which implies that H is again a
Lie group.

The proof of Theorem 1.1 can be found in e.g. [19, 52, 59]. An immediate conclusion is that
< S > is not a Lie group unless it is topologically closed. In what follows we will denote the
closure of < S > by < S > and assume the natural topology for the space of d × d real or
complex matrices.

Definition 1.6. S ⊂ SU(d) is a universal set of one-qudit gates if < S > is equal to SU(d).
3Throughout this thesis we assume that || · || is the Frobenius distance (see more in Section 2.3.2).
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In a general case we are interested in quantum gates operating on an arbitrarily large number
of qudits. However, the following theorem allows us to restrict our considerations only to
one-qudit gates.

Theorem 1.2. [17] A universal set for n-qudit quantum computing consists of all one-qudit
gates and an additional 2-qudit entangling gate.

Intuitively speaking, Theorem 1.2 claims that a universal set for quantum computation on an
arbitrary number of qudits can be constructed simply from a universal set of one-qudit gates,
say S, and a single entangling gate, e.g. the CNOT gate.

Literature on the universality problem includes a huge number of papers and textbooks from
quantum optics, group theory, algebraic number theory and representation theory of Lie groups
and Lie algebras. One of the first results concerning universality was published in 1949 by
Kuranishi who had proven that a two-element subset of compact semisimple Lie group or Lie
algebra was sufficient to be universal. This result was extended in [31, 51] in the context of Lie
group theory and [12, 27, 54] in the context of quantum optics. It has been proven i.a. that
probability of choosing a non-universal set of group elements is equal to zero. In other words
universal sets S of the given cardinality c form a dense open set in SU(d)×c. On the other
hand [31, 51] gave some criteria for distinguishing non-universal sets from universal sets. In
particular, they defined non-universal elements of G as characterized by vanishing of a finite
number of polynomials in the gates entries and their conjugates. However, the criterion turned
out to be non-applicable as these polynomials are still unknown. Recently there were also
approaches providing algorithms for deciding universality of a given set of quantum gates that
can be implemented on quantum automatas [23]. The main obstacle in using this approach is
the fact that it requires deep knowledge from algebraic number theory.
Quantum information and quantum optics community present much more practical approach
to the problem of deciding universality. They provided numerous examples of universal and
non-universal one- and many-qubit sets of quantum gates [8, 48, 49, 20] and their experimental
realizations [14, 64, 18, 67] (see also [61, 62] for the case of fermionic linear optics). A particular
emphasis was put on qubit gates, however development of experimental techniques allows to
construct quantum computers based on systems of qudits for d > 2. Hence there is a motivation
to construct universality criteria for quantum gates operating on systems of an arbitrary degrees
of freedom.
The main motivation of our thesis was to combine the approaches presented by mathematicians
and physicists and formulate a universality criterion that would be as general as possible and
easily applicable at the same time. We also wanted from our criteria to be possible to apply to
other interesting problems. The first one is the universality problem on the level of Lie algebras,
that plays a prominent role in theory of control systems [2, 16, 44] and Hamiltonian systems
(see e.g. [20, 73, 82, 84]). The last problem we wanted to contribute to was the classification
of finite subgroups of unitary and orthogonal groups, which are unknown for SO(d), d > 6 and
SU(d), d > 3 [29].

1.1.4. Optimality

In Section 1.1 we mentioned that quantum computer was a very expensive and difficult to build
device, which arose from the fact that a quantum system cannot be completely isolated from
the environment. In a realistic case interaction with the environment results in information
loss from the system. This phenomenon is known as quantum decoherence and is inevitable in
a real world. For this reason it is required from quantum algorithms to be robust for errors4 or

4Using quantum error connecting codes, see more in Chapter 8 in [60]
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to be performed as fast as possible, i.e. optimally. In this short section we will concentrate on
the idea of optimality.

It has been proven by Solovay for SU(2) (unpublished results [26]) and by Kitaev [47] for SU(d)
that a generic universal set of one-qudit gates allows to approximate an arbitrary one-qubit
gate with the error ε using words of the length, which scales with ε as follows:

Theorem 1.3 (Solovay-Kitaev, [26, 47, 60]). Let S be a universal set for SU(d) and let a
desired accuracy ε > 0 be given. There is a constant c such that for any g ∈ SU(d) there exists
a finite sequence gl ∈ Sl such, that ||g − gl|| < ε, where

l = O

(
logc

1

ε

)
, c > 0. (1.8)

The value of c derived by Chuang and Nielsen is c = log 5
log(3/2)

= 3.97 ' 4 [60]. In [26] it is
presented the algorithm that allows to approximate qudit gates from SU(d) with words of the
length l = O

(
log3.97 1

ε

)
. However, it was shown by Harrow in his PhD thesis, that the exponent

c can be decreased to 2 ≤ c < 4, depending on the approximating algorithm [39]. A reader
interested in history of Solovay-Kitaev theorem is advised to read Section 6 of [26].

Among all universal sets of gates one can distinguish a class optimal (equivalently, efficiently
universal) sets that allow to approximate quantum gates even faster than (1.8). The scaling
l(ε) for such sets is the best possible scaling in quantum computation, in other words there is
no possibility to approximate quantum gates using words shorter than (1.9).

Definition 1.7. A universal set S ⊂ SU(d) is efficiently universal if every gate g ∈ SU(d) can
be approximated with the error ε using an element from Sl, where

l = O

(
log

1

ε

)
. (1.9)

It is worth stressing, however, that definition of optimal universal sets is not constructive and
does not provide any approximating algorithm. According to our knowledge, classification of
efficiently universal sets has not been finished yet, but there are known some conditions for
S ⊂ SU(d) to be efficiently universal [9, 10, 39, 63, 68]. In particular, the following conjecture
has not been proven or rejected.

Conjecture 1.4 (Sarnak’s conjecture:). Every universal set of quantum gates is efficiently
universal.

1.2. Structure of the thesis

As we mentioned in Section 1.1.3 the main motivation of our thesis was to formulate an easily
applicable universality criterion that would work for an arbitrary set of one-qudit gates. We
are aware that the universality problem and the problem of generating infinite groups have
been studied intensively both in quantum information community and among mathematicians.
However, we believe that our reasoning, which is based on the set of basic properties of compact
connected simple Lie groups, is explicit and direct and provides a simple and easily implemented
algorithm for deciding universality.

In Chapter 2 we present all the mathematical concepts that are used in the thesis, i.e.:
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1. basic concepts from classical number theory and group theory, quaternions, Dirichlet
approximation theorem,

2. theory of fields extensions and minimal polynomials,

3. theory of Lie groups, Lie algebras and their representations, with particular emphasis on
compact semisimple Lie groups, Lie algebras and their representations,

4. useful facts about special unitary and special orthogonal groups,

5. spectral gap theory.

The mathematical background of this thesis was presented in a brief way, however they are
often illustrated with pedagogical examples to make them easier to understand for a reader.

The concepts presented in Chapter 2 are crucial in understanding the methods, that are de-
scribed in Chapters 3 and 4. The first one includes a method for deciding if the set of one-qubit
gates generated by two or three particular gates is finite or infinite, whereas Chapter 4 presents
general universality criteria. All the results included in this thesis were published [45, 70, 71].

In Chapter 3 we formulate the universality criterion for two special sets of one-qubit gates,
depending on a parameter φ, that play an important role in quantum information theory and
quantum optics. To this end we use methods of number theory and field theory. This approach
was inspired by the proof of universality, that was presented for φ = π

8
in [13] and in Section

4.5.3 in [60]. However, our method differs significantly from the original proof and is efficiently
tractable for an arbitrary value of φ.

The main result presented in Chapter 4 is an algorithm for deciding universality for an ar-
bitrary set of one-qudit gates, that always terminates after a finite number of steps. Using
Definition 1.6 we divided the proof of universality into two steps:

Step 1 We distinguish the case when S ⊂ G generates a nontrivial subgroup of G from the
case when S is universal assuming, that < S > is infinite.

Step 2 We check whether < S > is infinite.

Section 4.1 is devoted to Step 1, whereas Section 4.2 includes discussion about Step 2. After
presenting the algorithm we discuss the number of its iterations depending on an initial set S.
To this end we use the concept of a spectral gap (see Section 2.5). In Section 4.4 we apply the
universality criteria for the case when S is a two-element set of qubit gates. We also list all the
possible situations, when such S is non-universal and show, how to deal with this problem.

Chapter Appendix includes some additional results that are not related directly to the univer-
sality problem, but extend our considerations and can be interesting for a reader. We present
i.a. a different version of the proof of Fact 3.4. We also include a full list of two-element sets
of qubit gates that generate finite subgroups of SU(2).
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Chapter 2

Mathematical preliminaries

The main purpose of this chapter is to introduce the mathematical concepts that will be used
in our thesis. In Section 2.1 we present basic definitions from number theory and group theory.
We also include a brief section devoted to quaternions and present Dirichlet approximation
theorem in one and many dimensions. Section 2.2 contains a survey of basic facts from field
theory and companion matrix formalism. Section 2.3 is the most important part of this chapter.
It includes representation theory of Lie groups and their Lie algebras and starts from a short
review of basic facts and definitions. In the latter part we put particular emphasis on compact,
semisimple Lie groups and Lie algebras. Section 2.4 is devoted to special unitary and special
orthogonal Lie groups, i.e. the groups that play a significant role in quantum information the-
ory. Finally, in Section 2.5 we briefly describe theory of spectral gaps of averaging operators
over compact Lie groups and explain its importance in quantum computing.

It is worth emphasizing that in this chapter we restrict ourselves to the concepts, that are
essential for the purpose of this thesis. In many cases, however, we illustrate them with proofs
and examples for pedagogical reasons.

2.1. Basic concepts

This section is a review of concepts from various fields of mathematics. We start our introduc-
tion from presenting basic definitions from the classical number theory and group theory. In
Section 2.1.3 we briefly define the field of quaternions. Section 2.1.4 is devoted to a problem of
approximating real numbers with rational numbers, which was an object of interest of mathe-
maticians from ancient to modern times.

The notation used in this thesis is in accordance with most of mathematical textbooks, i.e.
Z denotes the ring of integers and Z+ is the set of positive integers. Q, R,C,H are fields of
rational, real, complex and quaternion numbers, respectively. Symbols Q[x],Z[x] denote the
rings of polynomials with rational or integer coefficients.

2.1.1. Basic definitions from classical number theory

Let us restrict our interest to integers and define some specific arithmetic functions that operate
on these numbers. We start for recalling the most fundamental result of Arithmetics [38]. Its
proof can be found in every textbook from classical number theory, therefore we skip it in this
thesis.

Theorem 2.1 (Fundamental Theorem of Arithmetics [38, 77]). Every integer number n ∈ Z+
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can be decomposed uniquely as a product of prime numbers

n = pn1
1 · . . . · p

nk
k . (2.1)

n is said to be square-free if n1 = . . . = nk = 1.

Definition 2.1. An arithmetic function f(n) is a function whose domain is the set of positive
integers and whose range is a subset of complex numbers.

Examples of arithmetic functions include i.a. the greatest common divisor, Möbius function,
Euler function and the least common multiple. All of these functions are described in this
section.

Definition 2.2. Let p1, . . . , pn be integers. The greatest common divisor gcd(p1, . . . , pn) is
the largest integer, that divides p1, . . . , pn. If gcd(p1, . . . , pn) = 1, the numbers are said to be
relatively prime.
If n is an arbitrary integer, the greatest common divisor satisfies [38, 77]

gcd(p1, p2) = 1⇒ gcd(np1 + p2, p1) = 1. (2.2)

Definition 2.3. Let p1, . . . , pn be integers. The least common multiple lcm(p1, . . . , pn) is the
smallest integer, that is divisible by p1, . . . , pn. In particular if p1, . . . , pn are relatively prime
numbers, then lcm(p1, . . . , pn) is equal to their product.

Definition 2.4. Euler’s totient function φ(n) is a function that counts the positive integers up
to n that are relatively prime to n.

φ(n) =
n∑

k = 1
gcd(k, n) = 1

1. (2.3)

In particular, φ(n) = n− 1 if n is a prime number.

Definition 2.5. Möbius function µ(n) is a function that takes values in {1, 0, 1} depending on
the factorization of n into prime factors:

• µ(n) = 1 if n is square-free with an even number of prime factors,

• µ(n) = −1 if n is square-free with an odd number of prime factors,

• µ(n) = 0 if n is not square-free.

Theorem 2.2. [38] The Möbius function µ(n) satisfies the identity

∑
d|n

µ(d) =

{
1 n = 1
0 n > 1

, (2.4)

where
∑

d|n is the sum over all divisors of n.

Proof of Theorem 2.2 can be found as a proof of Theorem 263 in [38]. The importance of the
Möbius function becomes evident in the Möbius inversion formula which, intuitively speaking,
inverses relation between two arithmetic functions.
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Theorem 2.3. [38] Let f, g be arithmetic multiplicative functions, i.e. f(n)f(m) = f(nm),
g(n)g(m) = g(nm) if m,n are relatively prime. Assume that f, g are related by

g(n) =
∏
d|n

f(d). (2.5)

Then the Möbius inversion of g(n) has the form

f(n) =
∏
d|n

g
(n
d

)µ(d)

. (2.6)

2.1.2. Basic concepts from group theory

Throughout this thesis we will usually denote groups using capital letters, e.g. G,H, whereas
lowercase g, h denote group elements. Let us start from recalling the definition of a group.

Definition 2.6. A group G is a set equipped with a group operation, denoted by ·, that satisfies
the following axioms:

1. A group G contains the neutral element I satisfying g · I = I · g = g for all g ∈ G.

2. Every g ∈ G has its inverse in G, i.e. ∀g ∈ G there is g−1 ∈ G such, that g · g−1 =
g−1 · g = I.

3. G is closed with respect to ·, this means for all g, h ∈ G the result of the group operation
g · h also belongs to G.

4. Group operation is associative, i.e. for all g, h, u ∈ G holds

(g · h) · u = g · (h · u).

G is called abelian in case when the group operation is commutative, i.e. for all g, h ∈ G we have
g · h = h · g. In this thesis we usually consider groups that consists of invertible matrices with
real or complex entries. Such groups are called matrix groups and are generally non-abelian.

In the following we present basic definitions from the group theory:

Definition 2.7. The center of a group G, denoted by Z(G) is a subgroup of G such, that

∀h ∈ Z(G) ∀g ∈ G g · h = h · g, (2.7)

i.e. elements of Z(G) commute with all elements of G with respect to the group operation.

Definition 2.8. A subgroup H of a group G is called normal if for all g ∈ G and all h ∈ H
the following holds:

ghg−1 ∈ H. (2.8)

In particular, Z(G) is a normal subgroup of G.

Definition 2.9. Let H be a normal subgroup of G. A quotient group G/H is a set of all left
cosets H in G:

G/H = {gH, h ∈ G}. (2.9)
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Definition 2.10. A group element g ∈ G has a finite order if there exists q ∈ Z+ such, that
gq = I, where I is the neutral element of G. A group consisting of only finite order elements is
called periodic.

Definition 2.11. A group G is finite if G consists of a finite number of elements. Otherwise
G is infinite.

Definition 2.12. A group G is finitely generated if every element of g can be obtained from a
finite set S ⊂ G as a composition of elements of S.

In order to make these concepts clearer we illustrate them by the following example.

Example 2.4. Let G be a group of rotations in R3. Its elements are parameterized by the
rotation angle, denoted by φ, and a rotation axis ~k. Assume that φ is a rational multiple of π,
i.e. φ = 2kπ

n
for some k, n ∈ Z. Then a rotation O(φ,~k) has a finite order as

On(φ,~k) = O
(
nφ,~k

)
= O(2kπ,~k) = I.

The group generated by single O(φ,~k) consists of the rotations

< O(φ,~k) >= {O(φ,~k), O(2φ,~k), . . . , O((n− 1)φ,~k), I},

which means that < O(φ,~k) > is a periodic group.
Assume now that φ is an irrational multiple of π, i.e. there is no n ∈ Z+ such, that On(φ,~k) =

O(2kπ,~k) = I, hence O(φ,~k) has infinite order and the generated group is infinite. What is
more, in this case < O(φ,~k) > is a group of all rotations around ~k.

In 1902, William Burnside asked about the order of elements of infinite, but finitely generated
groups. His question turned out to be one of the most important and influential problems in
group theory.

Problem 2.1 (Burnside Problem). Assume that G is a periodic, finitely generated group. Is
G necessarily finite?

The answer that was given by Schur was positive for matrix groups whose entries were complex
numbers (see more details in Chapter VI in [22])

Theorem 2.5 (Schur [22]). A matrix group with complex entries G generated from a finite
number of elements is infinite if and only if G contains infinite order elements.

Schur’s arguments are true i.a. for real and complex Lie groups that are our object of interest
throughout this thesis. However, the answer to Problem 2.1 is negative in general. An example
of a finitely generated but infinite periodic group was found in 1964 by Evgeny Golod and Igor
Shafarevich [1] among groups over p-adic numbers. Such groups, however, are beyond the scope
of this thesis.

2.1.3. Quaternions

In this short section we present a concept of quaternions, i.e. a number system that is an
extension of complex number and forms a noncommutative ring. Quaternions were introduced
by Hamilton as quotients of vectors in three-dimensional space [37] but then their concept was
generalized. A formal definition of quaternions is the following:
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Definition 2.13. A ring of complex dimension dimC = 2 and real dimension dim = 4 that
contains C, in which every nonzero element has a multiplicative inverse, but multiplication is
non-commutative is called the quaternion algebra H. Quaternions are associative and they
form the quaternion group.

Every quaternion is represented as q = c0 +~1 + c1
~i+ c2

~j + c3
~k such, that

i2 = a, j2 = b, k = −ab, c0, c1, c2, c3 ∈ R, (2.10)

The complex conjugation of q, denoted by q is defined as q = ~1− c1
~i− c2

~j − c3
~k and the norm

|q| = q · q. Quaternions whose norm is equal to one are called unit quaternions. In particular
the quaternions satisfying

i2 = j2 = k2 = ijk = −1, (2.11)

are called Hamilton quaternions and play especially important role in quantum and classical
mechanics. They also have strong connections with theory of Lie groups, e.g.

Fact 2.1. Elements from SU(2) are the matrix representation of unit quaternions, i.e. there
is an injective homomorphism:

Ω : q = a+ b~i+ c~j + d~k → U =

(
a+ ib c+ id
−c− id a− ib

)
, (2.12)

where a, b, c, d ∈ R, |q| = 1. (2.13)

2.1.4. Dirichlet’s approximation theorem

This section is devoted to the problem of approximating real numbers with rational numbers,
which has a great importance in mathematics from ancient times. The first one who is known
to formulate this problem formally was Diophantus of Alexandria in III-rd century B.C.

Problem 2.2 (Diophantine problem). Let ζ be an irrational real number, p, q ∈ Z and ε ∈ R.
We ask about the bound of q such, that ζ can be approximated by p

q
with the accuracy ε:

|p
q
− ζ| ≤ ε. (2.14)

It is worth mentioning that ε can be arbitrarily small as the set of rational numbers is dense in
the set of real numbers. Originally, Diophantus formulated this problem setting ε = 1

q2
. There

are also many other formulations of Diophantine approximation problem (for more details and
historical remarks see Chapter XI in [38]). An elegant proof that (2.14) has infinitely many
solutions if ζ is an irrational number and ε = 1

q2
was given by Dirichlet. He used famous

Dirichlet’s box principle in his proof:

Lemma 2.6 (Dirichlet’s box principle). Let k and m be positive integers. If n = km+1 objects
are distributed among m sets, then at least one of the sets will contain at least k + 1 objects.

Proof. The proof is immediate. Suppose that each set contains the maximal number of elements
that is smaller than k+1, i.e. k elements. This gives us km elements in total. But km < km+1,
hence at least one set must contain k + 1 elements.

In the Dirichlet’s formulation of Problem 2.2 we express ε in terms of a positive integer N ∈ Z+

and ask about relation between q and N . Then Dirichlet’s theorem takes the form:
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Theorem 2.7 (Dirichlet [25, 38]). Given any real number ζ and any positive integer N , there
exist integers p and q with 0 < q ≤ N such that

|qζ − p| ≤ 1

N
. (2.15)

Proof. We will apply Dirichlet’s box principle to prove this theorem. To this end let us define
N + 1 numbers zi = iζ − ibζc, i = 0, 1, . . . , N , where bζc is the floor function defined as the
integer part of ζ. They are contained in the interval zi ∈ [0, 1], which can be divided into N
equal parts [m

N
, m+1

N
) of the length 1

N
, where m = 0, . . . , N −1. Dirichlet’s box principle implies

that at least one interval [m
N
, m+1

N
) contains two numbers zi. Let us denote them by zk, zl and

assume, without loss of generality, that l > k. Then zk, zl satisfy the relation

|zl − zk| ≤
1

N
⇒ (2.16)

|lζ − blζc − (kζ − bkζc)| ≤ 1

N
, (2.17)

|(l − k)ζ − b(l − k)ζc| ≤ 1

N
. (2.18)

Comparing (2.18) with (2.15) we get q = l − k and p = b(l − k)ζc. As l, k are both positive
and bounded by N , their difference is also at most N .

As we will show in Section 4.2.3 Dirichlet’s approximation theorem in one dimension is not
sufficient for the purpose of this thesis. In most cases we will need to approximate simultaneously
n real numbers, where n ≥ 2. For this reason we present a simultaneous version of Theorem
2.7 in the following.

Theorem 2.8 (Simultaneous Dirichlet’s approximation theorem [25, 38]). For given real num-
bers ζ1, . . . , ζn and an integer N there exist integers p1, . . . , pn and 1 ≤ q ≤ Nn such, that

|qζi − pi| ≤
1

N
. (2.19)

Proof. The method of proving Theorem 2.8 is analogous as for Theorem 2.7 but in this case
we consider an N -dimensional hypercube with the edges of length l = 1 and one vertex at
point 0 = (0, 0, . . . , 0). In this hypercube we embed a lattice such, that the distance between
neighboring points that is measured along one dimension, is equal to 1

N
. This is exactly an

n-dimensional analogy of the construction from the proof of Theorem 2.7. The lattice divides
the hypercube into Nn cells of the volume 1

Nn .
Define the points z̃i;̃j = (j1η1−bj1η1c, j2η2−bj2ηic, . . . , jnηn−bjnηnc), where elements of ~j take
values from 0 to N . The number of such points is equal to (N + 1)n, thus by Dirichlet’s box
theorem some of the cells of the hypercube contain at least two numbers, say z~i,~k and z~i,~l. In
order to get the inequality in the form of (2.19) let us redefine z~i,~k and z~i,~l by multiplying their
vector elements by k−i =

∏
j 6=i kj or l−i =

∏
j 6=i lj and denote k =

∏n
j=1 kj, l =

∏n
j=1 lj. Then

the vector elements of z~i,~k and z~i,~l satisfy for each dimension

∀i=1,...,d|lζi − blζic − (kζi − bkζic)| ≤
1

N
,

∀i=1,...,d|(l − k)ζi − (blζic − bkζic)| <
1

N

and set pi = blζic − bkζic. As ki’s and li’s are bounded by l, we get immediately that k and l
are bounded by Nn as well as the absolute value of their difference. This completes the proof.
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2.2. Field theory
In this section we present fundamental concepts from theory of field extensions over commu-
tative rings, which is called the field theory. For the purpose of this thesis we restrict our
considerations to the ring of rational numbers and its finite dimensional field extensions. This
formalism will be essential to formulate a universality criterion in Chapter 3.

2.2.1. Algebraic numbers and minimal polynomials

We start Section 2.2 from introducing basic concepts from field theory.

Definition 2.14. An algebraic number α is a complex number that is a root of a polynomial with
rational coefficients, p ∈ Q[x]. A complex number that is not algebraic is called transcendental.

Throughout this thesis we denote the set of algebraic numbers by A and the set of transcenden-
tal numbers by T. The set A is obviously infinite, but countable and its measure in C is equal
to zero. The set T is uncountable and dense in C. Although almost all complex numbers belong
to T, it is much more difficult that a number is algebraic than transcendental (see Liouville
construction and related discussion in Chapter XI in [38]).

Examples of algebraic numbers include i.a. all rational numbers, n-th roots of rational numbers,
trigonometric functions of φ = p

q
π, p, q ∈ Z. On the other hand numbers such as π and the

Euler number e are known to be transcendental [38].

In the following we list some important facts about algebraic numbers. Their proofs are left
to Section 2.2.3, where we introduce a tool that enables to determine minimal polynomials of
products, sums, differences and inverses of algebraic numbers.

Fact 2.2. Let a ∈ A.. Then −a and a−1 (unless a = 0) are algebraic numbers.

Fact 2.3. Let a1, a2 be algebraic numbers. Then a1 + a2 and a1 · a2 are also algebraic numbers.

An immediate conclusion from Facts 2.2 and 2.3 is that A is an additive group. Similarly,
A \ {0} has the structure of a multiplicative group. Having defined algebraic numbers we can
introduce the concept of a minimal polynomial.

Definition 2.15. The minimal polynomial mα of an algebraic number α is a monic polynomial1
from Q[x], of the least degree, annihilated by α, i.e. mα(α) = 0 and unique for α.

It is worth emphasizing that every algebraic number α is a root of an infinite number of
polynomials, however the minimal polynomial of α is unique.

Definition 2.16. The degree of an algebraic number α is the degree of its minimal polynomial.

Example: To make the concept of a minimal polynomial clearer we present some examples

• Let α = 2
3
, then mα is simply mα(x) = x− 2

3
.

• Let α = 3i, then ma(x) = x2 + 3.

• Let α = cos 2π
5
. Then the minimal polynomial mα is of the form mα(x) = x2 + x

2
− 1

4
.

Minimal polynomials with integer coefficients belong to a wider class of polynomials called
primitive and they have several special properties.

1A monic polynomial is a polynomial with the leading term equal to one.
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Definition 2.17. A primitive polynomial p ∈ Z[x] is a polynomial whose coefficients are rela-
tively prime

p(x) = cnx
n + cn−1x

n−1 + . . .+ c1x+ c0, gcd(cn, cn−1, . . . , c1, c0) = 1.

The set of primitive polynomials is closed under multiplication in Z[x], i.e. a product of any two
primitive polynomials is also a primitive polynomial. Another fact that plays an important role
is that every polynomial f(x) ∈ Q[x] can be associated uniquely with a primitive polynomial
f̃(x) as follows:

f(x) = αf̃(x), α ∈ Q. (2.20)

This fact enables to prove Gauss lemma:

Theorem 2.9 (Gauss lemma, [28, 33]). Let f(x) be a polynomial with integer coefficients.
Then f(x) is reducible over Q, i.e. it can be represented as a product f(x) = g(x)h(x), where
g(x), h(x) ∈ Q[x] and g(x), h(x) /∈ f(x), if and only if it is reducible over Z.

Proof. The first part of the proof is trivial as Z ⊂ Q. Therefore it suffices to prove that
reducibility over Q implies reducibility over Z.
Let us assume, without loss of generality, that f(x) ∈ Z[x] is a primitive polynomial, reducible
over Q (otherwise there exists a pair (f̃(x), α) such, that f̃(x) is primitive and α ∈ Q). Suppose
that f(x) decomposes as f(x) = g(x)h(x), where g(x), h(x) ∈ Q(x). Using (2.20) we can rewrite
these polynomials as g(x) = γg̃(x), h(x) = χh̃(x), where γ, χ ∈ Q and g̃(x), h̃(x) are primitive
polynomials and obtain this way

f(x) = g(x)h(x) = γχg̃(x)h̃(x),

where g̃(x)h̃(x) is a primitive polynomial. In the next step we substitute γχ = p
q
for some

p, q ∈ Z, gcd(p, q) = 1. Hence

qf(x) = pg̃(x)h̃(x). (2.21)

Because f(x) and g̃(x)h̃(x) are primitive polynomials, the greatest common divisors for the left
and right hand side of (2.21) are equal to q and p respectively, thus thus p = q. This implies
immediately that γχ = 1 and f(x) = q̃(x)h̃(x). This completes the proof.

2.2.2. Field extensions

In this section we introduce a fundamental concept in algebraic number theory, i.e. a field
extension. To this end assume that L is a field that contains Q as a subfield and let S be a
subset of L that does not belong to Q.

Definition 2.18. A field extension of a ring Q obtained by adjoining elements of S, denoted
by Q(S), is the smallest field that contains both Q and S. In case when all elements in Q(S)
are algebraic numbers, Q(S) is called an algebraic field extension. Otherwise Q(S) is called
transcendental.

Intuitively speaking, Q(S) can be thought as a vector space over Q. The dimension of this
space, denoted by [L : Q], is called a degree of L over Q. If [L : Q] <∞ the extension is a finite
extension and it is related to degrees of minimal polynomials of elements from S. Therefore a
finite extension is always algebraic.
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The only field extensions that we deal with throughout this thesis are the algebraic field exten-
sions generated by a single algebraic number. In what follows they will be denoted by Q(α).
Algebraically, Q(α) is isomorphic Q[x]/(m), where (m) is an ideal of polynomials vanishing on
α. Q[x]/(m) has a structure of a field and Q ⊂ Q[x]/(m) ⊂ Q(α). Since Q[x]/(m) contains
α we have Q(α) = Q[x]/(m). In order to show it one should notice notice, that among ele-
ments belonging to Q(α) are, in particular, all polynomial expressions in α. Assume that Q(α)
contains an element β. Using the polynomial division formula β can be written as

β = m(α)f(α) + r(α),

where m(x) denotes a divisor, f(x) is a dividend and r(x) is the remainder satisfying by
definition deg(r) < deg(m) = n. Next, notice that m(α) = 0, hence any element of Q(α) is a
polynomial in α of degree less than n with coefficients in Q. Therefore Q(α) is finite extension
whose basis is {1, α, . . . , αn−1} and [Q(α) : Q] = n. This implies that any element β ∈ Q(α) is
algebraic and Q(β) ⊆ Q(α). The order of β is a divisor of the order of α, i.e. a divisor of n
and is given by

deg(mβ) = [Q(β) : Q] = [Q(α) : Q]/[Q(α) : Q(β)]. (2.22)

Example 2.10. As an example we will find a basis for two field extensions that are generated
by a single algebraic number.

• For Q( 3
√

5) the basis consists of 3
√

5
0

= 1, 3
√

51 = 3
√

5 and 3
√

52. Notice that 3
√

5k for k > 2

reduces to 3
√

5k′ , where k′ = k mod 3. In particular 3
√

53 = 5 ∈ Q.

• For Q(cos 2π
7

) the basis consists of cos 2π
7
, cos 4π

7
, cos 6π

7
, cos 8π

7
, cos 10π

7
and cos 12π

7
, which

means [Q(cos 2π
7

) : Q] = 6. The dimension obtained this way is equal to degree of the
minimal polynomials of cos 2π

7
, which was obtained by symbolic computation software.

Finally, we consider the extension Q(eiφ) where φ is a rational multiple of π, i.e. φ = 2kπ
n

for
some integers k, n. It is known that such Q(eiφ) is an algebraic finite field extension as eiφ is a
root of unity. Using this fact we can show that Q(cosφ) and Q(sinφ) are also algebraic finite
field extension. Notice that sinφ, cosφ depend on eiφ as

cosφ =
eiφ + e−iφ

2
, sinφ =

eiφ − e−iφ

2i
.

By the virtue of Fact 2.3 trigonometric functions of φ are algebraic as they can be expressed as
sums and products of algebraic numbers. Hence we get immediately that Q(cosφ) and Q(sinφ)
are real subfields of Q(eiφ).

2.2.3. Companion matrices

In this section we show, how to express minimal polynomials in terms of matrix entries of a
special class of matrices called companion matrices. As we will show in the following this for-
malism enables to compute the minimal polynomial for a sum and a product of two algebraic
numbers.

We say that a square matrix M ∈ Mn(Q) is a root of a polynomial p ∈ Q[x] if p(M) = 0 (in
other words p annihilates M). Let χM ∈ Q[x] be a characteristic polynomial of M ∈ Mn(Q),
χM(x) = det(xI −M). By the Cayley-Hamilton theorem M is a root of its own characteristic
polynomial, i.e. χM(M) = 0.
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Definition 2.19. [3] A monic polynomial mM ∈ Q[x] of the smallest degree that is irreducible
over Q and annihilates M is the minimal polynomial of M . The minimal polynomial of M
divides the characteristic polynomial of M .

On the other hand, every minimal polynomial mα ∈ Q[x] has an associated matrix called the
companion matrix Mα, defined as follows:

Definition 2.20. [3] Let mα(x) be a minimal polynomial of a root α of degree degmα(x) = n.
The companion matrix Mα is an n× n matrix over Q such, that

χMα = mMα = mα =
n−1∑
i=0

cix
i + xn, (2.23)

and is of the form

Mα =



0 0 0 . . . 0 −c0

1 0 0 . . . 0 −c1

0 1 0 . . . 0 −c2
...

...
... . . . ...

...
0 0 . . . 1 0 −cn−2

0 0 0 . . . 1 −cn−1


. (2.24)

In what follows we will apply the companion matrix formalism to find minimal polynomials
of −α, α−1, α + β and αβ under the assumption that α, β are algebraic numbers and their
minimal polynomials mα, mβ are known. Let us start from the minimal polynomial of −α and
denote its coefficients by d0, . . . , dn−1. We can write:

mα(α) = c0α
0 + c1α + c2α

2 + . . .+ cn−1α
n−1 + αn = 0,

m−α(−α) = d0(−α)0 + d1(−α) + d2(−α)2 + . . .+ = dn−1(−α)n−1 + (−α)n,

m−α(−α) = d0α− d1α + d2α
2 + . . .+ (−1)n−1dn−1α

n−1 + (−1)nαn = 0.

Comparing the minimal polynomials of mα and m−α we can see immediately that if n is an
even number, then c2k = d2k and c2k+1 = d2k+1, where k = 0, . . . , n−2

2
. In the case when n is an

odd number the coefficients of mα and m−α satisfy −c2k = d2k and −c2k+1 = d2k+1.
We find the minimal polynomial of α−1 in a similar way. It is known from linear algebra theory
[3] that when α is a root of the characteristic polynomial of Mα, then α−1 is a root of the
characteristic polynomial of Mα−1 = M−1

α . As Mα is a matrix with rational coefficients, M−1
α

is also a rational matrix and its characteristic polynomial belongs to Q[x]. This implies that
α−1 is an algebraic number.

The above arguments show that the minimal polynomials of −α and α−1 exist, hence −α and
α−1 are algebraic numbers if α is algebraic. This way we have proven Fact 2.3.

In what follows we use the companion matrix formalism to find the minimal polynomials for a
sum and a product of two algebraic numbers in some special cases. Assume α, β ∈ A and their
minimal polynomials are mα and mβ, respectively. It is known from linear algebra theory that
αβ is a root of the characteristic polynomial of the matrix

Mαβ = Mα ⊗Mβ, (2.25)
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and α + β is a root of the characteristic polynomial of the matrix

Mα+β = Mα ⊗ Iβ + Iα ⊗Mβ, (2.26)

where Iβ is the identity [Q(β) : Q]× [Q(β) : Q] matrix and Iα is the identity [Q(α) : Q]× [Q(α) :
Q] matrix. It is worth emphasizing thatMαβ andMα+β are not companion matrices in the true
sense of this word, therefore mαβ and mα+β may not be equal to characteristic polynomials of
Mαβ andMα+β, respectively. The only case when the equality holds is when α or β is a rational
number.

Fact 2.4. [45] Assume that α ∈ Q and β /∈ Q. Then [Q(α+β) : Q] = [Q(αβ) : Q] = [Q(β) : Q]
and the minimal polynomials of αβ and α + β are given by the characteristic polynomials of

Mαβ = αMβ, Mα+β = αIβ +Mβ, (2.27)

where Mα and Mβ are the companion matrices of α and β.

Proof. Notice that mα(x) is the first order polynomial mα(x) = x−α if α is a rational number.
Hence Mα is a 1 × 1 matrix Mα = α. Using the companion matrix formalism we know that
the characteristic polynomials of the matrices (2.27) annihilate αβ and α+ β respectively. We
also know that Q(β) = Q(α + β) = Q(αβ). Using formula (2.22) we get that deg mα+β =
deg mαβ = [Q(β) : Q] = deg mβ. But the degrees of χMαβ

and χMα+β
are also deg mβ. The

result follows.

In a general case the degrees of mαβ and mα+β are bounded by

max(deg mα(x), deg mβ(x)) ≤ deg mα+β,αβ(x) ≤ deg mα(x) deg mβ(x).

Thus typically we need to find χMαβ
or χMα+β

and factorize it over Q obtaining χMα+β
=

mα+β,αβ(x) · p1(x) · . . . · pk(x) or χMαβ
= mαβ,αβ(x) · p′1(x) · . . . · p′k(x) respectively. According

to our knowledge there is no general method for computing the degree of mαβ and mα+β if at
least one of α, β is not a rational number.

2.3. Theory of Lie groups and Lie algebras
The role of Lie groups, Lie algebras and their representations is prominent in physics, especially
in classical and quantum mechanics. Lie groups describe symmetries of physical systems, e.g.
symmetry of translations in space and time, rotational symmetry, isospin and flavour symmetry
etc. Throughout this thesis a particular emphasis is placed on the group of unitary matrices,
which represents unitary operations, called quantum gates, performed on a system of qudits.
Recall, that one- and many-qudit gates are building blocks for quantum computation and are
one of the most fundamental concepts in quantum information theory.

The current section presents a survey of fundamental facts from theory of Lie groups, Lie al-
gebras and their representations. The section is structured as follows: Sections 2.3.1 and 2.3.2
include main definitions from differential geometry and theory of Lie groups and Lie algebras,
respectively. In Section 2.3.3 we will introduce a concept of representations of Lie groups and
Lie algebras and formulate an extended version of Schur’s lemma. Section 2.3.4 is devoted to
semisimple Lie groups and Lie algebras. Finally, in Section 2.4 we describe in detail the groups
of unitary and orthogonal matrices.

The content of the current section is presented in a brief and compact way. A more detailed
introduction to representation theory of Lie groups and Lie algebras can be found in [15, 29,
36, 50] and in a more general setting in [22].
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2.3.1. Introduction to differential geometry

Let us start from a basic object called a topological space. Intuitively speaking, it is defined as
a set X whose elements (which are often called points) satisfy a system of the following axioms.

Definition 2.21. [40, 57] A topological space (X , τ) is a set X with collection of open subsets
τ satisfying the following conditions:

1. The empty set belongs to τ .

2. X belongs to τ .

3. The intersection of a finite number of sets from τ belongs to τ .

4. The intersection of an arbitrary number of sets from τ belongs to τ .

A special kind of topological spaces are differential manifolds, i.e. topological spaces that locally
resemble a linear space Rn near each point. We define them in a more formal way as follows:

Definition 2.22. [52] A differential manifoldM is a topological space equipped with an equiv-
alence class of pairs (Uα, φα), called charts, where Uα is the open covering ofM

∀α Uα ⊂M is open and
⋃
α

Uα =M.

Maps φα : Uα → Rn, called coordinate maps, are homeomorphisms2 onto open subsets of Rn

and a transition map φα2→α1 defined as

∀α1,α2 Uα1 ∩ Uα2 = ∅ ⇒ φα2→α1 : φα2(Uα1 ∩ Uα2)→ φα1(Uα1 ∩ Uα2),

is infinitely differentiable.

The following example spaces may be counted among differential manifolds:

• Unit sphere in n+ 1 dimensions Sn, Sn = {x1, x2, . . . , xn+1 : x2
1 + x2

2 + . . .+ x2
n+1 = 1}.

• Real coordinate space Rn of dimension n and every open subset of Rn.

• The space of d× d orthogonal matrices of determinant det = 1, denoted by SO(d). The
family {SO(d), d = 2, 3, . . .} of such manifolds plays an important role in this thesis.

In the following we show, how to assign a linear space to each point m of a manifoldM. To
this end we define first, what is a smooth function onM.

Definition 2.23. A function f onM is called smooth if and only if the function composition
f � φ−1

α is a smooth real-valued function on φα(Uα) for all coordinate functions φα. The set of
smooth functions onM is usually denoted by C∞(M).

Definition 2.24. Let f, g be smooth functions on M. A derivation D is a linear map D :
C∞(M)→ R satisfying Leibniz identity

D(f · g)(m) = D(f(m)) · g(m) + f(m) ·D(g(m)), m ∈M.

Space of derivations is called tangent space ofM at point m and is denoted by TmM.

Given a coordinate system on the manifold φα = (x1, . . . , xn) we can identify derivations with
partial derivatives ∂

∂xi
|m. Such derivations form a basis for TmM and hence the dimensions of

M and its tangent space at an arbitrary point are equal. The concept of differential manifolds
can be generalized to complex manifolds, which can be done by defining finite dimensional
complex spaces with an atlas of holomorhpic maps.

2A homeomorphism is a continuous bijective function f : X → Y between two topological spaces X and Y
such, that the inverse function f−1 is also continuous.
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2.3.2. Lie groups

Having defined differential manifolds and tangent spaces we are ready to introduce the concept
of a Lie group and a Lie algebra. In general, these structures can be considered independently
both in mathematics and in physics. However, in this thesis Lie groups play a prominent role
and Lie algebras are considered only as the related spaces of a much simpler structure.

Definition 2.25. A real Lie group G is a differentiable manifold equipped with the group
operations

· : G×G→ G, (g1, g2)→ g1 · g2, (2.28)
(·)−1 : G→ G, g → g−1 (2.29)

that are smooth maps. Similarly, a complex Lie group G is a complex manifold equipped with
the group operations (2.28,2.29) that are holomorphic maps.
A Lie group acts on itself with the following operations:

• Left multiplication Lg : G×G→ G defined as Lg(h) = gh, g, h ∈ G,

• Right multiplication Rg : G×G→ G defined as Rg(h) = hg,

• Adjoint action Ad defined as Adg(h) = ghg−1,

• Group commutator [·, ·]• defined as [g, h]• = ghg−1h−1.

A particularly important class of Lie groups are matrix Lie groups. It is known [36] that every
matrix Lie group is a closed subgroup of GL(d,R) or GL(d,C) that are spaces of d×d invertible
matrices with real or complex entries, respectively. Matrix multiplication plays the role of the
group operation and the identity matrix, denoted by I, is the neutral element. As it was
mentioned in the previous section, all matrix Lie groups are algebraic groups. In what follows
we will always assume that G is a matrix Lie group. To be more precise, we concentrate on the
real matrix Lie groups that play a vital role in quantum mechanics and quantum information
theory. They are collected in the below list:

• Unit circle in C, denoted by U(1) with multiplication as the group operation.

• Group of unitary matrices U(d), i.e. the matrices preserving the inner product on Cd

∀ x, y ∈ Cd < x, y >=< Ux,Uy > (2.30)
U(d) 3 U : UU∗ = I, (2.31)

where U∗ denotes conjugate transposition of U . Equivalently, the column vectors of U
are orthonormal (here Uji denotes complex conjugation of Uji )

d∑
j=1

UjiUjk = δik. (2.32)

• Group of unitary matrices with determinant det = 1, denoted by SU(d).

• Group of orthogonal matrices O(d) i.e. the matrices preserving the inner product on Rd

∀ x, y ∈ Rd < x, y >=< Ox,Oy > (2.33)
O(d) 3 O : OOt = I, (2.34)
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where Ot denotes transposition of O. Equivalently, the column vectors of O are orthonor-
mal

d∑
j=1

OjiOjk = δik. (2.35)

• Group of orthogonal matrices with determinant det = 1, denoted by SO(d).

• R∗ = R \ {0} which can be identified with GL(1,R).

At the end of this section we will introduce the concept of a continuous path in a Lie group G.
It is defined as a continuous function from the interval [0, 1] to G, γ : [0, 1]→ G, which satisfies
the composition law

γ(s)γ(t) = γ(s+ t).

The image of γ is a subgroup of G and in what follows we will call it one-parameter subgroup
of G.

2.3.2.1. Compactness

There are many equivalent definitions of compactness for matrix Lie groups. Let us start from
the most general one, which is valid also for non-matrix Lie groups and is expressed in the
language of topology.

Definition 2.26. A Lie group G is compact if it is compact as a manifold, i.e. every open
cover {Uα} of G has a finite subcover.

In case of matrix Lie groups a more practical definition of compactness can be formulated. To
this end let us introduce Heine-Borel theorem (its proof can be found in e.g. [72]).

Theorem 2.11 (Heine-Borel [72]). A subset of Euclidean space, E ⊂ Rn is compact if and only
it is closed and bounded.

Notice that every subgroup G of GL(d,R) and GL(d,C) can be thought as a subspace of Rn2

and Cn2 , respectively. Then Heine-Borel theorem implies that G is compact if G is closed and
bounded. Equivalently, G is compact if the space of parameters, that parameterize elements of
G, is closed and bounded.

Examples of compact Lie groups include: U(d), O(d) and their subgroups SU(d), SO(d). Com-
pactness can be shown in these cases using Heine-Borel theorem and identities (2.32), (2.35)
respectively. For instance, assume that d2 entries of U ∈ U(d) form a parameter space for U(d).
As the identity (2.32) is satisfied for all possible pairs of matrix columns, we get immediately
that all entries of U are bounded by |Uj,k| ≤ 1. Hence the parameter space of U(d) has a
finite volume and by Heine-Borel theorem U(d) and SU(d) are compact groups. An analogous
reasoning allows to show compactness of O(d) and SO(d). On the other hand GL(d,R) and
GL(d,C) belong to non-compact Lie groups.

2.3.2.2. Connectedness

Definition 2.27. A Lie group G is said to be connected3 if for any two elements g, h ∈ G there
exists a continuous path γ(t), t1 ≤ t ≤ t2 belonging to G such, that γ(t1) = g and γ(t2) = h.

3Definition 2.27 concerns actually path-connectedness which may differ from the connectedness defined with
respect to group topology. However, in case of matrix Lie groups connectedness and path-connectedness are
equivalent.
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A Lie group that is not connected consists of connected subspaces called connected components.
It is worth stressing that they are not necessarily subgroups of G. Using Definition 2.26 we
easily conclude that:

Fact 2.5. A compact Lie group consists of a finite number of connected components.

The connected component of G that contains I is distinguished among all the connected com-
ponents and called the identity component. Throughout this thesis we denote it by G0.

Fact 2.6. The identity component of a Lie group G is a subgroup of G.

Proof. Recall that subgroup of a group G is a subspace of G that contains a neutral element and
is closed with respect to group multiplication and inversion. The first condition is satisfied byG0

by definition. In order to check the second one, assume that g, h ∈ G0, thus there are continuous
paths γg(t), γh(t) in G0 that join the neutral element with g and h. Composing γg(t) with γh(t)
we get a continuous path from I to gh, thus gh ∈ G0. Similarly, gg−1 = g−1g = I ∈ G0 and
hh−1 = h−1h = I ∈ G0. Thus using the argument with composing continuous paths we see
that g−1, h−1 ∈ G0, which implies that G0 is a group.

Examples of connected Lie groups include i.a. U(d), SU(d), SO(d), SL(d,R) and SL(d,C).
The groups GL(d,R) and O(d) belong to non-compact groups.

Example: In order to make the concept of connectedness clearer we show that

1. SU(d) is connected,

2. O(d) is a non-connected Lie group.

The proofs of 1. and 2. can be found in many textbooks devoted to Lie groups and Lie algebras
theory, e.g. in [36].

1. A fundamental theorem of algebra (see e.g. Theorem B3. in [36]) states that every unitary
matrix is diagonalizable, i.e. for every U ∈ SU(d) there exists a matrix D ∈ SU(d) such,

that U = D

 eiφ1 0 . . .
... . . . ...
. . . 0 eiφd

D∗. Define a continuous path in SU(d) from U to the

group identity:

γ(t) = {U(t) = D

 eitφ1 0 . . .
... . . . ...
. . . 0 eitφd

D∗, 0 ≤ t ≤ 0}.

Similarly, let γ′(t) be a continuous path from I to U(d) 3 U ′ = D′

 eiφ
′
1 0 . . .

... . . . ...
. . . 0 eiφ

′
d

 (D′)∗.

Then U and U ′ are joined by a continuous path γUU ′(t) = γ(t)∪ γ′(t). The result follows.

2. By definition of an orthogonal matrixOOt = I we can find its determinant as detO detOt =
(detO)2 = det I = 1. We used the fact, that transposition does not change the deter-
minant. The condition det2O = 1 shows, that O(n) consists of the space of matrices
with determinant det = −1 and the space of matrices with det = 1. Let us denote them
by O−(d) and O+(d) respectively. Notice that there cannot be any continuous path γ(t)
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connecting O−(d) and O+(d) because otherwise γ(t) would contain a matrix with deter-
minant zero which does not belong to O(d).
The proof that O−(d) and O+(d) are connected components of O(d) is analogous to the
case 1. In particular, O+(d) is the identity component of O(d) and is typically denoted
by SO(d).

An important class of non-connected groups are discrete subgroups of Lie groups, defined as
follows:

Definition 2.28. A discrete subgroup of a Lie group G is a closed subgroup H ⊂ G such, that
there exists an open cover of G for which every open subset contains exactly one element from
H.

Fact 2.7. If G is a compact Lie group, every discrete subgroup of G must be finite.

Proof. The proof of this fact results immediately from Definition 2.26. Let us assume that a
cover of G is a union of a discrete open cover of H and the open set, that does not contain
H. If H was infinite, then the open cover of G defined in such a way would not have a finite
subcover. Hence we get a contradiction.

2.3.2.3. Lie algebras

The main obstacle in studying Lie groups is the fact, that they are not linear spaces but they
may have a very nontrivial topological structure. For this reason one can consider simpler
objects called Lie algebras instead. This approach is fruitful especially in the case when we
restrict our interest to the neighborhood of the neutral element. In this section we give a brief
introduction to theory of Lie algebras, starting from a purely algebraic definition.

Definition 2.29. A Lie algebra is a vector space over the field K, equipped with a product
[X, Y ] called a Lie bracket, that is linear in each variable and satisfies the following conditions

1. [X, Y ] is antisymmetric, [X, Y ] = −[Y,X],

2. [X, Y ] satisfies Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 ∀X, Y, Z ∈ g. (2.36)

Especially important and deep theorem concerning Lie algebras was formulated by Ado [36, 50].
Intuitively speaking, it states that every Lie algebra over a field of characteristic zero can be
viewed as a Lie algebra of square matrices under the commutator bracket.

For any Lie group G one can assign a unique Lie algebra g called the Lie algebra of G. On the
other hand g enables to recover uniquely only the neighborhood of the group neutral element.
[36, 50]. G acts on its Lie algebra g in a canonical way by the adjoint action

Ad : G× g→ g, AdgX = gXg−1, g ∈ G, X ∈ g. (2.37)

Definition 2.30. The Lie algebra g of a Lie group G is a tangent space to G at the group
neutral element.

Example 2.12. Below we list examples of Lie algebras the Lie groups that are considered
throughout this thesis.

• Lie algebra of GL(d,R) (GL(d,C)), denoted by gl(d,R) (gl(d,C) respectively) is the space
of d× d real (complex) matrices.
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• Lie algebra of U(d), denoted by u(d) is the space of d× d antihermitian matrices.

u(d) 3 u : u∗ = −u.

• Lie algebra of O(d) and SO(d), denoted by so(d) is the space of d × d antisymmetric
matrices.

so(d) 3 o : oT = −o.

Definition 2.31. A subalgebra of a Lie algebra g is the subspace h ⊂ g that is closed under
the Lie bracket.

2.3.2.4. Exponential map

Exponential map is an essential ingredient in studying relations between Lie groups and their
Lie algebras. Its canonical definition expressed in terms of one-parameter subgroups is very
straightforward.

Definition 2.32. Let G be a Lie group and g be the Lie algebra of G. The exponential map
exp : g→ G is a unique homomorphism defined as

exp(X) = γ(1), (2.38)

where X is an element of g and γ(t) is the unique one-parameter subgroup such, that the tangent
vector to γ(t)X at t = 0 is equal to X.

If G is a compact group, exp enables to attain every element of the identity component of G
from the level of g. In particular, exp is a surjective map if G is also connected. In this case
every element of G can be expressed as exp(X) for some X ∈ g.

2.3.2.5. Distances and volume in matrix Lie groups

Distance between two group elements is defined with a norm, i.e. a function acting in a vector
space V that assigns length to every element of this space and is characterized with the following
properties:

Definition 2.33. [11] Let v be an element of n-dimensional vector space V . A norm || · || is a
real-valued function || · || : V → R+ ∪ {0}, such, that

1. || · || is point-separative ||v|| = 0⇔ v = 0 v ∈ V .

2. || · || is absolutely scalable ||cv|| = |c| · ||v||, c ∈ C.

3. || · || is subadditive ||v1 + v2|| ≤ ||v1||+ ||v2||, v1, v2 ∈ V .

The norm that we use in this thesis is the Frobenius norm defined as

||U || =
√

trUU∗ =

√√√√ d∑
j=1

d∑
k=1

|Uj,k|2, U ∈Md(C), (2.39)

where Md(C) is the space of d × d matrices over C. In what follows we introduce a concept
of a Haar measure µ on G, where G is a compact Lie group. Haar measure enables to define
integration on G and, intuitively speaking, compute volumes of subsets of G as

V (S) =

∫
S

dµ(g)f(g), S ⊂ G. (2.40)
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Definition 2.34. Let G be a compact matrix Lie group. Then there exists a bi-invariant Haar
measure which is a Borel measure on G such, that for any Borel subset4 S ⊂ G and any g ∈ G
holds

µ(S) = µ(gS) = µ(Sg), (2.41)

where gS = {h ∈ G, h = gs, s ∈ S} and Sg = {h ∈ G, h = sg, s ∈ S}. Haar measure is
unique up to a constant factor.

2.3.3. Representation theory of Lie groups and Lie algebras

In this section we present main concepts from the representation theory of Lie groups and Lie
algebras. As the representation theory includes a wide range of topics, the reader is advised to
consult the relevant literature [15, 29, 36, 50]. We begin our survey from general definitions,
then we present the adjoint representation and its significance on the level of Lie groups and
Lie algebras. The final part of this section is devoted to the concept of irreducibility and to
Schur’s lemma.

Definition 2.35. A representation Π of a Lie group G on a vector space V is a group homo-
morphism Π : G→ GL(V ), where GL(V ) is the group of linear transformations on V .

Definition 2.36. A representation π of a Lie algebra g on a vector space V is a Lie algebra
homomorphism Π : g→ gl(V ), where gl(V ) is the space of endomorphisms of V , equipped with
the Lie bracket.

Definition 2.37. A representation Π or π, respectively is called faithful if it is injective.

Definition 2.38. Let Π : G → GL(V ) be a representation of a Lie group G. Π is called
reducible if there exists a proper subspace W ( V that is preserved by G, i.e. Π : W → W .

Assume that G is a compact and connected Lie group. In this case every element of G can be
expressed as exp(X), where X belongs to the Lie algebra of G. In such a case representations
of the Lie algebra can be derived from representations of the group by differentiation at the
neutral element:

π(X) =
d

dt

∣∣∣∣
t=0

Π(exp(tX)). (2.42)

In what follows we take particular emphasis on representations of compact connected matrix
Lie groups and their Lie algebras. Among all possible representations a special role in Lie
theory is played by the adjoint representation Ad, that arises naturally from the adjoint action
of G on its Lie algebra g.

Definition 2.39. The adjoint representation of a Lie group G is a group homomorphism
Ad : G→ Aut(g) given by the adjoint action

AdgX = gXg−1, g ∈ G, X ∈ g. (2.43)

Definition of the adjoint representation of g has an analogous for and it can be obtained directly
from Ad by differentiation at the neutral element. To show this, assume that g = exp(tX),
where X belongs to g. Then for any Y ∈ g we can write

d

dt

∣∣∣∣
t=0

AdgY =
d

dt

∣∣∣∣
t=0

(exp(tX)Y exp(−tX)) = XY − Y X = adXY.

4Borel set is a set that can be constructed from open or closed sets by taking countable intersections and
unions [21].

40



Definition 2.40. The adjoint representation of a Lie algebra g is a Lie algebra homomorphism
from g to the space of endomorphisms of g, ad : g → End(g), given by the adjoint action of g
on itself.

adX(Y ) = [X, Y ], X, Y ∈ g. (2.44)

2.3.3.1. Schur’s lemma for complex, real and quaternion representations

In this section we introduce the concept of a real, complex and quaternion representation and
define, what is the type of representation. All the presented facts and concepts are true for
representations of compact Lie groups and Lie algebras, however we restrict the notation only
to representations of Lie groups for brevity.

Definition 2.41. A complex representation Π of a Lie group G is a group homomorphism
Π : G→ GL(V ), where V is a complex vector space.

Definition 2.42. A real vector space V can be though as a complex vector space equipped
with an invariant real structure, i.e. an antilinear map j : V → V commuting with a group
multiplication that satisfies j2 = 1.

Definition 2.43. A quaternionic vector space V can be though as a complex vector space
equipped with an invariant quaternionic structure, i.e. an antilinear map j : V → V commuting
with a group multiplication that satisfies j2 = −1.

Definition 2.44. A real/quaternionic representation Π of a Lie group G is a group homomor-
phism Π : G→ GL(V ), where V is a real or quaternionic vector space, respectively.

Definition 2.45. A representation Π which possess an additional structure that is a nonsingular
symmetric (or skew-symmetric, respectively) G-invariant bilinear form Ω : Π× Π→ K, where
K = R,C,H is of real (quaternionic) type. Otherwise Π is of complex type.

A fundamental result concerning representations of compact, semisimple Lie groups and Lie
algebra is Schur’s lemma. Its original formulation concerns complex representations however, in
the latter part of this section we will show, how to generalize this result to real and quaternionic
representations.

Lemma 2.13 (Schur [50]). Let Π,Π′ be irreducible representations of a Lie group G on finite
dimensional vector spaces V, V ′, respectively. Assume that V, V ′ are the vector spaces over C.
Let ω : V → V ′ be a linear map satisfying ωΠ(g) = Π′(g)ω for all g ∈ G. Then ω is either
bijective or ω = 0.

An immediate conclusion from Schur’s lemma is that if Π is an irreducible complex represen-
tation of G on V , then ω : V → V is a complex scalar. Theorem II.6.7 in [15] generalizes this
result for real representations.

Theorem 2.14. [15] For a real irreducible representation of (1) real, (2) complex, (3) quater-
nion type the algebra of endomorphisms commuting with the representation matrices if isomor-
phic to (1) R, (2) C, (3) H, respectively.

2.3.4. Semisimple Lie groups and Lie algebras

In this section we present an important class of Lie groups and their Lie algebras.

Definition 2.46. Ideal i of a Lie algebra g is a subalgebra of g such, that for every X ∈ g and
every Y ∈ i holds [X, Y ] ∈ i. An ideal is proper if it is different from g and 0.
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It is worth stressing that for every Lie group G, normal subgroups of G correspond to ideals in
g = Lie(G), which can be easily shown by differentiation [50].

Definition 2.47. A Lie algebra g is semisimple if it is a direct sum of ideals. If the only ideals
in g are g and 0, then g is called simple.

Examples of simple Lie algebras include i.a. su(d) and so(d) for d 6= 4. A canonical example of
a semisimple Lie algebra is so(4) = so(3)⊕ so(3) (more details can be found e.g. in Chapter 5
in [79]).

Fact 2.8. Ideals in a Lie algebra g are invariant spaces for the adjoint representation of g.

This fact results directly from the definition of ad and the invariance condition. Assume that
X belongs to i which is an ideal of g and Y is an arbitrary element of ∈ g. By definition of
the ideal we have immediately that [X, Y ] = adX(Y ) = 0. In particular, ad is an irreducible
representation of g if g is a simple Lie algebra.

2.3.4.1. Killing form for semisimple Lie algebras

In this section we introduce the concept of a Killing form and present its useful properties for
semisimple Lie algebras.

Definition 2.48. [29] A Killing form B(·, ·) is a bilinear and symmetric form defined as

B(X, Y ) = tr(adX · adY ), X, Y ∈ g, (2.45)

that is invariant under automorphisms of g

B(f(X), f(Y )) = B(X, Y ), f ∈ Aut(g). (2.46)

and satisfies the associativity property

B([X, Y ], Z) = B(X, [Y, Z]), B(adX(Y ), Z) = B(X, adY (Z)). (2.47)

Theorem 2.15 (Cartan’s criterion). [19, 30] A compact Lie algebra g over a field of charac-
teristic zero is semisimple if and only if B(·, ·) on g is non-degenerate, i.e. B(X, Y ) = 0 for all
Y ∈ g if and only if X = 0.

Fact 2.9. [30] Let g be a compact simple Lie algebra, then every bi-invariant form on g is
proportional to the Killing form on g.

Fact 2.10. [30] Let g be a compact semisimple Lie algebra and i, j be two ideals in g with zero
intersection. Then i, j are orthogonal with respect to the Killing norm.

Proof. This fact results from associativity property of the Killing form (2.47). Let X ∈ i, Y ∈ j
and Z ∈ g and notice that [X, Y ] = 0 by definition of i and j. Then by (2.47) we get

B([X, Y ], Z) = B(X, [Y, Z]) = 0, where [Y, Z] ∈ j.

This means i and j are orthogonal with respect to the Killing form.

Important conclusion from Fact 2.10 is that the Killing form enables to decompose a semisimple
Lie algebra g to a direct sum of non-intersecting ideals. In particular, if g = i ⊕ j, then j is
called an orthogonal complement of i. In what follows we will denote it by i⊥.

42



Finally, let us mention relations between the Killing form and topology of compact semisimple
Lie groups. Assume that G is such a group and let g be the Lie algebra of G. Recall that if g
is compact and semisimple, then B(·, ·) is a non-degenerate and negative definite bilinear form.
Inverting its sign to −B(·, ·) we obtain a Riemannian metric called Cartan-Killing metric on a
group manifold. Then elements of the metric tensor can be found as

gij = −B(Xi, Xj),

where Xi, Xj, i, j = 1, . . . , deg g are basis elements of g. By the fact that the Killing form is
Ad-invariant we can conclude that the adjoint action of a Lie group G preserves distances on
g, this implies Ad : G→ SO(g).

2.4. Main facts about SU(d) and SO(d)

In this section we give a survey of main facts about the groups SU(d) and SO(d), which play
a prominent role in this thesis, and their Lie algebras. We start from recalling the definitions:

SO(d) = {O ∈ Gld(R) : OtO = I, det O = 1}, (2.48)
SU(d) = {U ∈ Gld(C) : U∗U = I, det U = 1}. (2.49)

Their corresponding Lie algebras are the spaces formed by the following matrices:

so(d) = {X ∈ Matd(R) : X t = −X, tr X = 0}, (2.50)
su(d) = {X ∈ Matd(C) : X∗ = −X, tr X = 0}. (2.51)

In what follows we will introduce an orthonormal basis in su(d) and so(d). Let Ek,l = |k〉〈l| be
a d × d matrix whose only nonzero (and equal to 1) entry is (k, l). Such matrices satisfy the
commutation relation [Eij, Ekl] = δjkEi,l − δliEk,j. Ek,l’s are building blocks for basis elements
of su(d) and so(d).

su(d) = Span{Xj,k, Yj,k, Zj,k}, j 6= k, j, k = 1, . . . , d, (2.52)
Xj,k = Ej,k − Ek,j, Yj,k = i (Ej,k + Ek,j) , Zj,k = i(Ej,j − Ek,k). (2.53)

Notice that so(d) is a subgroup of su(d) consisting of only real matrices, thus the orthonormal
basis of so(d) is restricted to {Xj,k}. We will call these two bases the standard basis of su(d)
and so(d) respectively.

Fact 2.11. [36, 50] The center of SU(d) is finite and given by Z(SU (d)) =
{
αI : αd = 1

}
.

Fact 2.12. [36, 50] The center of SO(d) is either trivial for d = 2k+1 or Z(SO (d)) = {−I, I}
for d = 2k.

It is worth recalling that groups SU(d) for d ≥ 2 and groups SO(d) for d ≥ 3 and d 6= 4 are
compact connected simple Lie groups, what has been shown is Sections 2.3.1 and 2.3.4.

Fact 2.13. The Killing form on su(d) and so(d) is equal to B(X, Y ) = trXY up to a constant
positive factor.

In the rest of this section we present additional facts about the adjoint representation of unitary
and orthogonal groups. Recall that for g ∈ G, where G = SU(d) or G = SO(d), Adg is an
orthogonal transformation acting on dim G dimensional vector space g. Upon a choice of an
orthonormal basis {Xi}dim G

i=1 in g, i.e. basis that satisfies (Xi|Xj) = −tr(XiXj) = δij the
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transformation Adg can be expressed in this basis as a matrix belonging to SO(dim g). The
entries of this matrix, denoted by (Adg)ij, are defined by the identity:

AdUXj = U−1XjU =
d∑
i=1

(AdU)ijXi, (2.54)

therefore they are given by

(AdU)ij = −1

2
tr
(
XiUXjU

−1
)
. (2.55)

The following result, that we have proven in [71], turns out to be essential in formulating the
universality criteria in Chapter 4.

Fact 2.14. [71] The adjoint representation of SU(d) and SO(d), d 6= 4, such as the adjoint
representation of su(d) and so(d), d 6= 4, is a (1) real, (2) irreducible representation (3) of real
type.

Proof. In what follows we will denote G = SO(d), d 6= 4 or G = SU(d) and g = so(d), d 6= 4
or g = su(d). Properties (1) and (2) come from the fact that G is a compact, connected real
simple Lie group.
In order to prove (3) we can use facts presented in [15]. From Table II.6.2 we learn that Ad is
of real type if its complexification is a complex representation of real type. This condition can
be checked using Proposition II.6.4

Proposition 2.16 (Proposition II.6.4. [15]). A complex representation Π : G → GL(V ) of a
Lie group G is of real/quaternionic type if and only if there exists a nonsingular symmetric or
skew-symmetric, respectively G-invariant bilinear form B : V × V 7→ C.

Recall that for g = su(d) and g = so(d), d 6= 4 such a symmetric bi-invariant form is precisely
the Killing form. Thus in order to apply Proposition 2.16 we need to define the Killing form
for the complexification of g:

BC(X, Y ) = tr(adXadY ), X, Y ∈ gC.

However, we can assume here that the basis of g over R is a basis of gC over C. Thus we
get immediately that BC(·, ·) is a non-degenerate, symmetric, Ad-invariant bilinear form on
gC. Hence by Proposition 2.16 the complexification of Ad (and ad, respectively) is a complex
representation of real type. The result follows.

2.4.0.2. Distance inequality for the group commutator

This paragraph includes a distance inequality that will play an essential role in Section 4.2.1.
The inequality describes, how the distance between the group commutator of two unitary
matrices U1, U2 and I depends on the distances between these matrices and I.

Lemma 2.17. [22]Let U1, U2 ∈ SU(d) and let U = [U1, U2]• (see definition of [, ]• in Section
2.3.2). We have the following:

‖[U1, U2]• − I‖ ≤
√

2‖U1 − I‖‖U2 − I‖, (2.56)
If [U1, [U1, U2]•]• = I and ‖U2 − I‖ < 2, then [U1, U2]• = I. (2.57)
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Proof. The proof presented in this thesis is based on [22]. In what follows we will denote the
matrix elements by U1;j,k, U2;j,k and assume, without loss of generality, that U2 is diagonal.
Let us start from (2.56). Unitary invariance of the Frobenius norm allows to transform the left
hand side of (2.56) as

||[U1, U2]• − I|| = ||U1U2U
−1
1 U−1

2 − I|| = ||U1U2 − U2U1|| = ||(U1 − I)U2 + U2(I − U1)||.

Next, use formula (2.39) to make the norm dependent on matrix elements.

||(U1 − I)U2 + U2(I − U1)|| =
√

tr((U1 − I)U2 + U2(I − U1)) · ((U∗1 − I)U∗2 + U∗2 (I − U∗1 )) =

=

√∑
j,k

|(U1;j,k − δj,k)U2;k,k + U2;j,j(U1;j,k − δj,k)|2 =

√∑
j,k

(|U1;j,k − δj,k|2|U2;k,k − U2;j,j|2).

Notice that
√∑

j,k |U1;j,k − δj,k|2 =
√

tr(U1 − I)(U∗1 − I) = ||U1 − I||. On the other hand for
any j, k = 1, . . . , d we have

|U2;k,k − U2;j,j|2 = |(1− U2;k,k)− (1− U2;j,j)|2 ≤ (|1− U2;k,k|+ |1− U2;j,j|)2 ≤
≤ 2

(
|1− U2;k,k|2 + |1− U2;j,j|2

)
,

hence
√∑

j,k |U2;k,k − U2;j,j|2 ≤
√

2
√∑

j |1− U2,j,j| =
√

2||U2 − I||. Summing up we get the
final formula (2.56).
In order to prove (2.57) we start from the following observation: if U1 commutes with [U1, U2]•,
it commutes also with U2U1U

−1
2 , thus we can replace U1 and U2U1U

−1
2 with their diagonal-

ized forms. Note that, however, U1 and U2U1U
−1
2 have the same roots of the characteristic

polynomial, hence one can find a permutation matrix P such, that

U2U1U
−1
2 = P−1U1P.

Let us define the matrix V = PU2 and notice that U1V = V U1. Hence we can assume without
loss of generality that V is also diagonal. On the other hand, let [U1, U2]• 6= I, which implies
also that [U2, P ]• 6= I. Assuming that P is of the form

P =

 P1,1 . . . P1,d
... . . . ...

Pd,1 . . . Pd,d

 ,

this means that some Pj,k’s above the diagonal and below the diagonal must be nonzero. There
must be at least two non-zero non-diagonal entries of P . In what follows we will denote them
by Pj,k = 1 and Pl,m = 1. We get

||I − U2|| = ||P (I − U2)|| = ||P − V || ≥

≥
√
|Pj,k − Vj,k|2 + |Pl,m − Vl,m|2 +

∑
n

|Pj,n − Vj,n|2 +
∑
n

|Pl,n − Vl,n|2.

As V is diagonal we have |Pj,k − Vj,k|2 = 1− 0 = 1, |Pl,m − Vl,m|2 = 1− 0 = 1 and∑
n

|Pj,n − Vj,n|2 +
∑
n

|Pl,n − Vl,n|2 =
∑
n

V 2
j,n +

∑
n

V 2
l,n

and each of these sums is equal to one, which stems from (2.32). Hence ||P −V || ≥
√

4 = 2.
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2.4.0.3. Fundamental facts about SU(2) and SO(3)

In this section we restrict our interest to the smallest nonabelian unitary group SU(2) and its
adjoint representation Ad : SU(2) → SO(3). Both of these groups have interesting physical
interpretation. First, SU(2) is known in quantum information community as the group of
unitary operations acting on a single qubit. In physicists’ formalism every pure state of a qubit
can be represented as a point on a Bloch sphere, i.e. a two-dimensional sphere in a space of
states [60] (see Figure 2.1), where the north pole and south pole correspond to states |0〉 and
|1〉, respectively. In this formalism unitary operations can be thought as rotations on the Bloch
sphere. On the other hand elements of SO(3) describe rotations in 3-dimensional real space.
Therefore in the rest of this thesis we will often call elements of SU(2) and SO(3) rotation
matrices or rotations. In the following we present commutator relations for the Lie algebras

Figure 2.1: Bloch sphere with denoted Hadamard matrix and the rotation matrix by angle φ
around the axis ~kz. In general every unitary gate U(φ,~k) is a rotation by angle φ around the
axis ~k = (kx, ky, kz).

su(2) and so(3) and show the relations between the corresponding Lie groups.

Definition 2.49. The Lie algebra su(2) is a real 3−dimensional space of 2× 2 anti-Hermitian
matrices, equipped with a matrix commutator [·, ·]. The canonical orthogonal basis of su(2)
consists of

X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, Z =

(
i 0
0 −i

)
, (2.58)

which satisfy the commutation relations

[X, Y ] = 2Z, [Y, Z] = 2X, [X,Z] = −2Y. (2.59)

It is worth mentioning differences in notation in mathematical and physical textbooks. In
physicists’ notation elements of SU(d) are defined as exp(iH), where H is a Hermitian matrix.
The difference stems from the fact that Hermitian matrices have interpretation as the finite-
dimensional operators representing observables like energy, spin etc. As for example, physicists
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often considered Pauli matrices σx, σy, σz as basis elements of su(2) and in this setting the
commutation relations take the form [σj, σk] = i2εjklσl, when εjkl is the Levi-Civita symbol.

Definition 2.50. The Lie algebra so(3) is a real space of 3×3 anti-symmetric matrices, of the
dimension dim so(3) = 3, equipped with a matrix commutator [·, ·].

The canonical orthogonal basis of so(3) consists of the vectors

X1,2 =

 0 1 0
−1 0 0
0 0 0

 , X1,3 =

 0 0 −1
0 0 0
1 0 0

 , X2,3 =

 0 0 0
0 0 1
0 −1 0

 , (2.60)

which satisfy the commutation relations

[X23, X13] = −X12, [X23, X12] = X13, [X13, X12] = X23. (2.61)

Fact 2.15. Adjoint representation of su(2) is the standard representation of so(3).

Fact 2.15 can be easily proven by direct calculations. Notice, that the commutation relations
(2.59) and (2.61) are identical up to a constant factor c = 2. This means su(2) and so(3) are
isomorphic through the adjoint representation. The isomorphism is established by:

X → adX = −2X23,

Y → adY = 2X13,

Z → adZ = −2X12.

On the level of Lie groups SU(2) is a double cover of SO(3), i.e. the map Ad : SU(2)→ SO(3)
is a continuous group homomorphism and SO(3) has index 2 in SU(2)5. The relation between
elements of SU(2) and SO(3) is the following:

eX → exp(adX) = exp(−2X2,3), (2.62)
eY → exp(adY ) = exp(2X1,3), (2.63)
eZ → exp(adZ) = exp(−2X1,2). (2.64)

2.4.0.4. Parameterization of SU(2) and SO(3)

There are many equivalent parameterizations of elements of SU(2) and SO(3). We will use
throughout this thesis the axis-angle parameterization as the most appropriate for our needs.
According to the axis-angle representation, every element O ∈ SO(3) and U ∈ SU(2) depends
on parameters φ, which will be called spectral angle or the angle of rotation interchangeably,
and ~k = (kx, ky, kz), |~k| = 1, which is the rotation axis. The axis-angle parameterization arises
naturally from the Cayley-Hamilton theorem, which was mentioned in Section 2.2.3.

Theorem 2.18 (Cayley-Hamilton). Every d× d matrix M over a commutative ring (such as
the real or complex field) is annihilated by its characteristic polynomial χM(x) = det(Ix−M) =∑d

i=0 cix
i, i.e.

χM(M) =
d∑
i=0

ciM
i = 0 (2.65)

5In other words, adjoint representation maps two elements of SU(2) to one element from SO(3), see also
Fact 2.16.
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An immediate consequence of Theorem 2.18 is that exp(M) can be expressed as a polynomial
of degree d− 1 in M . Direct calculations for SU(2) and SO(3) provide:

SU(2) : U(φ,~k) = eφ
~k·(X,Y,Z) = I cosφ+ ~k · (X, Y, Z) sinφ, (2.66)

SO(3) : O(φ,~k) = eφ(−kxX2,3+kyX1,3−kzX1,2) = (2.67)

I + ~k · (−X2,3, X1,3,−X1,2) sinφ− 2 sin2 φ

2

(
~k · (−X2,3, X1,3,−X1,2)

)2

. (2.68)

The angle-axis parameterization enables to compute easily a product of two unitary gates

U(φ1, ~k1) · U(φ2, ~k2) = U(γ,~k12), where (2.69)

cos γ = cosφ1 cosφ2 − sinφ1 sinφ2
~k1 · ~k2, (2.70)

~k12 =
1

sin γ

(
~k1 sinφ1 cosφ2 + ~k2 sinφ2 cosφ1 + ~k1 × ~k2 sinφ1 sinφ2

)
. (2.71)

Fact 2.16. Let U(φ,~k) ∈ SU(2). Then the adjoint representation of U(φ,~k) expressed in the
axis-angle parameterization is of the form

Ad : U(φ,~k)→ O(2φ,~k) ∈ SO(3), (2.72)

which is a direct generalization of (2.62,2.63,2.64).

We should emphasize that the image of AdG is the group of all automorphisms of G by
Definition 2.40. In case of SU(2) this implies, that automorphisms of SU(2) are in one to
one correspondence with elements of SO(3). Let us denote an example automorphism by
ΦO(γ,~k′) : SU(2)→ SU(2), where O(γ, ~k′) ∈ SO(3). Then ΦO(γ,~k′) is defined as

ΦO(γ,~k′)(U(φ,~k)) = U(φ,O(γ, ~k′)~k). (2.73)

2.4.0.5. Finite subgroups of SU(2)

In this section we briefly describe finite subgroups of SU(2). To this end we need to define first
what is a group extension.

Definition 2.51. Let A,B be groups. A group extension of A by B is the group G such, that

1→ A→ G→ B → 1, (2.74)

where the homomorphism A → G is injective, i.e. A is isomorphic to its image, and the
homomorphism G→ B is surjective such, that B is isomorphic to a quotient group G/A.

Definition 2.52. A group extension is central if, for the same notation as for Definition 2.51,
A ⊂ G is contained in the center of G.

The finite subgroups of SU(2) are strongly related to the finite subgroups of SO(3), which are
defined in terms of so called von Dyck groups.

Definition 2.53. [56] The von Dyck groups have the following geometric interpretation. Con-
sider a triangle with the sides {π

l
, π
m
, π
n
}. Then a von Dyck group (l,m, n) is a group of rotations

by angles 2π
l
, 2π
m
, 2π
n

about the corresponding vertices. The canonical representation of this group
is numbered by three integers. The von Dyck group (l,m, n) is a finite group with the following
presentation:

(l,m, n) = {a, b, c|al = bm = cn = abc = e}, (2.75)

where e is the identity element of the group.
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Nonabelian finite subgroups of SO(3) include (2, 2, n), n ≥ 3, (2, 3, 3), (2, 3, 4) and (2, 3, 5),
The first of these groups is called dihedral group and is a symmetry group of the plane. The
following three groups are the symmetry group of a tetrahedron, an octahedron and an icosa-
hedron, respectively.

By the homomorphism Ad : SU(2)→ SO(3) the finite nonabelian subgroups of SU(2), denoted
by 〈l,m, n〉, can be regarded as central extensions of the finite nonabelian subgroups of SO(3)
by the group Z2. The extension has a structure of the Cartesian product

〈l,m, n〉 = (l,m, n)× Z2. (2.76)

The following list includes all finite nonabelian subgroups of SU(2):

• Dicyclic group 〈2, 2, n〉 = (2, 2, n) × Z2 is the central extension of the dihedral group
(2, 2, n). The group (2, 2, n) is generated by two rotations by ±π about axes ~k1 and ~k2

separated by an angle π
n
. Their product is a rotation along ~k1 × ~k2 by 2π

n
. The spectral

angles for elements in 〈2, 2, n〉 ⊂ SU(2) are therefore kπ
2

and kπ
n

whereas the possible
angles between axes are equal {π

2
, π
n
}.

• Binary tetrahedral group 〈2, 3, 3〉 = (2, 3, 3)×Z2 is the central extension of the tetrahedral
group (2, 3, 3) ' A4. The group (2, 3, 3) is a symmetry group of the regular tetrahedron
and consists of rotations by 2kπ

3
about axes ~k1, ~k2, ~k3 and ~k4 such that ~ki · ~kj = −1

3
and

of rotations by kπ about axes ~l1, ~l2 and ~l3 such that ~li · ~lj = 0 and ~ki · ~lj = ± 1√
3
. The

spectral angles for elements in 〈2, 3, 3〉 are therefore: kπ
3

and kπ
2
. The axes and angles

between them are as in (2, 3, 3) albeit ~ki · ~kj = ±1
3
.

• Binary octahedral group 〈2, 3, 4〉 = (2, 3, 4)× Z2 is a central extension of the octahedral
group (2, 3, 4) ' S4. The group (2, 3, 4) is a symmetry group of the regular octahedron
(or, equivalently, of a cube) and consists of rotations by kπ and kπ

2
about axes ~k1, ~k2, ~k3

and ~k4 such that ~ki ·~kj = 0, of rotations by kπ about the axes ~l1, . . . ,~l6 for which ~lj ·~lj = 0
and of rotations by 2kπ

3
about axes ~v1, ~v2, ~v3 and ~v4 such that ~vi · ~vj = ±1

3
. The angles

between the axes corresponding to different rotations are the following: ~ki · ~lj = ± 1√
2
,

~ki~vj = ± 2√
6
and ~li~vj = ± 1√

3
. The spectral angles for elements in 〈2, 3, 2〉 are therefore:

kπ
3
, kπ

4
and kπ

2
. The axes and angles between them are as in (2, 3, 4).

• Binary icosahedral group 〈2, 3, 5〉 = (2, 3, 5)× Z2 is a central extension of the symmetry
group of a regular icosahedron (or, equivalently, a regular dodecahedron) (2, 3, 5) ' A5.
The group 〈2, 3, 2〉 consists of rotations by kπ

2
with the angles between rotation axes

~ki ·~kj ∈ {0,±1
3
,±
√

5
3
}, of rotations by 2kπ

3
with the angles between rotation axes ~l1, . . . ,~l10

take values ~li · ~lj = ±
√

5
3

and of rotations by kπ
5

and 2kπ
5

where k is an odd number and
the angle between rotation axes ~v1, . . . , ~v6 is equal ~vi · ~vj = ± 1√

5
.

2.5. Spectral gaps of averaging operators
In this section we present basic concepts from theory of spectral gaps of averaging opera-
tors on compact Lie groups. We start from presenting basic definitions and next we discuss
connections between the spectral gaps and efficiently universal sets of gates (see Definition 1.7).

In Section 2.3.3 we presented examples of finite dimensional representations of compact matrix
Lie groups. However, this concept can be extended to infinite dimensional spaces, i.e. spaces
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of functions. To this end assume, that f is a square-integrable function acing on a space V .
Then the infinite-dimensional representation of SU(d) can be defined as

Π∞U (f)(V ) = f(U−1V ), U, V ∈ SU(d). (2.77)

Definition 2.54. Denote the space of square-integrable functions acting on SU(d) by L2(SU(d))
and let S = {U1, . . . , Uk} be a finite subset of SU(d). An averaging operator TS acting on a
function f ∈ L2(SU(d)) is defined as

(TSf) (V ) =
1

2|S|
∑
Ui∈S

(
f(UiV ) + f(U−1

i V )
)
, V ∈ SU(d). (2.78)

In what follows we will call (Ũf)(g) = f(U−1g) shifting operators.

It is known [41] that eigenvalues of a Hermitian operator are bounded by its norm. Hence,
in order to find the largest eigenvalue of TS we first calculate its norm. The operator norm is
defined as

‖T‖op := supf∈L2(SU(d))

‖Tf‖2

‖f‖2

,

where ‖ · ‖2 is the usual L2 norm. As U, g are elements of a unitary group the shifting oper-
ators (Ũf)(g) = f(U−1g) are also unitary and hence their operator norm is 1. Using triangle
inequality, we get

‖TS‖op ≤
1

2|S|
· 2|S| = 1

as the sum is over 2|S| shifting operators. However, by the fact that the constant function
f = 1 is the eigenvector of TS with the eigenvalue λ0 = 1, we get that ‖TS‖op = 1.

Let L2
0(SU(d)) denote the subspace of L2(SU(d)) containing functions with the vanishing mean:

L2
0(SU(2)) = {f ∈ L2(SU(2)) :

∫
SU(2)

fdµ = 0}.

Consider the operator TS restricted to this space. We will denote it by TS |L2
0(SU(d)). The norm

of this operator is ||TS |L2
0(SU(d))|| = 1 if and only if 1 is an accumulation point of the spectrum

of TS . Otherwise it is strictly less than 1 and we will denote it by λ1. In this case we say that
TS has a spectral gap.

Definition 2.55. A spectral gap GapS is defined as

GapS = 1− sup
f
{||TSf || : f ∈ L2

0(SU(2))}. (2.79)

Equivalently,

GapS = 1− λ1, (2.80)

where λ1 is either the second largest eigenvalue, if exists, or TS or the accumulation point of
the eigenvalues of TS .

As we mentioned at the beginning of this section, a spectral gap of TS for a given set S of
qudit gates gives us information if S is efficiently universal. Recall from Section 1.1, that S is
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said to be efficiently universal if every unitary operation U ∈ SU(d) can be approximated with
accuracy ε using words of the length

L = O

(
log

1

ε

)
,

which is significantly better than the scaling L = O
(
logc 1

ε

)
, c ' 4 provided by Solovay-Kitaev

theorem. For this reason, the problem of computing a spectral gap of TS for an arbitrary S is
of great practical importance in quantum computing.

The history of the spectral gap theory started in 1958 with the PhD thesis of Harry Kesten [46]
who was studying symmetric random walks on countable groups. Another important paper
about this topic presented joint work of Lubotzky and Sarnak [55] and considered distribution
of points on two-dimensional sphere under the action of SO(3). This problem can be easily
translated to the problem of qubit gates as the adjoint representation maps qubit gates to ele-
ments of SO(3), Ad : SU(2)→ SO(3), and SO(3) acts transitively on a sphere in 3-dimensional
real space [58].

As it was shown in [46] and [55], the absolute value of λ1 in case, when

S = {U(φ1, ~k1), . . . , U(φn, ~kn), U−1(φ1, ~k1), . . . , U−1(φn, ~kn)} ⊂ SU(2)

is bounded by √
2n− 1

n2
≤ λ1 ≤ 1, (2.81)

and it corresponds to the case, when elements of S are uniformly distributed in the group.
However, computing a spectral gap is a very difficult task in general and the only group for
which some efficiently universal sets have been already found is SU(2) [55, 63, 68].

According to our knowledge one of the first papers connecting existence of a spectral gap with
optimality of a universal set was [39]. Its authors have proven that a universal set is efficiently
universal if the averaging operator defined for S has a nonzero spectral gap.

Theorem 2.19 (Harrow et. al., ’02). [39] A universal set S is efficiently universal if the
averaging operator TS has a nonzero spectral gap.

However, the presented proof is not constructive and it does not provide an algorithm that
allows to approximate an arbitrary gate from SU(d) with elements of < S > [39]. In next
years Bourgain and Gambourd gave a condition for matrix entries of S providing that TS has a
nonzero spectral gap. The proof of this theorem can be found in [9, 10] for SU(2) and SU(d),
respectively.

Theorem 2.20 (Bourgain-Gamburd, ’15). The averaging operator defined on a universal set
S ⊂ SU(d) has a nonzero spectral gap if all elements of S have algebraic matrix entries.
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Chapter 3

Field theory and universality

In this chapter we present a simple and mathematically strict method of deciding universality
for two sets of one-qubit gates that play a particularly important role in quantum informa-
tion theory. Our approach is inspired by the proof presented by Nielsen and Chuang (see [13]
and Section 4.5.3 in [60]) and based on elements of field theory and number theory. In our
approach we also apply the solution of Burnside problem (see Theorem 2.5) and companion
matrix formalism. Finally, we use special classes of minimal polynomials, i.e. trigonometric
and cyclotomic polynomials as the main tool of our proof. They will be described in details in
Section 3.2.

The first set that we consider in this chapter consists of the Hadamard gate H, where H is
defined in (3.2), and the phase shift gate (T-gate) T (φ). In what follows we will denote this set
by SH,Tφ , where φ plays a role of a parameter:

SH,Tφ = {H,T (φ)} , (3.1)

H =
1√
2

(
i i
i −i

)
, T (φ) =

(
eiφ 0
0 1

)
= eiφ/2

(
eiφ/2 0

0 e−iφ/2

)
. (3.2)

In the rest of this chapter we will omit the factor eiφ/2 and consider the T-gate as the rotation
on the Bloch sphere about ~kz by angle φ

2
. This substitution simplifies the calculations but does

not change the result.

According to our knowledge, the first field theory approach to the universality problem was
proposed by Boykin et. al. [13] and included in Nielsen and Chuang’s book [60] for the set
SH,Tπ/8 . Our aim was to simplify their method and make it tractable for arbitrary φ.

Another set of gates that plays a significant role in quantum information theory was studied
e.g. by Sawicki [69] and Sarnak [68]. It consists of three orthogonal rotations on the Bloch
sphere by an angle φ. In the rest of this chapter we will denote this set by Sx,y,zφ .

Sx,y,zφ = {U(φ/2, ~kx), U(φ/2, ~ky), U(φ/2, ~kz)}, (3.3)

U(φ/2, ~kx) =

(
cosφ/2 sinφ/2
− sinφ/2 cosφ/2

)
, U(φ/2, ~ky) =

(
cosφ/2 i sinφ/2
i sinφ/2 cosφ/2

)
, (3.4)

U(φ/2, ~kz) =

(
eiφ/2 0

0 e−iφ/2

)
. (3.5)

Having defined the sets SH,Tφ and Sx,y,zφ we can formulate the main problem of the current
chapter:
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Problem 3.1. Find angles φ such, that the sets SH,Tφ and Sx,y,zφ are universal.

An attentive reader may notice that Problem 3.1 has an immediate solution when φ is an
irrational multiple of π. In such a case both SH,Tφ and Sx,y,zφ contain elements of infinite order
(recall Example 2.4 from Section 2.1.2) and by the virtue of Theorem 2.5 they generate an
infinite group. Next, elements of SH,Tφ neither commute nor anticommute if φ 6= kπ

2
, k ∈ Z. As

we will show in Section 4.4 these conditions provide that SH,Tφ is universal. The same arguments
are valid for Sx,y,zφ , hence this set is also universal for φ = aπ, a ∈ R \Q.

Corollary 3.1. Let φ be an irrational multiple of π. Then the sets SH,Tφ and Sx,y,zφ are universal.

In the rest of this chapter we will introduce the mathematical concepts and ideas that help us to
solve Problem 3.1 in case, when φ is a rational multiple of π. In Section 3.1 we will reformulate
Problem 3.1 in terms of rotations in three dimensional space using adjoint representation. In
Section 3.2 we will present cyclotomic and trigonometric polynomials and prove from scratch
essential facts about these functions. Section 3.3 includes the main result of this chapter, i.e.
a proof of universality of SH,Tφ and Sx,y,zφ in case, when φ is a rational multiple of π.

3.1. Problem reformulation
In order to make the calculations simpler we transform Problem 3.1 from the level of unitary
gates to the level of orthogonal gates from SO(3) using the adjoint representation. In what
follows we will assume the standard orthonormal basis of su(2), defined in (2.58)

Matrices H,T (φ) expressed in the adjoint representation have the form

AdH =

 −1 0 0
0 0 1
0 1 0

 , AdT (φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 ,

where AdH is the rotation by angle π around the axis
~ky+~kz√

2
and AdT (φ) is the rotation by angle

φ around z-axis.

Let us denote a composition of AdH and AdT (φ) by O(γ,~k). Our aim is to decide if γ is a
rational multiply of π. By the fact that equality of matrices implies equality of their traces we
get the equation relating γ with φ:

tr AdH · AdT (φ) = tr O(γ,~k), (3.6)
− cosφ = 2 cos γ + 1⇒ (3.7)
−2 cos γ = cosφ+ 1. (3.8)

In order to remove the negative sign from (3.8) we substitute γ by γ′ = γ + π. From basic
trigonometric identities we know that cos γ′ = − cos γ, hence

2 cos γ′ = cos 2φ+ 1. (3.9)

Similarly, rotation matrices corresponding to U(φ/2, ~kx), U(φ/2, ~ky), U(φ/2, ~kz) are given by

O(φ,~kx) =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , O(φ,~ky) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 ,

O(φ,~kz) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 ,

(3.10)
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where O(φ,~kj) = AdU(φ/2,~kj)
, j ∈ {x, y, z}. We can again denote a product of any two rotations

from (3.10) by O(γ,~k). Comparing the traces we get

2 cos γ + 1 = cos2 φ+ 2 cosφ. (3.11)

Using trigonometric identities we can transform (3.11) to a linear equation

2 cos
γ

2
= cosφ+ 1. (3.12)

Notice that (3.12) has exactly the same form as (3.9), therefore we can consider only one of
these equations in the rest of this chapter.

Before we go to the next section we will briefly describe our idea, how to prove universality of
SH,Tφ and Sx,y,zφ . First, we use the fact that Theorem 2.5 holds for SU(2) and SO(3) [22]. How-
ever, we cannot apply it for the sets SH,Tφ and Sx,y,zφ directly as they consists only of finite order
rotations. Instead, we can construct words from elements of SH,Tφ and Sx,y,zφ and search for a
word having an infinite order. We start obviously with words of length two, denoted by O(γ,~k).

Recall from Section 2.1.2 that O(γ,~k) has an infinite order if γ is an irrational multiple of π.
In order to check this we apply the following procedure:

Step 1 Write an equation relating φ and γ, e.g. (3.12).

Step 2 For φ - a rational multiple of π show that at least one coefficient of the minimal
polynomial of cosφ is noninteger (see Section 3.2.0.7).

Step 3 Prove that the minimal polynomial for 2 cos γ
2
has integer coefficients when γ is rational

multiple of π (see Section 3.2.0.8).

Step 4 Using the companion matrix formalism find formulas for coefficients of the minimal
polynomial of 1 + cosφ in terms of the coefficients of the minimal polynomial for cosφ
(see Section 3.3).

Step 5 Show that coefficients of the minimal polynomial for 1 + cosφ are not all integers if φ
is a rational multiple of π and φ /∈ {kπ

2
: k ∈ Z} (see Section 3.3).

3.2. Special classes of minimal polynomials
The main purpose of this section is to present briefly the minimal polynomials that will be used
to prove universality of SH,Tφ and Sx,y,zφ . We will put special emphasis on minimal polynomials
of cos 2π

n
and 2 cos π

n
and we will prove from scratch the main facts about them.

3.2.0.6. Cyclotomic polynomials

One of the possible ways to prove universality of SH,Tφ and Sx,y,zφ is to use the approach presented
in [13, 60, 69] which is based on theory of cyclotomic polynomials. As we show in this section,
this method leads to very complex formulas and is effectively not tractable.

Definition 3.1. A cyclotomic polynomial Φn(x) is the minimal polynomial of e2iπ/n, n ∈ Z+

with integer coefficients, defined as

Φn(x) =
∏

1 ≤ k ≤ n
gcd (k, n) = 1

(
x− e2ikπ/n

)
. (3.13)
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Cyclotomic polynomials satisfy the fundamental identity∏
1≤k≤n

Φk(x) = xn − 1, gcd(k, n) = 1. (3.14)

Recall that we want to show for which φ the product O(γ,~k), defined in Section 3.1, is a rota-
tion by an angle γ which is an irrational multiple of π.

Assume that φ = 2kπ
n
, where k, n ∈ Z and gcd(k, n) = 1. In such a case the polynomial Φn(x)

is the minimal polynomial of eiφ. In order to decide whether γ is an irrational multiple of π we
should search for a minimal polynomial of eiγ and check if it is cyclotomic. In particular, if we
are able to show that the coefficients of this polynomial are non-integer, the polynomial is not
cyclotomic and therefore γ cannot be a rational angle. However, this task turns out to be very
difficult in general. In order to show it we combine the Euler formula and (3.11) and arrive at
the following equation

eiγ = cos γ +
√

cos2 γ − 1 = cosφ+
cos 2φ

4
− 1

4
+ i sinφ

√
cos 2φ

8
+ cosφ+

7

8
.

Substitution (cosφ, sinφ)→ (eiφ, e−iφ) yields a complicated formula relating eiγ with eiφ

eiγ = 2(eiφ + e−iφ) +
e2iφ + e−2iφ

2
− 1

4
− 2(eiφ − e−iφ)

√
2(eiφ + e−iφ) +

7

8
+
e2iφ + e−2iφ

8
.

(3.15)

Computing the minimal polynomial of eiγ from (3.15) poses many difficulties, i.a.:

1. We do not know the relation between the degree of the polynomial χM
eiγ

and the algebraic
degree of Q(eiγ). Therefore we have no guarantee that meiγ = χM

eiγ
.

2. Even if meiγ = χM
eiγ

the use of the companion matrix formalism requires us to know
the matrix M√ cos 2φ

8
+cosφ+ 7

8

which is very hard to determine analytically for an arbitrary

φ = 2kπ
n
.

Cyclotomic polynomials fail to provide tractable approach. However, they still could be used
in case, when the minimal polynomial of cosφ is linear or quadratic. For example, the reason-
ing presented in [69] concerns the simplest nontrivial case, when the minimal polynomial for
mcosφ(x) = ψn(x) is quadratic. Then cosφ = a + b

√
c and cos γ = A + B

√
c, where a, b ∈ Q

and A,B depend on a and b. The equations (3.11) and the polynomial p(x) = x2−2 cosφx+1,
that is annihilated by e±iφ, allow us to compute meiγ . As a result we get

meiγ (x) = x4 − 4Ax3 + (4A2 + 2)x2 − 4Ax− 4B2c+ 1.

The only possible quadratic minimal polynomials for cosφ are of the form

ψ5(x) = x2 +
1

2
x− 1

4
⇒ cosφ = a+ b

√
c = −1

4
±
√

5

4
, (3.16)

ψ8(x) = x2 − 1

2
⇒ cosφ = a+ b

√
c =

1√
2
, (3.17)

ψ12(x) = x2 − 3

4
⇒ cosφ = a+ b

√
c =

√
3

2
. (3.18)

We insert the coefficients a, b, c from (3.16), (3.17), (3.18) respectively and use (3.11) to compute
A,B. Applying this procedure we easily check, that meiγ has at least one non-integer coefficient
all cases, hence it is not a cyclotomic polynomial for any φ having quadratic ψn(x). A more
general approach that is tractable for arbitrary φ is possible using trigonometric polynomials.
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3.2.0.7. Minimal polynomials of cos 2kπ
n

By trigonometric polynomials we will understand the minimal polynomials for cosφ, sinφ, 2 cos φ
2

and tanφ, where φ is a rational multiple of π. A detailed description of their properties can be
found in e.g. [7, 83]. In this chapter we will concentrate on minimal polynomials for cosφ and
2 cos φ

2
. We will also show their relations with Chebyshev polynomials of the first kind.

Definition 3.2. [83] A minimal polynomial ψn(x) of cos 2π
n

is a polynomial defined as

ψ1(x) = x− cos 2π = x− 1, ψ2 = x− cosπ = x+ 1, (3.19)

ψn(x) =
∏

1 ≤ k ≤ bn/2c
gcd(k, n) = 1

(
x− cos

2kπ

n

)
, n ≥ 3, (3.20)

degψn(x) =

{
1 n = 1, 2

ϕ(n)
2

n ≥ 3
, (3.21)

where ϕ(n) is the Euler totient function (see Definition 2.4).

Remark 3.1. It is worth emphasizing that the sum in (3.20) is over 1 ≤ k ≤ bn/2c, gcd(k, n) =
1 instead of 1 ≤ k ≤ n. It stems from the symmetry of cosine, i.e. cosφ = cos(−φ). Notice
that for every φ = 2kπ

n
the opposite angle is defined as −φ = −2kπ

n
= 2(n−k)π

n
. From (2.2) we get

that every root of ψn(x) which is of the form cos 2kπ
n

is equal to the root cos 2(n−k)π
n

. Therefore
cos 2kπ

n
for 1 ≤ k ≤ bn/2c are all the possible roots of ψn(x).

Definition 3.2, however, does not enable us to compute coefficients of ψn(x) for n > 5 efficiently.
In order to avoid this problem we will introduce Chebyshev polynomials of the first kind and
use them to find explicit formulas for ψn(x), n > 5.

Definition 3.3. Chebyshev polynomials of the first kind Tk(x), k = 0, 1, . . . are defined by the
recurrence formula

Tk(x) = 2xTk−1(x)− Tk−2(x), T0(x) = 1, T1(x) = x. (3.22)

Equivalently, Tk(x)’s are the polynomials satisfying

Tk(cosφ) = cos kφ. (3.23)

Using formula (3.22) we deduced properties of the coefficients of Chebyshev polynomials.

Fact 3.1. Let Tk(x) =
∑k

i=0 cix
i be the Chebyshev polynomial of the first kind of the degree k.

The coefficients c0, . . . , ck satisfy:

1. c0, . . . , ck are integer numbers.

2. The leading coefficient ck is equal to 2k−1.

3. Tk(x) has only odd/even powers of x if k is an odd/even number respectively.

4. If k is even, then the free term c0 is given by c0 = ±1.

5. If k is odd, then the coefficients c0, c1 are equal c0 = 0, c1 = ±k respectively.

Formula (3.23) implies that Chebyshev polynomials can be expressed in terms of minimal
polynomials of cosφ and vice versa. Historically, the first such relation was given by Waitkins
and Zeitlin [83] and is an analogue of (3.14) for cyclotomic polynomials.
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Fact 3.2. [83] Let k, n be integers, k, n ≥ 1. The canonical identities relating Tk+1(x) and
Tk(x) or Tk+1(x) and Tk−1(x) with minimal polynomials ψn(x) have the form

2k
∏
d|n

ψd(x) = Tk+1(x)− Tk(x), n = 2k + 1, (3.24)

2k
∏
d|n

ψd(x) = Tk+1(x)− Tk−1(x), n = 2k. (3.25)

For the purpose of this chapter we need to reverse identities (3.25) and (3.24) using the Möbius
inversion formula. This allows us to express ψn(x) for every n ∈ Z+ in terms of Chebyshev
polynomials.

Fact 3.3. [7] Let n ≥ 3, odd and m ≥ 1, m,n ∈ Z+. Then ψn(x), ψ2m(x) are given by

ψn(x) =
∏
d|n

[
2−bd/2c

(
Tbd/2c+1(x)− Tbd/2c(x

)]µ(n/d)
, (3.26)

ψ2mn(x) =
∏
d|n

[
2−b2

m−1dc (Tb2m−1dc+1(x)− Tb2m−1dc−1(x
)

2−b2m−2dc
(
Tb2m−2dc+1(x)− Tb2m−2dc−1(x

)]µ(n/d)

, m > 1, (3.27)

ψ2mn(x) =
∏
d|n

[
2−d

(
Tbdc+1(x)− Tbdc−1(x)

)
2−bd/2c

(
Tbd/2c+1(x)− Tbd/2c(x)

)]µ(n/d)

, m = 1. (3.28)

In what follows we present a fact about minimal polynomials for cos 2kπ
n

that will be essential
in proving Theorem 3.5.

Lemma 3.2. At least one coefficient of ψn(x), i.e. the constant term c0, is non-integer if
n /∈ {1, 2, 4}.

Proof. First, notice that cosines of 2π, π and π
2
are integers, therefore the corresponding minimal

polynomials ψn(x) belong to Z[x]. In all other cases we can distinguish the following situations:

1. n is an odd prime number,

2. n is an odd composite number,

3. n is an even composite number.

In the following we consider all of these situations separately and provide their proofs using
(3.26), (3.27), (3.28).

1. In case 1. n has exactly two divisors and the formula (3.24) simplifies to

ψ1(x)ψn(x) = (x− 1)ψn(x) = 2−bn/2c
(
Tbn/2c+1(x)− Tbn/2c(x)

)
. (3.29)

Notice that Tbn/2c+1(x) − Tbn/2c(x) is a difference of Chebyshev polynomials, where one
of them is of the even degree and the second one has the odd degree. By the virtue of
Fact 3.1, Tbn/2c+1(x)−Tbn/2c(x) has a free term equal ±1. hence the free term of the right
hand side of (3.29) is ± 1

2bn/2c
.

Notice also that the free term of left hand side is determined by the free term of ψn(x).
Comparing the left and right side of (3.29) one can see that the free term of ψn(x) is equal
to c0 = ± 1

2bn/2c
, thus it is a rational number as we assume n ≥ 3.
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2. In case 2. we will prove that ψn(x) has a non-integer free term by applying formula (3.26)
and using properties of the Möbius function. Let n = pn1

1 . . . pnmm be the prime factorization
of n and D+

n , D−n be the sets of all square free divisors of n that have even and odd number
of prime divisors, respectively. By the virtue of (2.4) we have |D+

n | = |D−n |.
Notice that the free term of the right hand side of (3.26) can be written in the form

c0 = ±
∏
d|n

(
1

2bd/2c

)µ(n/d)

= ±
∏

n
d
∈D+

n ∪D−n

(
1

2bd/2c

)µ(n/d)

=
2
∑

n
d
∈D−n

bd/2c

2
∑

n
d
∈D+

n
bd/2c . (3.30)

We next raise c0 to the power p = 2p1 · . . . · pm

cp0 =
2
∑

n
d
∈D−n

pbd/2c

2
∑

n
d
∈D+

n
pbd/2c =

2
∑

n
d
∈D−n

p(d−1)/2

2
∑

n
d
∈D+

n
p(d−1)/2

=
2
− pk

2
+
∑

n
d
∈D−n

pd
2

2
− pk

2
+
∑

n
d
∈D+

n

pd
2

=
2
∑

n
d
∈D−n

pd
2

2
∑

n
d
∈D+

n

pd
2

. (3.31)

It is worth stressing that c0 is non-integer if and only if cp0 < 1. In order to find the
appropriate condition we use the fact that if x = n

d
belongs to D−n or D+

n then

p · d = p
n

x
= 2n · y, (3.32)

where y is the square-free product of such prime divisors of n that do not appear in prime
factorization of x. In particular, if m is an even number and x ∈ D+

n , then y must also
belong to D+

n . Similarly x ∈ D−n implies that y ∈ D−n . When m is odd one easily checks
that x ∈ D+

n implies that y ∈ D−n and vice versa.
Let us consider the case when m is an even number. Taking pd = 2ny one can rewrite
(3.31) as

cp0 =
2
∑

n
d
∈D−n

pd
2

2
∑

n
d
∈D+

n

pd
2

=
2
∑
y∈D−n

ny

2
∑
y∈D+

n
ny

=
2
n
∑
y∈D−n

y

2
n
∑
y∈D+

n
y
. (3.33)

As one can easily see cp0 < 1 if the following holds∑
y∈D+

n

y −
∑
y∈D−n

y > 0. (3.34)

Note that this expression is equivalent to the product∑
y∈D+

n

y −
∑
y∈D−n

y = (1− p1) . . . (1− pm), (3.35)

which is always larger than zero if m is even, thus c0 is non-integer in this case.
Next let us consider n such, that m is an odd number. Doing mutatis mutandis to the
case when m is even one can transform (3.31) to the form

cp0 =
2
∑

n
d
∈D−n

pd

2
∑

n
d
∈D+

n
pd

=
2
∑
y∈D+

n
ny

2
∑
y∈D−n

ny
=

2
n
∑
y∈D+

n
y

2
n
∑
y∈D−n

y
, (3.36)

thus the condition for cp0 < 1 is given by∑
y∈D+

n

y −
∑
y∈D−n

y = (1− p1) . . . (1− pm) < 0. (3.37)

Note that this is always satisfied if m is odd, which means that cp0 is indeed smaller than
one. This way we have proven Lemma 3.2 for the case when n > 1 and n is odd.
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3. In case 3. we will use the similar approach as for case 2. Recall that every even number n
can be represented as n = 2ηk, where k - odd and η ∈ Z+. This allows us to define ψn(x)
by the formula (3.27). Let us define the sets D+

n and D−n like previously. Using fact 3.1
one can extract the free terms from (3.27) and (3.28) as

c0 =
∏
d|k

(
2

22η−2d

)µ(k/d)

=
2

2η−2
∑

n
d
∈D−n

d

2
2η−2

∑
n
d
∈D+

n
d
, η > 1, (3.38)

c0 =
∏
d|k

(
1

2bd/2c

)µ(k/d)

=
2
∑

n
d
∈D−n

bd/2c

2
∑

n
d
∈D+

n
bd/2c , η = 1. (3.39)

By properties of the Möbius function all the sums and products are over the same number
of divisors. Note that (3.39) and (3.30) are exactly equal, whereas (3.38) has a very similar
form to (3.30). Using very similar reasoning as in the case 2) we obtain immediately that
c0 is non-integer unless n = 2, 4, which completes the proof.

Example: In this paragraph we will illustrate the method presented in the proof of Lemma
3.2 with the example for n = 15. First, D+

n = {1, 15} and D−n = {3, 5}. The coefficient c0 of
ψ15(x) is given by

c0 =
2b5/2c+b3/2c

2b15/2c+b1/2c . (3.40)

Using the reasoning presented for the case 2) we raise c0 to the power p = 30 and obtain the
condition

c30
0 =

215(5+3)−15

215(15+1)−15
=

2
15

∑
y∈D−15

y

2
15

∑
y∈D+

15
y
< 1⇔

∑
y∈D+

15

y −
∑
y∈D−15

y = 16− 8 > 0.

Thus we have shown that c0 < 1. On the other hand one can see immediately from definition
(3.40) than c0 for ψ15(x) is equal to 2−8 /∈ Z.

3.2.0.8. Minimal polynomials of 2 cos kπ
n

Another class of polynomials, that play an important role in proving universality of SH,Tφ and
Sx,y,zφ are minimal polynomials of 2 cos π

n
. The current section will be devoted to main facts

about these functions.

Lemma 3.3. [7] The minimal polynomial of 2 cos π
n
is a polynomial defined as

ηn(x) = 2degψ2n(x)ψ2n

(x
2

)
. (3.41)

Using fact 3.2 one can write it explicitly as:

η1(x) = x+ 2, (3.42)

ηn(x) =
∏

1 ≤ k ≤ n
gcd(k, 2n) = 1

(
x− 2 cos

kπ

n

)
, n ≥ 2. (3.43)
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Proof. First, we notice that cos kπ
n
is a root of the polynomial ψ2n(x) of a degree d = degψ2n(x) =

ϕ(2n)
2

with the coefficients c0, . . . , cd−1, cd for arbitrary 1 ≤ k ≤ n such, that gcd(k, 2n) = 1. As
2 cos π

n
is a product of 2 ∈ Z ⊂ Q and a root of cos kπ

n
, the companion matrix M2 cos kπ

n
is given

by (2.26)
M2 cos kπ

n
= 2 ·Mcos kπ

n

and by the virtue of Fact 2.4 the minimal polynomial ηn(x) is equal to the characteristic
polynomial χM

2 cos kπn

. Let us write this matrix explicitly. The polynomial ηn(x) is given by

ηn(x) = χM
2 cos kπn

= det


−x 0 . . . −2c0

2 −x . . . −2c1

0 2 . . . −2c2
...

... . . . ...
0 . . . 2 −2cd−1 − x

 . (3.44)

The substitution x→ 2y transforms (3.44) to the form ηn(2y) = χ2M
cos kπn

. On the other hand
Mcos kπ

n
is a d× d matrix, therefore we arrive at

ηn(2y) = det 2(Mcos kπ
n
− yI) = 2dψ2n(y) = 2dψ2n

(x
2

)
, (3.45)

which is exactly (3.41). The proof is complete.

For the purposes of this chapter we restrict our interest to one essential fact about minimal
polynomials ηn(x), i.e.

Lemma 3.4. All the coefficients of ηn(x) are integers.

According to our knowledge this fact is already known in number theorists community, however
we have not found its mathematically strict proof. For this reason we include in this thesis two
versions of the proof. The first one that is based on properties of cyclotomic polynomials and
Gauss Lemma will be presented in the following. The second version is included in Appendix
6.1.

Proof of Lemma 3.4. We start from pointing that 2 cos kπ
n

= 2 cos 2kπ
2n
, gcd(k, 2n) = 1 can be

expressed as a sum

2 cos
2kπ

2n
= eikπ/n + e−ikπ/n,

where both eikπ/n and e−ikπ/n are roots of the cyclotomic polynomial Ψ2n(x) which stems from
(2.2). Denote the companion matrix of Ψ2n(x) by MΨ2n(x). As Ψ2n(x) is by definition a
polynomial with integer coefficients, MΨ2n(x) has only integer entries.
In the next step one needs to see that 2 cos π

n
is a root of the characteristic polynomial of the

matrix defined as

M = MΨ2n(x) ⊗ I + I ⊗MΨ2n(x), (3.46)

which stems from (2.26). As M is an integer matrix its characteristic polynomial χM belongs
to Z[x]. The degree of the minimal polynomial of 2 cos π

n
is smaller than the degree of χM

as Q(2 cos kπ
n

) ⊂ Q(eikπ/n) (see discussion in Section 2.2.2). This means, the characteristic
polynomial of M can be factorized as a product of at least two polynomials, namely

χM = ηn(x) · p(x), where in general p(x), ηn(x) ∈ Q[x].

Since χM belongs to Z[x], then by Lemma 2.9 the polynomials ηn(x) and p(x) have also integer
coefficients. As χM is monic, p(x) and ηn(x) are also monic. The result follows.
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3.3. Proof of universality

In this section we will prove the following theorem

Theorem 3.5. Assume φ is a rational multiple of π. Then γ given by (3.12) is a rational
multiple of π if and only if φ ∈ {kπ

2
: k ∈ Z}.

To this end we use the machinery presented in Sections 2.2 and 3.2. The main idea is to show
that the left hand side of (3.12) is not a root of any minimal polynomial ηm(x).

Proof. Notice the minimal polynomials of 2 cos γ
2
and cosφ+ 1 are equal. The minimal polyno-

mial mcosφ+1(x) can be found using the companion matrix formalism. It follows that cosφ+ 1
is a root of the characteristic polynomial of the matrix Mcosφ+1 = Mcosφ + I, where

Mcosφ =


0 0 . . . −c0

1 0 . . . −c1

0 1 . . . −c2
...

... . . . ...
0 . . . 0 −cd−1

 .

Following a discussion from Section 2.2.2 one can conclude that the field extension Q(cosφ+1)
has the same algebraic degree as Q(cosφ) (see Fact 2.4). On the other hand Q(2 cos γ

2
) has the

same algebraic degree as Q(cosφ+ 1), which stems from equality of these numbers. Therefore
the characteristic polynomial of Mcosφ+1 is exactly the minimal polynomial m2 cos γ

2
(x).

One can compute χMcosφ+1
as the determinant of the following matrix:

Mcosφ+1 − Ix =



1− x 0 0 . . . 0 −c0

1 1− x 0 . . . 0 −c1

0 1 1− x . . . 0 −c2
...

...
... . . . ...

...
0 0 . . . 1 1− x −cd−2

0 0 . . . 0 1 1− cd−1 − x


. (3.47)

Expansion with respect to the first row gives us to the following expression:

m2 cos γ
2
(x) = χMcosφ+1

(x) = det(Mcosφ+1 − Ix) =
d∑
i=0

ωi · xi = (3.48)

= −

[
d−3∑
i=0

ci(−1)d+i+1(1− x)i

]
+ (1− x)d−2[x2 + x(cd−1 − 2) + cd−2 − cd−1 + 1]. (3.49)

In the next step we simplify (3.49) using the binomial formula. As a result we derive the
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following relations between the coefficients of ψn(x) and χMcosφ+1
:

ω0 =
∑d−3

i=0 ci(−1)d+i + (cd−2 − cd−1 + 1)(−1)d,

ω1 =
∑d−3

i=1 ci(−1)d+1+i +
(
d−2

0

)
(cd−1 − 2)−

(
d−2

1

)
(cd−2 − cd−1 + 1),

ω2 =
∑d−3

i=2 ci(−1)d+i+2
(
i
2

)
+
(
d−2

0

)
−
(
d−2

1

)
(cd−2 + 1) +

(
d−2

2

)
(cd−2 − cd−1 + 1),

...
ωk =

∑d−3
i=k ci(−1)d+i+k

(
i
k

)
+
(
d−2
k

)
(−1)k(cd−2 − cd−1 + 1) +

(
i

k−1

)
(−1)k−1(cd−1 − 2) +

(
d−2
k−2

)
(−1)k−2

...
ωd−3 = −cd−3 + (c− 2)(−1)d−3(cd−2 − cd−1 + 1) +

(
d−2
d−4

)
(−1)d−4(cd−1 − 2) + (−1)d−5

(
d−2
d−5

)
,

ωd−2 = (−1)d−2(cd−2 − cd−1 + 1) + (d− 2)(−1)d−3(cd−1 − 2) + (−1)d−4
(
d−2
d−4

)
,

ωd−1 = (−1)d(cd−1 − 2) + (d− 2)(−1)d−1,
ωd = (−1)d.

(3.50)
Recall that by Lemma 3.3 the coefficients of m2 cos γ

2
(x) must be all integers if γ is a rational

multiple of π. One has to check if this condition is satisfied by all ωi’s starting from ωd−1. For
this coefficient we have:

(−1)d−2(cd−1 − 2) + (d− 2)(−1)d−3 ∈ Z⇒ cd−1 ∈ Z.

Note that ωd−1 /∈ Z if and only if cd−1 /∈ Z. In this case we are done, however there are
polynomials ψn(x) for which cd−1 ∈ Z+. In this case we consider the equation for ωd−2:

ωd−2 = (−1)d−2(cd−2− cd−1 + 1) + (d− 2)(−1)d−3(cd−1− 2) + (−1)d−4

(
d− 2

d− 4

)
∈ Z⇒ cd−2 ∈ Z.

Assuming that cd−1 ∈ Z, the coefficient ωd−2 is non-integer only if cd−2 /∈ Z. One can use the
same reasoning for the other ωi’s step by step and notice from (3.50) that each ωi depends on
the coefficients cd−1, . . . , ci+1, ci, where ci is multiplied by the factor (−1)d+2i

(
i
i

)
= ±1. If all of

the coefficients cd−1, . . . , ci+1, ci are integers, then also ωi belongs to Z. Hence all ω1, . . . , ωd are
integers if and only if c1, c2, . . . , cd−1, cd ∈ Z. On the other hand we have shown in Lemma 3.2
that ψn(x) has always at least one non-integer coefficient if n /∈ {1, 2, 4}. Therefore at least one
ωi does not belong to Z and m2 cos γ

2
cannot be the minimal polynomial ηm(x) for any m ∈ Z.

This means, γ must be an irrational multiple of π.

Finally we consider what happens in the exceptional cases, i.e. φ = {π
2
, π, 3π

2
, 2π}.

1. Let φ = ±π
2
. The corresponding minimal polynomial and its companion matrix are of

the form ψ4(x) = x and Mcos π
2

= 0. Thus Mcosφ+1 = 1 and its minimal polynomial is
mMcosφ+1

(x) = x− 1. We have that x− 1 = η3(x), thus γ = kπ
3
.

2. Let φ = 2π, then ψ1(x) = x − 1, Mcos 2π = 1. The companion matrix for Mcosφ+1 is a
1× 1 matrix equal to Mcosφ+1 = 1 + 1 = 2. Thus mMcosφ+1

(x) = x− 2. This polynomial
corresponds to γ = 2π.

3. Assume φ = π, then ψ2(x) = x + 1, Mcosπ = −1 and Mcosφ+1 = 1 − 1 = 0. Thus
the minimal polynomial of mcosφ+1(x) = x = η2(x) which is the minimal polynomial of
2 cos γ/2 for γ = π.

Notice, that φ ∈ {kπ
2

: k ∈ Z} implies that matrices AdT (φ), O(φ,~kx), O(φ,~ky), O(φ,~kz) have
entries in {1, 0,−1}. In such a case we see immediately that the sets SH,Tφ and Sx,y,zφ generate
finite groups.

We can summarize this chapter as follows:
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Corollary 3.6. Assume φ is a rational multiple of π and φ /∈ {kπ
2

: k ∈ Z}. Let AdH be the
adjoint representation of the Hadamard gate and AdT (φ) be the adjoint representation of the
phase change gate by angle φ. Then O(γ,~k) = AdHAdT (φ) is the rotation by an angle γ which
is an irrational multiple of π. Moreover, the sets {AdH ,AdT (φ)} and {H,T (φ)} are universal
if and only if φ /∈ {kπ

2
: k ∈ Z}.

Corollary 3.7. Assume φ is a rational multiple of π and φ /∈ {kπ
2

: k ∈ Z}. Let O(φ,~k1), O(φ,~k2) ∈
SO(3) be rotations around orthogonal axes ~k1 ⊥ ~k2, by the angle φ. Then O(γ,~k) = O(φ,~k1)O(φ,~k2)

is the rotation by an angle γ which is an irrational multiple of π. Moreover, the set {O(φ,~k1), O(φ,~k2)}
and the corresponding set of unitary matrices {U(φ/2~k1), U(φ/2, ~k2)} is universal if and only
if φ /∈ {kπ

2
: k ∈ Z}.

3.4. Summary and open problems
In this chapter we presented a proof of universality of the sets

SH,Tφ = {H,T (2φ)} and Sx,y,zφ = {U(φ,~kx), U(φ,~ky), U(φ,~kz)}

are universal. Our approach was based on properties of trigonometric polynomials, cyclotomic
polynomials and the companion matrix formalism. Below we list all the obtained results:

1. In Section 3.2 we used adjoint representation to rewrite the problem of universality of
one-qubit gates as the problem of composing rotations in three dimensional space.

2. In Section 3.2.0.7 we gave a mathematically strict proof that every minimal polynomial
ψn(x), where n 6= 1, 2, 4 has at least one noninteger coefficient.

3. Section 3.2.0.8 includes the proof that every minimal polynomial ηn(x) belongs to Z[x].

4. Section 3.3 we used the companion matrix formalism and theory of field extensions to
prove, that SH,Tφ and Sx,y,zφ are universal sets of gates if φ /∈

{
kπ
2
, k ∈ Z

}
.

An interesting open problem related to this chapter is generalization of the field theory approach
to other sets of one-qubit gates.
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Chapter 4

Universality of single qudit gates

In this chapter we provide some simple universality criteria that can be applied to an arbitrary
set of one-qudit gates

S = {g1, . . . , gn} ⊂ G, n ≥ 2,

where G = SU(d) or G = SO(d). We restrict our considerations to these groups because of
their particular importance in quantum computation and linear quantum optics.

In order to formulate general universality criteria we return to definitions from Section 1.1,
according to which S is universal if the group generated by S, denoted by < S >, is equal
to G (see Definition 1.2). Our universality criteria must distinguish this case from another
possibilities, which are presented in Figure 4.1.

Figure 4.1: Possible groups generated by an initial set S ⊂ G. Black dots denote isolated
elements of G, whereas ellipses represent connected components of a subgroup of G. Case (1)
is when < S > is dense in G and hence is universal. Cases (2) and (3) represent situations
when the closure of < S > is a compact, disconnected or connected respectively subgroup of
G. In cases (1), (2) and (3) < S > is an infinite set. Case (4) represents a situation when S
generates a finite subgroup of G.

The algorithm presented within this chapter divides the universality criterion, < S > = G, into
two steps. In the first one we assume that < S > is infinite (as G is an infinite group) and
check, if < S > = G under this assumption. In the second step we check if our assumption is
actually satisfied. Throughout this thesis these steps will be called the necessary and sufficient
criteria, respectively. In the following we will present them in a simple form:
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Necessary criterion: If < S > = G, then the only matrix commuting with AdS is λI, where
λ ∈ R.

Sufficient criterion: < S > = G if and only if (1) the necessary criterion is satisfied and (2)
< S > contains at least one element, that is close enough to a central element of G but
is different from this element.

In the rest of this chapter we will derive the necessary and sufficient universality criteria and
explain them in details. It is worth emphasizing, that the only operations that are required
to check our criteria are matrix multiplication and solving a number of algebraic equations.
This is a great advantage of our approach, comparing to methods that require more advanced
concepts, e.g. quantum automata [23].

The chapter is organized as follows. Section 4.1 is devoted to the necessary universality crite-
rion and we will start from formulating it on the level of Lie algebras. It is worth stressing, that
this problem has a great practical importance in physics and is known as a control problem
for dynamical systems. In this formalism elements of a Lie algebra g are called Hamiltonians.
There were many attempts to formulate universality criteria for Hamiltonians, e.g. Lie rank
condition [42, 53]. Another possible approaches, that use representation theory of Lie algebras
can be found in [82, 81, 84]. Section 4.1.2 includes the necessary universality criterion for quan-
tum gates, that was derived using an analogous approach as in the Section 4.1.1. Next, we will
describe in Section 4.1.3 how to construct Hamiltonians from quantum gates and vice versa
and show differences between universality criteria on the level of Lie groups and Lie algebras.
The main purpose of Section 4.2 is to derive the sufficient universality criterion and express it
in terms of spectra of elements of S. The section is divided into two parts. In the first one we
will specify a distance between two elements of S, say g, h, and the neutral element of G such,
that < g, h > = G. In the latter part of Section 4.2 we will generalize the sufficient universality
criterion for the case, when elements of S are not close enough to the neutral element. We
will also introduce some auxiliary concepts, such as a maximal exponent and an exceptional
spectrum, that will be used in searching for possible generators of finite subgroups of G.
Section 4.3 is the main part of this chapter and it contains an algorithm for deciding univer-
sality using the necessary and sufficient universality criterion. We will show that the algorithm
always terminates after a finite number of steps and this number will be discussed in the lat-
ter part of this section. In Section 4.4 we present the universality criteria formulated for the
special case, when G = SU(2) or G = SO(3) and S is a two-element set. Finally, we will also
show, how to deal with non-universal sets by embedding them into groups of higher dimensions.

Results presented in this chapter were published in [70, 71] and are the main part of this thesis.

4.1. Necessary universality criterion

Before we derive the necessary universality criterion using properties of compact semisimple Lie
algebras and Lie groups, we introduce the notation used in this chapter. Let S = {g1, . . . , gn} ⊂
G denote a set of group elements and X = {X1, . . . , Xk} be a set of elements of a Lie algebra
g. The set consisting of matrices that commute with S (or X ) will be called commutant and
denoted by C(S) (or C(X ), respectively). The concept of the commutant can be generalized for
an arbitrary finite or infinite set V of d× d matrices over a field K as:

C(V) = {L ∈Md(K) : ∀v ∈ V) [L, v] = 0}. (4.1)
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4.1.1. Universality criterion for compact, semisimple Lie algebras

The universality criterion presented in this section is equivalent to the approaches from [42, 53,
82, 81, 84]. The main difference is that it can be easily applied on the level of Lie groups and
does not require detailed knowledge about representations of su(d) and so(d).

Let us start from a definition of a universal set of Hamiltonians.

Definition 4.1. Let X = {X1, . . . , Xn} be a finite subset of a Lie algebra g. X is said to
generate g (equivalently, X is universal) if commutators of finite length between elements of
X , called Hamiltonians, form a basis of g, i.e. every X ∈ g can be represented as a finite linear
combination of Xi’s and finitely nested commutators of Xi’s:

X =
∑
i=1n

αiXi +
n∑

i,j=1

αi,j[Xi, Xj] + . . . , (4.2)

where αi, αi,j ∈ R,C depending if g is a real or complex Lie algebra, respectively.

Let C(g) denote the commutant of g and C(X ) be the commutant of X = {X1, . . . , Xn} ⊂ g.
Note first, that obviously < X >= g implies that C(g) = C(X ). However, we will show in the
following example that the reverse statement is not always true.

Example 4.1. [71] Let us consider a subset X of su(4). The commutant of this algebra is
equal to C(su(4)) = {λI, λ ∈ C}, which stems from Theorem 2.14.
Assume that X = {X1 ⊗ I,X2 ⊗ I, I ⊗ X1, I ⊗ X2} ⊂ su(4), where X1, X2 ∈ su(2) generate
su(2). Notice, that < X >6= su(4) but < X >= su(2)⊕ su(2). However, C(X ) is also equal to
{λI, λ ∈ C}. In order to show it, notice that su(2) ⊕ I ⊂< X > commute with every matrix
of the form I ⊕X, X ∈ su(2) and elements I ⊕ su(2) ⊂< X > commute with every matrix of
the form X ⊕ I, X ∈ su(2). Hence C(X ) = {λI} = C(su(4)) although < X >6= su(4).

The above example shows, that equality of commutants for defining representation is not suffi-
cient to decide universality. It turns out, that the crucial concept is the adjoint representation
ad : g 7→ so(g).

Theorem 4.2 (Universality criterion for Lie algebras [70, 71]). Let g be a compact semisimple
Lie algebra and X = {X1, . . . , Xn} ⊂ g its finite subset. X generates g if and only if
C(adg) = C(adX ).

Proof. Assume that g is a semisimple Lie algebra with n components, i.e. g = ⊕ni=1gi. In
what follows we will denote by h ⊂ g the Lie algebra generated by X . Assume that h 6= g but
C(adg) = C(adX ). The equality of commutants implies that h has nonzero intersection with
every simple component of g, otherwise C(adX ) must be larger than C(adg).
Using the Killing form we can decompose g into a direct product of orthogonal vector spaces
g = h ⊕ h⊥. Therefore, for X ∈ h operators adX respect the decomposition g = h ⊕ h⊥ and
have a block diagonal structure:

adX =

(
adX

∣∣
h

0

0 adX
∣∣
h⊥

)
. (4.3)

In the next step of the proof we will find an operator that commutes with any adX , X ∈ h.
Such an operator is the orthogonal, with respect to the Killing form, projection operator onto
h, which will be denoted by P : g → h. Note, however, that P ∈ C(adg) implies that h would
be an ideal of g. But the only ideals of g are direct sums of its simple components. Thus h is
either g which is a contradiction or h is a direct sum of k < n simple components of g which is
again a contradiction.
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In particular, if g is a simple Lie algebra, then by the virtue of Thoorem 2.14 and by the Fact
2.8 we obtain immediately:

Corollary 4.3. Let g be a compact simple Lie algebra and X = {X1, . . . , Xn} ⊂ g be its finite
subset. X generates g if and only if C(adg) = {λI : λ ∈ R}.

Remark 4.1. It is worth stressing that universality criteria on the level of Lie groups require
additional conditions comparing to the level of Lie algebras. In particular, the analogous criteria
to Theorem 4.4 and Corollary 4.5 can be satisfied also by a set S generating a finite group.
Therefore in case of Lie groups we need an additional criterion providing that < S > is infinite.

4.1.2. Necessary universality condition for compact semisimple Lie
groups

The main purpose of this section is to formulate an analogous criterion as Theorem 4.2 on
the level of Lie groups. To this end we assume that a considered Lie group is compact and
connected, which implies that the exponential map is surjective.

Let C(AdG) = {L ∈ End(g) : ∀g ∈ G [Adg, L] = 0}, where Ad : G 7→ SO(g) is the adjoint
representation of G, be the space of endomorphisms of g that commute with all Adg, where
g ∈ G. From Jacobi identity we know, that:

• C(AdG) is a Lie subalgebra of End(g).

• If L ∈ End(g) commutes with Adg and Adh then it also commutes with Adgh.

In what follows we will denote by C(AdS) the solution set of

[Adg1 , ·] = 0, . . . , [Adgn , ·] = 0.

Again, it is clear that C(AdG) = C(AdS) if S generates G. As we will show in the following,
the converse is true only if G is compact, connected, semisimple and infinite.

Theorem 4.4 (Necessary universality condition [70, 71]). Let G be a compact connected
semisimple Lie group and S = {g1, . . . , gn} ⊂ G be its finite subset such that < S > has
infinite number of elements and the projection of < S > onto every simple component of G is
also infinite. S generates G if and only if C(AdG) = C(AdS).

Proof. The proof of Theorem 4.4 is analogous to the proof of Theorem 4.2. Let us denote by
H the group generated by S, i.e. H = < S > and by He the identity component of H. Recall
that He is a normal subgroup of H. By our assumption H is a compact but not necessarily
connected Lie group that contains infinite number of elements, like in Figure 4.2. Let h ⊂ g be

Figure 4.2: The proof of Theorem 4.2.
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the Lie algebra of He and let m be the number of simple components of g = Lie(G). Under
the assumption C(AdG) = C(AdS), h has nonzero intersection with every simple component
of g. By the analogy to Theorem 4.2 assume that h 6= g but C(AdG) = C(AdS). Using the
Killing form we can decompose g into a direct product of vector spaces g = h ⊕ h⊥. For
any g ∈ H, X ∈ h and Y ∈ h⊥ we have AdgY ∈ h and AdgY ∈ h⊥. The latter is true as
B(AdgY,X) = B(Y,Adg−1X) = 0, for any X ∈ h. Therefore, for h ∈ H the operators Adh
respect the decomposition g = h⊕ h⊥ and have a block diagonal structure:

Adh =

(
Adh

∣∣
h

0

0 Adh
∣∣
h⊥

)
. (4.4)

Let P : g → h be the orthogonal projection with respect to the Killing form onto h. Then
obviously [P,Adh] = 0 for any h ∈ H. Note, however, that if P belonged to C(AdG) then h
would be AdG invariant subspace of g. But the only Ad-invariant subspaces of g are simple
components of g. Hence either h = g which is a contradiction or h is a direct sum of k < n
simple components of g which again is a contradiction as h has nonzero intersection with all m
simple components.

If G is a simple Lie group, then using Theorem 2.14 we can simplify Theorem 4.4 as follows:

Theorem 4.5. [70, 71] Let G be a compact connected simple Lie group and S = {g1, . . . , gn}
be its finite subset. Assume < S > is infinite. The set S generates G if and only if C(AdG) =
{λI : λ ∈ R}.

Let us finish this section with some additional remarks regarding calculation of C(AdS). Assume
that vec(L) is the vectorization of matrix L, i.e. the vector obtained by stacking the columns
of the matrix L on top of one another. One easily calculates that

[L,Adg] = 0⇔
(
I ⊗ Adg − Adg† ⊗ I

)
vec(L) = 0.

Next, we define the matrix

LS =

 I ⊗ Adg1 − Adg†1
⊗ I

...
I ⊗ Adgn − Adg†n ⊗ I

 . (4.5)

Then the problem of checking the necessary universality criterion simplifies to computing the
kernel of LS and it can be reformulated as follows:

Lemma 4.6. [71] C(AdS) = {λI : λ ∈ R} if and only if the kernel of LS is one-dimensional.

4.1.3. Gates and their Lie algebra elements

Assume that we have a n-element set X of d-level Hamiltonians and we want to use them to
construct a set S of one-qudit gates (or vice versa). In this section we will describe such a
construction in details and show, when the spaces C(AdS) and C(adX ) can be different.

First, we will explain how to assign the set of Lie algebra elements X to any set of gates S and
easily compute their adjoint representation. In what follows, whenever we speak about the Lie
algebra elements associated to gates we mean matrices constructed according to the procedures
presented in this section.
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It is known [41] that every unitary matrix U ∈ SU(d) is diagonalizable, i.e. there is a unitary
matrix V ∈ SU(d) such that D = V †UV = diag{eiφ1 , . . . , eiφd}, where the nonzero entries of D
constitute the spectrum of U and φ1, . . . , φd are called spectral angles. The corresponding Lie
algebra element X ∈ su(d) can be derived by calculating a logarithm of U . This can be done
using the decomposition U = V DV † and it boils down to calculating logarithms of the diagonal
matrix D. As the logarithm of z ∈ C is not uniquely defined we will use the convention that
log z = arg(z), where arg(z) is the argument of z and we assume arg(z) ∈ [0, 2π).

Let us choose X ∈ su(d) that satisfies U = eX . Using the decomposition U = V DV † we get

X = V D̃V †, D̃ = diag{iφ1, . . . , iφd}, where φi ∈ [0, 2π).

This way we assign the set of Lie algebra elements X = {X1, . . . , Xn} ⊂ su(d) to any set of
gates S = {U1, . . . , Un} ⊂ SU(d).

Matrices in SO(d) typically cannot be diagonalized by the orthogonal group as their eigenvalues
are complex numbers [41]. Nevertheless orthogonal transformation allows to transform any
O ∈ SO(d) to a block diagonal form R = V tOV with two types of blocks:

1. one identity matrix Ik of dimension 0 ≤ k ≤ d,

2. 2× 2 rotations by angles φi ∈ (0, 2π), i.e. matrices O(φi) from SO(2).

Let us again find X ∈ so(d) such that O = eX . Throughout this chapter we choose X = V R̃V t,
where R̃ has the same block diagonal structure as R and

1. the block corresponding to the identity block of R is the zero matrix 0k of dimension
0 ≤ k ≤ d,

2. the blocks corresponding to 2 × 2 φi-rotation blocks of R are matrices
(

0 φi
−φi 0

)
∈

so(2), where every φi ∈ (0, 2π).

Using the above procedure, to any set of gates S = {O1, . . . , On} ⊂ SO(d) we assign the set of
Lie algebra elements X = {X1, . . . , Xn} ⊂ so(d).

In Sections 4.1.3.1 and 4.1.3.2 we will compute adjoint representation for diagonalized elements
of the groups SU(d), SO(d) and their Lie algebra elements.

4.1.3.1. The case of SU(d)

Let us diagonalize a matrix Ui ∈ S as Ui = ViDiV
†
i , where Vi ∈ SU(d) and Di = {eφi1 , . . . , eφid},

φij ∈ [0, 2π). Next, notice that the adjoint representation is a group homomorphism, therefore
it satisfies

AdUi = AdViDiV †i
= OiAdDiO

t
i , O = AdVi ∈ SO(d2 − 1).

Let us order the standard basis of su(d) as follows

{X12, Y12, . . . , Xd−1,d, Yd−1,d, Z1,2, . . . Zd−1,d}.
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Direct calculations show that the matrix AdDi in this basis has a block diagonal form:

AdDi =



O(φi1,2)
. . .

O(φi1,d)
. . .

O(φi2,d)
. . .

O(φid−1,d)
Id−1


, (4.6)

where

O(φik,l) =

(
cos(φik,l) sin(φik,l)
− sin(φik,l) cos(φik,l)

)
, where, φik,l := φik − φil, (4.7)

and Id−1 is the (d− 1)× (d− 1) identity matrix. Note that φik,l ∈ (−2π, 2π) as φk, φl ∈ [0, 2π).

Similarly, elements of X corresponding to elements of S are given by Xi = ViD̃iV
†
i and D̃i =

i{φi1, φi2, . . . , φid}. Hence adXi = adViD̃iV †i
= OadD̃iO

t, and we have (in the standard basis of
su(d) ordered as previously):

adD̃i =



X(φi1,2)
. . .

X(φi1,d)
. . .

X(φi2,d)
. . .

X(φid−1,d)
0d−1


, (4.8)

where

X(φik,l) =

(
0 φik,l
−φik,l 0

)
, where, φik,l = φik − φil, (4.9)

and 0d−1 is (d− 1)× (d− 1) zero matrix.

Comparing structures of matrices AdDi and AdD̃i we deduce that the only situation when
C(AdS) can be larger than C(adX ) is when at least one spectral angle of AdD̃i satisfies φ

i
k,l = ±π.

In this case AdDi has additional degeneracy compared to adD̃i as O(φik,l) = O(±π) = −I2 and
one can construct a rotation matrix from SO(d2 − 1) that commutes with AdDi .

Let Pk,l be the rotation plane corresponding to the angle φik,l = ±π. Define a rotation Ok,l ∈
SO(d2−1) whose elementary rotation planes are exactly as in AdD̃i except Pk,l which is replaced
by a plane P ′ such, that Pk,l ⊥ P ′. This can be achieved using available d − 1 directions
corresponding to Id−1. As we will show in Section 4.4 orthogonal rotations by angle π commute
with each other, therefore [AdUi , O

k,l] = 0 and [adXi , O
k,l] 6= 0. Hence the space C(AdUi) is

larger than C(adXi) and there is possibility that it might be true also for sets C(AdS) and
C(adX ). As a conclusion we get

71



Fact 4.1. [70, 71] Let S = {U1, . . . , Un} ⊂ SU(d) and X = {X1, . . . , Xn} be the corresponding
set of Lie algebra elements (constructed as described in Section 4.1.3). The space C(AdS) can
be larger than C(adX ) if and only if the difference between spectral angles for at least one of the
matrices Ui ∈ S is equal to ±π.

4.1.3.2. The case of SO(d)

The procedure presented in this paragraph consists of the same steps as in Section 4.1.3.1.
Again, let Oi ∈ S be put into a block diagonal form Oi = ViRiV

†
i , where Vi ∈ SO(d) and Ri is

a block diagonal matrix described in the beginning of this section. Note next that

AdOi = AdViRiV †i
= AdViAdRiAdtVi .

Direct calculations show that each matrix AdRi can be brought to the standard block diagonal
form containing the following blocks

1. O(φia,b) and O(ψia,b), where φia,b = φia − φib, ψia,b = φia + φib, a < b. The number of these
blocks is k(k − 1).

2. The identity block of dimension k + (d−2k)(d−2k−1)
2

.

3. k(d− 2k) blocks O(φij), where j ∈ {1, . . . , k}.

Matrices adXi have the same structure as matrices AdOi , i.e. they consist of

1. k(k− 1) blocks of the form
(

0 φia,b
−φia,b 0

)
∈ so(2) and

(
0 ψia,b
−ψia,b 0

)
∈ so(2), where

φia,b = φia − φib, ψia,b = φia + φib, a < b.

2. The zero block of dimension k + (d−2k)(d−2k−1)
2

.

3. k(d− 2k) blocks
(

0 φij
−φij 0

)
∈ so(2), where j ∈ {1, . . . , k}.

Repeating the reasoning for SU(d) we get:

Fact 4.2. [71] Let S = {O1, . . . , On} ⊂ SO(d) and X = {X1, . . . , Xn} ⊂ so(d) be the cor-
responding set of Lie algebra elements (constructed as described in Section 4.1.3). The space
C(AdS) can be bigger than C(adX ) if and only if the difference or the sum of spectral angles φia
and φib for at least one of the matrices Oi ∈ S is an odd multiple of π.

4.2. Sufficient universality criterion
Having defined the necessary universality criterion, we can formulate criteria providing that
< S > is infinite. It is worth stressing that the problem of deciding if a finitely generated group
is infinite has been studied intensively and there are some algorithms that allow checking this
property (see e.g. [4, 5, 24, 23]). However, our aim was to base our reasoning on the set of basic
properties of compact connected simple Lie groups and make it as simple as possible. Therefore
our inspiration was rather a result of Kuranishi [51] who proved that S ⊂ G generated G if its
elements did not commute and were close enough to the neutral element of G (see also [31]).
In the following we will specify this distance and express it in terms of spectra of elements from
S. On the other hand our approach for checking if < S > is infinite is also related to [32, 43],
however the conceptual differences in both approaches are significant and the methods should
be treated as independent.
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4.2.1. Conditions for < S > to be infinite

We start this section from defining open balls in G of radius r = 1/
√

2 that are centered around
elements from Z(G):

Bα = {g ∈ G : ‖g − αI‖ < 1/
√

2}, αI ∈ Z(G), (4.10)

B =
⋃

αI∈Z(G)

Bα. (4.11)

As we will show in the following a finite subset of B1 generates G if and only if the corresponding
Lie algebra elements generate g.

Lemma 4.7. [71] Let g, h ∈ B1 and assume [g, h]• 6= I. The group < g, h > generated by g, h
is infinite.

Proof. We will prove this lemma by induction. Define the sequence g0 = g, g1 = [g0, h]•,
gn = [gn−1, h]•. By our assumptions ‖h− I‖ = d ≤ 1/

√
2 . Therefore using Lemma 2.17 we get

‖gn − I‖ ≤
√

2d‖gn−1 − I‖.

Thus ‖gn − I‖ ≤ (
√

2d)n‖g − I‖ and gn → I, when n → ∞. Now assume that the sequence
is finite, i.e. for some N we have gN = I. By Lemma 2.17 that means [gN−1, h]• = I. But
gN−1 = [gN−2, h]•, hence [gN−2, h]• = I. Repeating this argument for any 1 < k < N − 1 we
get [g, h]• = I which is a contradiction. Therefore < g, h > is infinite.

This result can be generalized for g, h that are close enough to arbitrary elements of Z(G).

Corollary 4.8. Let g ∈ Bα1 and h ∈ Bα2, where α1 and α2 are such that α1I, α2I ∈ Z(G) and
assume [g, h]• /∈ Z(G). Then the group < g, h > is infinite.

Proof. If α1 = α2 = 1 the result follows directly from Lemma 4.7. For all other αi’s let
g′ = α−1

1 g and h′ = α−1
2 h. Then h′, g′ ∈ B1 and [g′, h′]• 6= I. Thus by Lemma 4.7, < g′, h′ >

is infinite. Note that < g, h > equal to < g′, h′ > is up to the finite covering and therefore is
infinite too.

Figure 4.3: The group SU(d) with the exemplary open balls Bα centered at elements from
Z(SU(d)).

In what follows we provide explicit conditions for elements of G to belong to balls Bα in terms of
their spectra. To this end let αmI be the elements of Z(G). By the definition of the Frobenius
norm (2.39):

‖g − αmI‖2 = tr(g − αmI)(g∗ − α∗mI) = 2trI − α∗mtrg − αmtrg∗. (4.12)
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Recall that central elements of SU(d) are of the form αI, where αm = e2imπ/d. Let {eiφ1 , eiφ2 , . . . , eiφd}
be the spectrum of Ud ∈ SU(d). The conditions for Ud ∈ SU(d) to belong to the ball Bαm read:

Ud ∈ Bαm ⇔
d∑
i=1

sin2 φi − 2mπ/d

2
<

1

8
,

d∑
i=1

φi = 0 mod 2π. (4.13)

The center of SO(2k+1) is trivial and hence we have only one ballB1. Let {1, eiφ1 , e−iφ1 , . . . , eiφk , e−iφk}
be the spectrum of O2k+1 ∈ SO(2k + 1). We have

O2k+1 ∈ B1 ⇔
k∑
i=1

sin2 φi
2
<

1

16
. (4.14)

Finally Z(SO(2k)) = {I,−I} and we have two balls B1, B−1. Let

{eiφ1 , e−iφ1 , . . . , eiφk , e−iφk},

be the spectrum of O2k. The conditions for the spectral angles are fo the form

O2k ∈ B1 ⇔
k∑
i=1

sin2 φi
2
<

1

16
, (4.15)

O2k ∈ B−1 ⇔
k∑
i=1

sin2 φi − π
2

<
1

16
. (4.16)

Theorem 4.9. [71] Let S = {g1, . . . , gn} ⊂ G be such that gi ∈ Bα, where αI ∈ Z(G) and let
X = {X1, . . . , Xn} ⊂ g be the Lie algebra elements assigned to S (constructed as described in
Section 4.1.3). S generates G if and only if X generates g.

Proof. Assume that matrices from S generate an infinite subgroup and C(AdS) = C(AdG). Then
by Theorem 4.4 we have < S > = G. The situations when spaces C(AdS) and C(adX ) can be
different are characterized by Facts 4.1 and 4.2. Recall that for S ⊂ SU(d) the spaces C(AdS)
and C(adX ) may differ if and only if for one of the matrices gi ∈ S we have φia,b = (2k + 1)π
and φia,b is a spectral angle of Adgi . But then φia = φib ± π and for some m we arrive at

sin2 φ
i
b ± π − 2mπ/d

2
+ sin2 φ

i
b − 2mπ/d

2
= 1,

which means gi does not satisfy (4.13).
Assume next that S ⊂ SO(d), then C(AdS) and C(adX ) can differ if and only if the difference
or the sum of spectral angles φia and φib is equal to an odd multiple of π. Then we get the
conditions:

1. For odd d
sin2 ±φib ± π

2
+ sin2 φ

i
b

2
= 1,

2. For even d

sin2 ±φib ± π
2

+ sin2 φ
i
b

2
= 1,

sin2 ±φib ± π − π
2

+ sin2 φ
i
b − π

2
= 1,

which means gi does not satisfy (4.14), (4.15) or (4.16).
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4.2.2. Universal sets for G

In this section we consider situation when not all the matrices belonging to S are contained in B.
We already know that if there are two elements g, h ∈ < S >∩B such that [g, h]• /∈ Z(G), then
the group < S > is infinite. We will show that for S that satisfies the necessary universality
criterion, i.e. C(Adg1 , . . . ,Adgk) = {λI} this is actually an equivalence relation.

Lemma 4.10. [71] Let S = {g1, . . . , gk} ⊂ G be such that C(Adg1 , . . . ,Adgk) = {λI}. The
group < S > is infinite if and only if there are at least two elements g, h ∈ < S > ∩ B
satisfying [g, h]• /∈ Z(G).

Proof. Assume < S > is infinite. Then under the assumption C(AdS) = {λI} we have < S > =
G. Thus balls Bα must contain elements of < S > commuting to noncentral elements and the
result follows. On the other hand if there are at least two elements g, h ∈ < S > such that
they belong to some balls Bα, where αI ∈ Z(G), and [g, h]• /∈ Z(G). Then < S > is infinite by
Corollary 4.8.

We already know that the necessary universality criterion places constraints on the structure
of the infinite < S >. It turns out that this happens also when < S > is finite. The constrains
regard the structure of < S > ∩B.

Lemma 4.11. [71] Let S = {g1, . . . , gn} ⊂ G be such that C(Adg1 , . . . ,Adgn) = {λI}. Then
either the intersection of < S > with B is dense in B or is a subgroup of Z(G). In the first
case < S > = G and in the second one < S > is finite.

Proof. The group < S > can be either infinite or finite. When it is infinite, then by the
necessary universality condition, i.e. C(Adg1 , . . . ,Adgn) = {λI}, we have < S > = G and it is
obvious that B ∩ < S > is dense in B. Assume next that < S > is finite. By Lemma 4.10 the
group commutators of elements from B ∩ < S > belong to Z(G). We first show that in fact
they are equal to the identity, i.e. elements from B ∩< S > commute. To see this let h1 ∈ Bα1

and h2 ∈ Bα2 . Assume [h1, h2]• ∈ Z(G). One can always find h̃1, h̃2 ∈ B1 such that h1 = α1h̃1

and h2 = α2h̃2. We have:

[h1, h2]• = [α1h̃1, α2h̃2]• = α1h̃1α2h̃2α
−1
1 h̃−1

1 α−1
2 h̃2 = [h̃1, h̃2]•. (4.17)

But by inequality (2.56) we have [h̃1, h̃2]• ∈ B1 and it is also easy to see that Bαi ’s are disjoint.
Thus [h1, h2]• = I. Next we note that each Bα ∩ < S > is invariant under the conjugation by
elements from G. Let {h1, . . . , hm} be all elements from Bα∩ < S >. Once again we can find
elements {h̃1, . . . , h̃m} ⊂ B1 satisfying hi = αh̃i. Let g 3 Xi = log h̃i (constructed as described
in Section 4.1.3). Thus elements of Bα∩ < S > are of the form {αeX1 , . . . , αeXm}. We also
know that Bα∩ < S > is AdS invariant, i.e.

giαe
Xjg−1

i = αAdgie
Xj = αeXr , gi ∈ S, (4.18)

where i ∈ {1, . . . , n} and j, r ∈ {1, . . . ,m}. Thus we have Adgie
Xj = eXr . As the distance from

the identity of the left and right side is smaller than 1 we have log Adgie
Xj = log eXr . By the

construction, log eXr = Xr and from our definition of logarithm:

log Adgie
Xj = Adgi log eXj = AdgiXj.

Hence AdgiXj = Xr and the subspace {X1, . . . , Xm} ⊂ g is an invariant subspace for all
matrices {Adg1 , . . .Adgk}. By the condition C(Adg1 , . . . ,Adgn) = {λI} this subspace must be
either 0 or g. Assume it is g. Recall that

[αeXi , αeXj ] = 0, i, j ∈ {1, . . . , k}.
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Thus there is U such that αeXi = αeUDiU
−1 , where Di is diagonal. Hence Xi = UDiU

−1. Thus
matrices {X1, . . . , Xm} commute and we get a contradiction. Hence < S > ∩Bα is either empty
or αI. The result follows.

Lemma 4.11 leads to the following conclusion:

Corollary 4.12. Let S = {g1, . . . , gn} ⊂ G be such that C(Adg1 , . . . ,Adgn) = {λI}. Then
< S > is infinite if and only if there is an element in < S > that belongs to B and does not
belong to Z(G).

In general S may contain elements that do not belong to B. In the following we will show that
we can move every element of G into Bα for some αI ∈ Z(G) by taking powers. Moreover there
is a global upper bound for the required power, which stems from the fact that G is a compact
group.

Fact 4.3. [71] For groups G = SU(d) and G = SO(d) there is NG ∈ N and some q ∈ Z+,
1 ≤ q ≤ NG, such that for every g ∈ G, gq ∈ Bαm for some αmI ∈ Z(G).

Proof. Let us first recall that by the Dirichlet theorem (see Theorem 2.8) for given real numbers
x1, x2, . . . , xn we can find q ∈ Z+ so that qx1, . . . , qxn all differ from integers by as little as we
want. Let {φ1, . . . , φk} be the spectral angles of g ∈ G and let φi = 2πxi, where xi ∈ [0, 1).
By Theorem 2.8 we can always find q such that qxi’s are close enough to integers to make gq
to belong to B1. For g ∈ G let qg be the smallest positive integer such that gqg ∈ Bα for some
αI ∈ Z(G) (by Dirichlet theorem we know that qg < ∞). Let Oqgg be an open neighborhood1

of g such that for any h ∈ Oqgg we have hqg ∈ Bα.2 Let {Oqgg }g∈G be the resulting open cover
of G. As G is compact there is a finite subcover {Oqgigi } and hence NG = supiqgi is well defined
and finite.

For g ∈ G let 1 ≤ q ≤ NG denote the smallest integer such that gq ∈ B. Using Corollary 4.12
we deduce that < S > is finite if and only if for every g ∈< S > we have gq ∈ Z(G). This in
turn places certain constrains on the spectra of elements belonging to < S >.

Definition 4.2. [70, 71] Assume g /∈ B. The spectrum of g is exceptional if for some 1 ≤ q ≤
NG we have gq ∈ Z(G).

In other words the spectrum of g is exceptional if its spectrum satisfy one of the following
conditions:

1. g ∈ SU(d) and all spectral elements of g are qth roots of α ∈ C, where αd = 1, for some
fixed 1 ≤ q ≤ NSU(d).

2. g ∈ SO(2k + 1) and all spectral elements of g are qth roots of unity for some fixed
1 ≤ q ≤ NSO(2k+1).

3. g ∈ SO(2k) and all spectral elements of g are qth roots of α, where α2 = 1, for some fixed
1 ≤ q ≤ NSO(2k+1).

Notice that in all cases the set of exceptional spectra is a finite set. Using the definition of
exceptional spectra we can reformulate Corollary 4.12 as follows:

Theorem 4.13. [71] Let S = {g1, g2, . . . , gn} ⊂ G, where G = SO(d) and d 6= 4 or G = SU(d).
Assume C(Adg1 , . . . ,Adgn) = {λI} and that there is at least one element in S for which the
spectrum is not exceptional. Then < S > = G.

1This kind of a neighborhood exists as taking powers is a continuous operation.
2Note that there might be some h ∈ Oqg

g for which qq is not optimal but this will not play any role.
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4.2.3. Maximal exponent NG

We mentioned in the previous section that for every compact group G there is the maximal
exponent, denoted by NG such, that

∀g ∈ G, gq ∈ Z(G), 1 ≤ q ≤ NG. (4.19)

In Section 4.2.3.1 we will calculate the maximal exponent for G = SU(2) and G = SO(3) using
Dirichlet’s approximation theorem for one number (see Theorem [25]). We will also show that
this approach enables to find an exact value of NG. In Section 4.2.3.2 we will use Theorem 2.8
to find an upper bound for NG in all other cases. We will also compare the obtained bound
with numerical results and discuss the error.

4.2.3.1. Maximal exponent for SU(2) and SO(3)

In this short section we prove the following fact:

Fact 4.4. [71] NSO(3) = 12 and NSU(2) = 6.

Proof. Let O ∈ SO(3) and let [0, 2π) 3 φ = 2aπ be its spectral angle. By Theorem 2.7, for
a given N there are integers p and 1 ≤ q ≤ N such that |qa − p| ≤ 1

N+1
. Multiplying this

inequality by π we get |q φ
2
− pπ| ≤ π

N+1
. Note that (4.14) simplifies to | sin ψ

2
| < 1

4
, i.e. for a

given φ we look for n such that |q φ
2
− pπ| < arcsin 1

4
. We combine these two observations to

find the smallest N such that π
N+1

< arcsin 1
4
. Transforming this inequality we get:

N =

⌈
π − arcsin 1

4

arcsin 1
4

⌉
= 12. (4.20)

Formula (4.20) gives an upper bound forNSO(3). Note however that for φ
2

= arcsin 1
4
the smallest

q such that |q arcsin 1
4
− π| < arcsin 1

4
is exactly q = 12 (see Figure 4.4(a)), hence NSO(3) = 12.

Assume next U ∈ SU(2) and let [0, 2π) 3 φ = aπ be its spectral angle. By Theorem 2.7 for a
given N there are integers p and 1 ≤ q ≤ N such that |qa − p| ≤ 1

N+1
. Recall, however, that

Z(SU(2)) = {I,−I}, hence we need to multiply this inequality by π
2
instead of π, which yields

|q φ
2
− pπ

2
| ≤ π

2(N+1)
. In this case (4.14) simplifies to | sin ψ

2
| < 1

4
or | sin ψ−π

2
| < 1

4
, i.e. for a given

φ we look for n such that |q φ
2
− pπ

2
| < arcsin 1

4
. Combining these two observations we need to

find the smallest N such that π
2(N+1)

< arcsin 1
4
. It is given by:

N =

⌈ π
2
− arcsin 1

4

arcsin 1
4

⌉
= 6. (4.21)

Formula (4.21) gives an upper bound for NSU(2), however direct calculations show that for
φ
2

= arcsin 1
4
the smallest q for which |q arcsin 1

4
− π

2
| < arcsin 1

4
is exactly q = 6 (see figure

4.4(b)), hence NSU(2) = 6.

Let us denote the sets of exceptional angles for SU(2) and SO(3) by LSU(2) and LSO(3) respec-
tively. Their elements are of the form LG = {aπ : a ∈ L′G}, where

L′SU(2) = {0, 1

2
, 1,

3

2
,
1

3
,
2

3
,
4

3
,
5

3
,
1

4
,
3

4
,
5

4
,
7

4
,
1

5
,
2

5
,
3

5
,
4

5
,
6

5
,
7

5
,
8

5
,
9

5
,
1

6
,
5

6
,
7

6
,
11

6
},

L′SO(3) = L′SU(2) ∪ {
2

7
,
4

7
,
6

7
,
8

7
,
10

7
,
12

7
,
2

9
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9
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8

9
,
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9
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9
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11
,
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11
,
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11
}. (4.22)
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1

Figure 4.4: (a) Condition (4.14) for SO(3). Black dots correspond to n arcsin 1
4
and dashed

segments are determined by | sin φ
2
| < 1

4
, (b) Conditions (4.13) for U ∈ SU(2). Black dots

corresponds to n arcsin 1
4
and dashed segments are determined by | sin φ

2
| < 1

4
or | sin φ−π

2
| < 1

4
.

Using the Euler totient function we can easily calculate the number of exceptional angles for
each group.

|LSU(2)| =
6∑

n=1

ϕ(n) +
6∑

n=4

ϕ(2n) = 24, (4.23)

|LSO(3)| =
12∑
n=1

ϕ(n) = 46. (4.24)

4.2.3.2. Maximal exponent for SU(d), d ≥ 3 and SO(d), d ≥ 4

In this section we will find upper bounds for NG in case when G = SU(d), d ≥ 3 and G =
SO(d), d ≥ 4. To this end we will use Dirichlet’s approximation theorem in many dimensions
[25, 38]. For reminder, this theorem describes how to approximate points of n-dimensional
lattice of the volume V = 1 with rational coordinates with a given accuracy. More precisely,
the theorem claims that there exists an integer 1 ≤ q ≤ N such, that a set of real numbers
ζ1, . . . , ζn can simultaneously approximate a set of integers p1, . . . , pn as:

∀i = 1, . . . , n |qζi − pi| ≤
1

N1/n
. (4.25)

Notice, that we cannot apply Theorem 2.8 directly to our problem. The modifications that we
need come from the fact that we cannot approximate any points of the lattice. To show this,
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let φ1, φ2, . . . , φd be the spectral angles of g ∈ G that we want to approximate with kπ
d
, k ∈ Z

using simultaneous multiplication by some q ∈ Z+. The point is that the condition gq ∈ Z(G)
places the following constraint on q:

1. In case when G = SU(d)

qφ1 =
2πm

d
mod 2π,

. . .

qφd =
2πm

d
mod 2π.

2. In case when G = SO(2k)

qφ1 = ±π mod 2π,

. . .

qφd = ±π mod 2π.

This observation enables to notice that the number of lattice points corresponding to elements
of Z(G) is in fact equal to 1

|Z(G)| of the number of all lattice points. As an example we consider
the group SU(3), for which Z(SU(3)) = {I, e2iπ/3I, e4iπ/3I}. The corresponding lattice is de-
picted in Figure 4.5.

Figure 4.5: Lattice of points for the group SU(3). The axes correspond to independent spectral
angles φ1

2
, φ2

2
of a matrix U . Dots represent angles kπ

3
, k ∈ Z+. The values of φ1

2
, φ2

2
such, that

U ∈ Z(SU(3)) are denoted by circles. It is easy to notice that the number of circles is equal to
1
3
of the number of all dots.
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In order to make these considerations more formal we will modify Theorem 2.8. To this end
for any x ∈ R and d ∈ Z+ we define {x}k to be the difference between x and the largest p+ k

d

that is smaller or equal to x, where p ∈ Z, k ∈ {0, 1, . . . , d − 1}. Clearly {x}k ∈ [0, 1). For
x = (x1, . . . , xn) ∈ Rn we define {x}k = ({x1}k, . . . , {xn}k). Let Ln,d be the lattice in Rn given
by points

(q1, . . . , qn), (q1 +
1

d
, . . . , qn +

1

d
), . . . , (q1 +

d− 1

d
, . . . , qn +

d− 1

d
),

where q1, . . . qn ∈ Z. An important property of the lattice Ln,d is that for any p, q ∈ Ln,d we
have p± q ∈ Ln,d. As a direct consequence of this property we get the following theorem.

Theorem 4.14. [71] For ζ = (ζ1, . . . , ζn) and positive ε < 1
2d

there exist: integer 1 ≤ 1 ≤
⌈

1
dεn

⌉
and a point p = (p1, . . . , pn) ∈ Ln,d such that ∀i ∈ {1, . . . , n}:

|qζi − pi| < ε. (4.26)

Proof. For a given point ζ = (ζ1, . . . , ζn) ∈ Rn consider dQn + 1 points:

{qζ}0, {qζ}1, . . . , {qζ}d−1, q ∈ {0, . . . , Qn} (4.27)

Next, take an n-dimensional cube [0, 1)n and divide it into dQn boxes by drawing planes parallel
to its faces at distances 1

n√
dQ

. By Dirichlet’s box principle, at least two points from (4.27) fall
to the same box. Let us denote points by {p1ζ}i and {p2ζ}j, where i, j ∈ {1, . . . , d − 1} and
p1 < p2. Note that p1 cannot be equal to p2 as in this case ε > 1

2d
.

As the lattice Ln,d is invariant with respect to addition and subtraction of its points we have
maxl |{(p2 − p1)ζl}k| < 1

n√
dQ

, where k = j − i if i < j or k = d + j − i when i > j. The result
follows.

Fact 4.5. [71] The values of NSO(2k+1) and NSO(2k) are bounded from the above by:

NSO(2k+1) <


(

π

arcsin 1
4
√
k

)k
, (4.28)

NSO(2k) <

1

2

(
π

arcsin 1
4
√
k

)k
. (4.29)

Proof. Recall that the spectral angles of O ∈ SO(d) are {φ1,−φ1, . . . , φk,−φk} in case when
d = 2k or {φ1,−φ1, . . . , φk,−φk, 0} if d = 2k+1. We start our proof from the case of SO(2k+1)
as it has a trivial center. Assume that φi = aiπ for all i ∈ {1, . . . , k}. The lattice π · Lk,1 cor-
responds exactly to points {φ1

2
, . . . , φk

2
} at which the ball B1 (4.15) is centered. Let us next

find the smallest hypercube [−βk
2
, βk

2
]×k contained in the ball B1. To this end one needs to

minimize
∑

i φ
2
i under the condition

∑
i sin

2 φi = 1
16
. Calculations with the use of the La-

grange multipliers show that the coordinates of the minimizing point are all equal and hence
k sin2 βk

2
= arcsin 1

16
. That means βk

2
= arcsin 1

4
√
k
is the half of the edge length of the largest

hypercube contained in B1. We next directly apply Theorem 2.8 and get (4.28).

In case of SO(2k) the center of the group consists of {I,−I}. Therefore we need to define the
lattice π · Lk,2 corresponding to the points {φ1

2
, . . . , φk

2
} at which the balls B1 and B−1 defined

by (4.15), (4.14). In the next step we use the same construction as for SO(2k + 1) for the
ball B1. By the symmetry of π · Lk,2 the same arguments are valid for B−1. Looking at the
hypercube that is contained in one of the balls given by conditions (4.15) and (4.16) we get the
desired result.
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Fact 4.6. [70, 71] For d ≥ 3 the value of NSU(d) is bounded from the above by:

NSU(d) <

⌈
1

d

(
2π

βd

)d−1
⌉
, (4.30)

where βd is such that (d− 1) sin2 βd
2

+ sin2 (d−1)βd
2

= 1
8
.

Proof. For U ∈ SU(d) let {φ1, . . . , φd} be the spectral angles of U . Assume that for every
i ∈ {1 . . . , d − 1} we have [0, 2π) 3 φi = aiπ. As

∑
i φi = 0 mod 2π we can always put

φd = −
∑d−1

i=1 φi. First, we need to find the edge length of the largest hypercube [−βd
2
, βd

2
]×(d−1)

contained in the ball B1. By symmetry of condition (4.14), this length will be the same for
other balls. We need to minimize

∑
i φ

2
i under the condition

∑d−1
i=1 sin2 φi + sin2(

∑d−1
i=1 φi) =

1
8
. Calculations with the use of the Lagrange multipliers show that the coordinates of the

minimizing point are all equal and hence βd satisfies:

(d− 1) sin2 βd
2

+ sin2 (d− 1)βd
2

=
1

8
. (4.31)

In order to apply Theorem 4.14 we need to check if βd
2π
< 1

2d
. By equation (4.31) βd is clearly

close to zero and therefore we can assume that sin βd
2

approximately equals to βd
2
. Then it

can be transformed to βd
2π

= 1

2π
√

2d(d−1)
which is clearly smaller than 1

2d
. Thus we can apply

Theorem 4.14 to the lattice Ld−1,d and the point a = (a1, . . . , ad−1) with ε = βd
2π
< 1

2d
. As a

result we obtain point p ∈ Ld−1,d such that:

|nai − pi| <
βd
2π
, (4.32)

where

n <

⌈
1

d

(
2π

βd

)d−1
⌉
.

The result follows.

Finally we compared theoretical results with numerics. Our aim was to approximate errors
of (4.28), (4.29), (4.30) for the groups SO(4), SO(5) and SU(3), respectively. The results
are presented in Table 4.1. Differences between the bounds and values calculated numerically

G Numerical NG Upper bound for NG

SU(2) 6 6
SU(3) 49 154
SO(3) 12 12
SO(4) 86 151
SO(5) 172 312

Table 4.1: Comparing the values of NG derived from numerical calculations with the upper
bounds (4.6,4.5) for low dimensional groups.

reflect the fact, that the considered hypercubes are rather brutal approximations of the balls
Bα (see Figure 4.6). However, we stress that the choice of hypercubes we made is the most
optimal from the perspective of Dirichlet’s theorem. Let us also note that the upper bound for
NG seems to be more accurate for SO(4) than for SU(3). We believe this stems from the fact
that the ’square-ball‘ area ratio is smaller for SU(3) than for SO(4) (see Figure 4.6). The way
how these ratios should be incorporated into formulas for the upper bound on NG is left as
an open problem. We suppose this should be done by introducing some additional factor that
depends on the square-ball ratio.
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Figure 4.6: The smallest hypercubes contained in the balls B1 for SO(4) and SU(3), respec-
tively.

4.3. The algorithm for checking universality

In this section we present the algorithm for checking universality of an arbitrary set of one-qudit
gates S = {g1, . . . , gn} ⊂ G in a finite number of steps. The algorithm is the main result of this
thesis and, additionally, it has been implemented in Octave (see Appendix 6.3) for a special
case when S = {U(φ1, ~k1), U(φ2, ~k2)} ⊂ SU(2).

The algorithm consists of the following steps:

Step 1 Check if C(AdS) = {λI : λ ∈ R}. This can be done by checking the dimension of the
kernel of the matrix LS (4.5) constructed from the entries of matrices {Adg1 , . . . ,Adgn}
and thus is a linear algebra problem. If the answer is NO the set S is not universal. If
YES, set l = 1 and go to Step 2.

Step 2 Check if there is a matrix g ∈ S for which gqg belongs to B\Z(G), where 1 ≤ qg ≤ NG.
This can be done using formula (2.55). If the answer is YES, S is universal. If the answer
is NO, set l = l + 1. Notice, that we use in fact the upper bound for NG that is strictly
larger than the exact value, but this not play any role for the result.

Step 3 Define the new set S by adding to S words of length l, i.e products of elements from
S of length l. If the new S is equal to the old one, the group < S > is finite3. Otherwise
go to Step 2.

The termination step of the algorithm gives us information about the group generated by S.
In case when S is finite, the algorithm terminates in Step 3 for some l < ∞. Otherwise it
terminates in Step 2 when S is universal, or in Step 1.

Let us show that our algorithm always terminates after a finite number of steps and there is no
possibility to fall into an infinite loop. To this end notice, that such a situation might happen
if and only if < S > would be an infinite group of exceptional matrices. This means that all
elements of < S > would have a finite order. However, such a situation is impossible by the
virtue of Theorem 2.5 (solution of Burnside problem). The same conclusion comes from Lemma
4.11. Next, assume that S generates a finite group. As our procedure allows us to create all
possible products of elements of S, then by definition of a finite group there must be some
l ∈ Z+ such, that < S >=< S >l. Summing up we get:

3If S generate a finite group, then < S > = < S >.
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Corollary 4.15. The algorithm terminates after a finite number of steps.

In what follows we will find the upper and lower bounds for the length l for which our algorithm
returns the result. Obviously we omit the case when the necessary criterion is not satisfied.
Otherwise S either generates a finite group or is a universal set. In the first case we get
immediately that the upper bound for l is the order of < S >. In case, when S is universal l
depends on the spectral gap of the averaging operator TS (see Section 2.5). We will describe
this relation in details in the next section.

4.3.1. Upper bound for l and the spectral gap

In this section we will discuss the upper bound for l in case when S is a set of one-qudit gates.
Next, we will compute l for a set of one-qubit gates for a given spectral gap λ. In Section 4.4
we will compare this result with the numerics.

Fact 4.7. [71] Assume < S > is dense in SU(d). The length of a word that gives termination
of the universality algorithm is at most the length l such that words of length k ≤ l form an
ε-net that covers SU(d), where ε = 1

2
√

2+δ
and δ > 0 is arbitrary small.

Proof. Assume that words of the length k ≤ l built from elements S form an ε-net for SU(d),
where ε = 1

2
√

2+δ
and δ > 0 is arbitrary small. Let U be an element of SU(d) whose distance

from the identity is exactly 1
2
√

2
(see Figure 4.7). Then by Definition 1.3 there must be at least

one word w ∈< S > of length k ≤ l contained in the ball C of radius ε = 1
2
√

2+δ
centered at U .

But this ball is contained in B1 \ I. Hence w gives termination of the universality algorithm in
Step 2. The result follows.

Intuitively speaking, the conditions from Fact 4.7 provide that at least one element from < S >l

belongs to B (similar results are contained in [32]). However, Fact 4.7 does not give a formula
for l providing that the desired 1

2
√

2+δ
-net that covers SU(d) is formed. An exact formula for

such l was given by Harrow et. al. in [39] in a special case, when S was a symmetric subset of
SU(d), i.e. S = {U1, . . . Un, U

−1
1 , . . . U−1

n } ⊂ SU(d). It is worth mentioning that our formulas
differs from [39] by a constant factor as we use a different norm.
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Figure 4.7: The proof of Fact 4.7.

Fact 4.8. [39] Let S be a universal, symmetric set of gates and assume that TS has a spectral
gap. Let λ1 = ‖TS |L2

0(SU(d))‖op. For every U ∈ SU(d), ε > 0 and

l > A log

(
1

ε

)
+B

there is Ul ∈< S >l such that ‖U − Ul‖ < ε, where

A =
d2 − 1

log (1/λ1)
, B =

log
(

2d
2−1/a1

)
+ 1

2
(d2 − 1) log(d2 − 1)

log (1/λ1)
,

and a1 is such that for any ball of radius ε in SU(d) its volume (with respect to normalized
Haar measure) VBε, satisfies

V (Bε) ≥ a1ε
d2−1.

Notice that the upper bound provided by (4.8) can be very large in case when the spectral gap
is very small, e.g. when all elements of S are very close to some matrix U ∈ SU(d). But in that
case they can be simultaneously introduced to a ball Bα and our algorithm requires actually
l = 1 to decide their universality. Thus the bound given in 4.8 is useful for the purpose of our
algorithm only if λ1 is well separated from the group neutral element.

In order to find the lower bound for l assume that S = {U1, . . . , Un, U
−1
1 , . . . , U−1

n }. Let us
denote by N(d, ε) = d 1

V (Bε)
e the number of the balls of radius ε that fill SU(d). The lower

bound for l corresponds to the case when e and every ball Bε contains exactly one element
from < S >l, i.e. when elements of < S >l are uniformly distributed in SU(d). Notice, that a
number of words of length l is equal to |Sl| = 2n(2n− 1)l−1 < (2n)l. Therefore we get:

| < S >l | <
l∑

i=0

(2n)i =
2l+1nl+1 − 1

2n− 1
. (4.33)

In a general case lower bound for l can be found from the condition | < S >l | = N(d, ε).

Example 4.16. In order to give an idea about possible values for the bound stemming from
Fact 4.8, we will find the upper and lower bounds for V (Bε) in SU(2). First, it is known that
for every ε > 0 there exist constants k1 and k2 such, that V (Bε) in SU(2) is bounded by:

k1ε
3 ≤ V (Bε) ≤ k2ε

3, (4.34)
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where k1, k2 are real positive constants. We are interested in the upper and lower bound for
V (Bε) for ε ∈ [0, 1

2
√

2
].

The upper bound for V (Bε) can be found directly by integrating an appropriate function on
the group. Let F be a function defined on SU(2) and assume that elements of SU(2) are
parametrized by the Euler angles φ, ψ ∈ [0, π), ψ′ ∈ [0, 2π) where φ is a spectral angle:

x =

(
cos θ + i cosφ sin θ sinφ sin θ(cosφ′ + i sinφ′)

sinφ sin θ(− cosφ′ + i sinφ′) cos θ − i cosφ sin θ

)
. (4.35)

In this parameterization the normalized Haar measure on SU(2), dµ, depends on the Euler
angles as follows [80]:∫

G

F (θ, φ, ψ)dµ =
1

2π3

∫ π

0

∫ π

0

∫ 2π

0

F (θ, φ, ψ) sin2 φ sinφdφdψdφ′. (4.36)

In what follows we assume that F is a central function satisfying F (ghg−1) = F (h) for all
g, h ∈ SU(2). In this case F (θ, φ, ψ) = F (φ) and the integral (4.36) simplifies to∫

G

F (θ, φ, ψ)dµ =
2

π

∫ π

0

F (φ) sin2 φdφ. (4.37)

For our needs we set F (φ) in the form

F (φ) =

{
1 if | sin φ

2
| ≤ ε

2
√

2

0 otherwise
.

Direct calculations using (4.37) provides

V (Bε) =
2

π

∫ 2 arcsin ε
2
√
2

0

sin2 φdφ =
1

π

∫ 2 arcsin ε
2
√
2

0

(1− cosφ) dφ = (4.38)

=
1

π

(
2 arcsin

ε

2
√

2
− 1

2
sin 4 arcsin

ε

2
√

2

)
(4.39)

In the next step we apply Taylor expansion of (4.39) around ε = 0 up to third order. It is worth
emphasizing here that 1

2
sin 4 arcsin ε

2
√

2
can be expanded in three different ways:

1. Expanding sin up to first order and arcsin up to third order

1

2
sin 4 arcsin

ε

2
√

2
' 1

2
sin

(
2ε√

2
+

1

6

ε3

8
√

2

)
' ε√

2
+

1

6

ε3

8
√

2
. (4.40)

2. Expanding sin up to third order and arcsin up to first order

1

2
sin 4 arcsin

ε

2
√

2
' 1

2
sin

2ε√
2
' ε√

2
− ε3

3
√

2
. (4.41)

3. Expanding sin and arcsin up to third order

1

2
sin 4 arcsin

ε

2
√

2
' 1

2
sin
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2ε√

2
+

1

6

ε3√
2

)
' ε√

2
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6

ε3
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√
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− ε3

3
√

2
. (4.42)
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Expansion of the second term of (4.39) is unique and equal to

2 arcsin
ε

2
√

2
' ε√

2
+

1

3

(
ε

2
√

2

)3

=
ε√
2

+
1

6 · 8
ε3√

2
. (4.43)

Finally we subtract the approximated expressions as in (4.39). One can see immediately that
the terms linear in ε

2
√

2
always cancel out. As for the higher order terms

1. In case 1. the expression 1
π

(
2 arcsin ε

2
√

2
− 1

2
sin 4 arcsin ε

2
√

2

)
reduces to zero.

2. Numerical computations (see Figure 4.8) presents differences between exact V (Bε) and
the approximation using formulas (4.42) and (4.42), respectively.

Figure 4.8: Accuracy of approximation of V (Bε) with the Taylor expansion up to order three.
The horizontal axis represents ε and the vertical axis represents the numerical accuracy. The
thick and dashed lines denote functions V (Bε) − ε√

2π
− ε3

48π
√

2
− f(ε3), where f(ε3) is given by

(4.41) and (4.42), respectively.

As one can see in Figure 4.8 the exact values of V (Bε) are smaller than the approximated values
in any case. This means the approximation gives us an upper bound for V (Bε). According to
Figure 4.8 the best approximation is given by

1

π

(
2 arcsin

ε

2
√

2
− 1

2
sin 4 arcsin

ε

2
√

2

)
≤ 1

π

(
ε3

48
√

2
+

ε3

3
√

2

)
=

17

48
√

2π
ε3,

which gives us k2 = 17
48
√

2π
,

It is worth stressing that this approach does not allow us to find the lower bound for V (Bε).
Instead we can consider the equation V (Bε) = k1ε

3 for ε = 1√
2
:

1

π

(
2 arcsin

1

4
− 1

2
sin 4 arcsin

1

4

)
= k1

(
1√
2

)3

(4.44)

and compute k1 from (4.44) obtaining k1 = 0.0747. The function k1ε
3 is smaller than V (Bε)

for ε ∈ [0, 1√
2
] as we show in Figure 4.9. Finally we get the following bounds for V (Bε)

0.0736ε3 ≤ V (Bε) ≤
17

48
√

2π
ε3 ' 0.07503ε3. (4.45)

Let S = {U(φ1, ~k1), U(φ2, ~k2), U(−φ1, ~k1), U(−φ2, ~k2)} ⊂ SU(2) be a universal set such, that
< S >l is given by (4.33). The optimal value of l that is necessary to terminate the algorithm
is the solution of

4l+1 =
3

0.0736ε3
, ε =

1

2
√

2
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and is equal to l = d3.92456e = 4. As we will show in Section 4.4 this result is in perfect
agreement with numerical calculations.

Figure 4.9: Function F (ε) = V (Bε)− k1ε
3 for ε ∈ [0, 1√

2
]. The horizontal axis represents ε and

the vertical axis represents F (ε). As F (ε) is larger than zero for ε ∈ [0, 1√
2
] we conclude that

k1ε
3 is smaller than V (Bε).

4.4. Universality criteria for one-qubit gates
In this section we restrict our considerations to a set of two qubit gates, denoted by

S = {U(φ1, ~k1), U(φ2, ~k2)} ⊂ SU(2). (4.46)

We are interested, how the necessary universality conditions simplify in such a case. We will
also find the criteria for S to be non-universal and show in Section 4.5 how to deal with this
problem.

4.4.0.1. Necessary universality criterion

We start from reformulating the necessary universality criterion (see Theorem 4.4 and 4.5) for
S given by (4.46). Next we will list all possible groups that can be generated by S.

Fact 4.9. Let u(~k1), u(~k2) ∈ su(2) and U(φ1, ~k1) = exp(φ1u(~k1)), U(φ2, ~k2) = exp(φ2u(~k2)).
Assume that [u(~k1), u(~k2)] 6= 0. The space C(AdU(φ1,~k1),AdU(φ2,~k2)) is larger than {λI : λ ∈ R}
if and only if:

1. φ1, φ2 ∈ {π2 ,
3π
2
},

2. one of φi ∈ {π2 ,
3π
2
} and ~k1 ⊥ ~k2.

Proof. By the virtue of Fact 4.2 the space C(AdU(φ1,~k1),AdU(φ2,~k2)) can be larger than {λI : λ ∈
R} if at least one of the spectral angles of AdU(φ1,~k1), AdU(φ2,~k2) is kπ. Therefore we have to
consider situation when either two angles φ1 and φ2 are equal to kπ

2
or exactly one of φi’s is kπ

2
,

k ∈ {1, 3}.

For the case 1. generators are of the form U
(
kπ
2
, ~k1

)
and U

(
kπ
2
, ~k2

)
, where ~k1, ~k2 are arbi-

trary axes. By the formula (2.72), Ad
U( k1π2 ,~k1) = O(k1π,~k1) and Ad

U( k2π2 ,~k2) = O(k2π,~k2) are

rotation matrices by angles k1π, k2π. Direct calculations shows that a rotation O(φ3, ~k3) by an
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arbitrary angle φ3 and about the axis ~k3 = ~k1 ×~k2 commutes with the rotations O(kπ,~k1) and
O(kπ,~k2) and is obviously different than λI.

Let us consider the case 2. when exactly one of φi’s is kπ
2
. We are given the generators

U
(
kπ
2
, ~k1

)
and U

(
φ2, ~k2

)
. First, note that the rotation O(π,~k), where ~k ‖ ~k2, commutes with

both AdU( kπ2 ,~k1)
= O(kπ,~k1) and AdU(φ2,~k2) = O(2φ2, ~k2) provided ~k1 ⊥ ~k2. Therefore in this

case C(AdU( kπ
2
,~k1),AdU(φ2,~k2)) is larger than {λI : λ ∈ R}. Thus we only need to show that if

~k1 6⊥ ~k2 and exactly one of φi’s is an odd multiple of π, then the space C(AdU( kπ
2
,~k1),AdU(φ2,~k2))

is equal to {λI : λ ∈ R}. To this end we will explain that relaxing orthogonality to an arbitrary
endomorphism gives only λI.

Simple analysis shows that endomorphisms commuting with AdU(φ2,~k2) are of the form

A = α2O(θ2, ~k2) + β2|~k2〉〈~k2|, α2, β2 ∈ R, θ2 ∈ [0, 2π)

On the other hand we know that matrices commuting with AdU( kπ
2
,~k1) are of the form

B = E(~k⊥1 ) + β1|~k1〉〈~k1|,

where E(~k⊥1 ) is an arbitrary matrix acting on the 2-dimensional space perpendicular to ~k1 such
that E(~k⊥1 )~k1 = 0 and β1 ∈ R. Let {~k1, ~k2, ~k12}, where ~k12 = ~k1 × ~k2 be a basis of R3. As A
and B must agree on the basis vectors we obtain the following equations:

β1
~k1 = α2O(θ2, ~k2)~k1 + β2〈~k1|~k2〉~k2, (4.47)

(α2 + β2)~k2 = E(~k⊥1 )~k2 + β1〈~k1|~k2〉~k1, (4.48)

E(~k⊥1 )~k12 = α2O(θ2, ~k2)~k12. (4.49)

The left hand side of (4.49) is a vector perpendicular to ~k1 and the right hand side of (4.49) is a
vector perpendicular to ~k2. The only vector satisfying both of these conditions is proportional
to ~k12 and therefore θ2 = nπ. Hence O(θ2, ~k2) = ±I. From Equation (4.47) we get

β1
~k1 = ±α2

~k1 + β2〈~k1|~k2〉~k2,

which implies β1 = ±α2 and either β2 = 0 or ~k1 ⊥ ~k2. In the first case β2 = 0 ⇒ A = ±α2I
and hence the equality between A and B implies

C(AdU( kπ
2
,~k1),AdU(φ2,~k2)) = {λI : λ ∈ R}.

Therefore the only solution providing a bigger space C(AdU( kπ
2
,~k1),AdU(φ2,~k2)) corresponds to

~k1 ⊥ ~k2.

In what follows we will study the structure of < U(φ1, ~k1), U(φ2, ~k2) >, where ~k1 ⊥ ~k2 and
φ2 = ±π

2
. In particular we will show that in this case the group is either finite or infinite

dicyclic group. To this end we set b := U(φ1, ~k1) and x := U(π
2
, ~k2) and assume that b is of

finite order. Note that the group generated by b and x has the following presentation:

H =< b, x|x4 = I, bn = I, xbx−1 = b−1 > . (4.50)

Important is that −I ∈ H, hence (−b)n = −I for n odd. Setting a = −b we get

H =< a, x|x4 = I, a2n = I, xax−1 = a−1 >, (4.51)
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which is precisely the definition of the dicyclic group of order 4n. In case when a is of the
infinite order we obtain a group consisting of two connected components after closure. The
first one is a one–parameter group {U(φ1, ~k1) : t ∈ R} generated by U(φ1, ~k1) and the second
one is its normalizer {U(π

2
, ~k2)U(t,~k1) : t ∈ R}. The group is presented schematically in Figure

4.10. The only other case when C(AdU(φ1,~k1),AdU(φ2,~k2)) 6= {λI} corresponds to the situation

Figure 4.10: An infinite order dicyclic group < U(φ1, ~k1), U(π
2
, ~k2) >. The ellipses represent

the normalizer {U(π
2
, ~k2)U(t,~k1) : t ∈ R} and the one parameter group {U(t,~k1) : t ∈ R},

respectively.

when both φ1 and φ2 are odd multiples of π
2
. In this case the group generated by U(φ1, ~k1),

U(φ2, ~k2) is the same as the group generated by U(γ,~k12) = U(φ1, ~k1)U(φ2, ~k2) and U(φ2, ~k2).
One can easily calculate that cos γ = ~k1 · ~k2 and ~k12 ⊥ ~k2. Thus the group is once again the
dicyclic group of the order 4n where n is the order of U(γ,~k12).

Lemma 4.17. Assume that U(φ1, ~k1) and U(φ2, ~k2) do not commute and ~k1 · ~k2 = 0 and
φ2 ∈ {π2 ,

3π
2
}. Then < U(φ1, ~k1), U(π

2
, ~k2) > is either

1. the dicyclic group of order 4n

n = max(orderU(φ1, ~k1), orderU(φ1 + π,~k1), (4.52)

when orderU(φ1, ~k1) <∞,

2. the infinite dicyclic group if orderU(φ1, ~k1) =∞.

When φ1, φ2{π2 ,
3π
2
} the group generated by U(φ1, ~k1) and U(φ2, ~k2) is also the dicyclic group of

the order 4n where n is the order of U(γ,~k12) = U(φ1, ~k1)U(φ2, ~k2).

Summing up, the group generated by two noncommuting matrices from SU(2) that do not
satisfy the necessary criterion for universality is either a finite or an infinite dicyclic group.
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4.4.0.2. Sufficient universality criterion

In this section we will continue our study on universality of S = {U(φ1, ~k1), U(φ2, ~k2)}, assum-
ing that S satisfies the necessary universality criterion. In this case one can distinguish two
situations:

1. At least one of φ1, φ2 does not belong to LSU(2).

2. Both φ1 and φ2 belong to LSU(2).

Note that in the case 1. we get immediately from Theorem 4.13 that S is universal. Therefore
the only problematic situation is when both φ1 and φ2 are exceptional angles. In order to check
universality of S in this case we performed computations for all possible pairs of φ1, φ2 ∈ LSU(2)

and arbitrary ~k1, ~k2. Our procedure could be described in the following steps:

Step 1 As SO(3) is the automorphism group of SU(2) we know, that for any O ∈ SO(3),
the group generated by S is isomorphic with the group generated by U(φ1, O~k1) and
U(φ2, O~k2). This freedom allows us to choose O ∈ SO(3) such that O~k1 = [0, 0, 1] and
O~k2 = [sinα, 0, cosα], for some α ∈ [0, 2π).

Step 2 We check if our algorithm terminates for l = 1, i.e. if U(φ1, O~k1)q ∈ B or U(φ2, O~k2)q ∈
B, where 1 < q ≤ 6 and B was defined in Section 4.2.1.

Step 3 Otherwise we compose elements from S using formula 2.69

cosα = ~k′1 · ~k′2 =
cosφ1 cosφ2 − cos γ

sinφ1 sinφ2

, (4.53)

for all γ ∈ LSU(2) and exclude all the triplets φ1, φ2, γ providing | cosα| ≥ 1.

Step 4 For all remaining cases we run our algorithm with matrices S.

The termination results are as follows:

• The algorithm terminates in Step 2 for l ≤ 4 and the resulting group is SU(2).

• The algorithm terminates in Step 3 with 5 ≤ l ≤ 6 and the resulting group is isomorphic
to the binary tetrahedral group.

• The algorithm terminates in Step 3 with 7 ≤ l ≤ 8 and the resulting group is isomorphic
to the binary octahedral group.

• The algorithm terminates in Step 3 with 8 ≤ l ≤ 13 and the resulting group is isomorphic
to the binary icosahedral group.

To be more precise, among all 10560 exceptional triplets {φ1, φ2, γ} there is 4816 satisfying
| cosα| < 1. The number of triplets {φ1, φ2, γ} that give termination of the algorithm for the
length l and the resulting groups are presented in Table 4.2. A full list of triplets generating
finite subgroups of SU(2) is included in Appendix 6.2.
Section 4.4 can be summarized as follows:

Theorem 4.18. Assume S = {U(φ1, ~k1), U(φ2, ~k2)} ⊂ SU(2). In order to verify universality
of S it is enough to consider words of the length l ≤ 4. Moreover, the algorithm terminates for
l ≤ 13. If it terminates in Step 1 the resulting group is either infinite or finite dicyclic group.
If it terminates with 1 ≤ l ≤ 4 the resulting group is SU(2). For l ≥ 5 it is binary tetrahedral
or binary octahedral or binary icosahedral group.
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l Step Number of triplets φ1, φ2, γ Generated group
− 1 80 dicyclic group
3 2 3232 SU(2)
4 2 160 SU(2)
5 3 56 < 2, 3, 3 >
6 3 40 < 2, 3, 3 >
7 3 144 < 2, 3, 4 >
8 3 80 < 2, 3, 4 >
8 3 240 < 2, 3, 5 >
9 3 352 < 2, 3, 5 >
10 3 288 < 2, 3, 5 >
11 3 32 < 2, 3, 5 >
12 3 80 < 2, 3, 5 >
13 3 32 < 2, 3, 5 >

Table 4.2: The number of exceptional triplets {φ1, φ2, γ} terminating the universality algorithm
for different l’s.

Example 4.19. Let us illustrate methods of Section 4.3 on the set SH,Tφ = {H,T (φ)}, that
was defined first in Chapter 3. In what follows we will recall the matrices H and T (φ):

H = U(π/2,
1√
2

(~ky + ~kz)) =
i√
2

(
1 1
1 −1

)
, T (φ) = U(φ,~kz) =

(
e−iφ 0

0 eiφ

)
. (4.54)

Our goal is to check for which φ, < H, T (φ) > = SU(2).

Case 1 If φ = kπ then T (φ) = ±I and the generated group is the finite cyclic group of the
order 4 when φ = 0 or the order 8 when φ = π.

Case 2 When φ = kπ
2

and k is odd, by Fact we have that C(AdH ,AdT (φ)) is larger than
{λI : λ ∈ R} and hence < H, T (kπ

2
) > 6= SU(2). More precisely, it is the finite dicyclic

group of order 16, whose generators are HT
(
kπ
2

)
and T

(
kπ
2

)
. Fixing universality in this

case requires, for example, adding a matrix that has a non-exceptional spectrum and
whose ~k is neither parallel nor orthogonal to rotation axes of H and T

(
kπ
2

)
.

Case 3 For φ 6= kπ
2
, again by Fact 4.9, C(AdH ,AdT (φ)) = {λI : λ ∈ R} and we just need to

check if < H, T (φ) > is infinite. We can distinguish then three possibilities:

1. We first assume that φ is not exceptional. Then by Theorem 4.13 〈H,T (φ)〉 = SU(2).
Our algorithm for deciding universality terminates at step 2 with l = 1.

2. We next consider the exceptional angles. For

φ ∈
{
k3π

3
,
k5π

5
,
k6π

6

}
, gcd(ki, i) = 1,

we look at the product U(γ,~kHT ) = HT (φ) = U(π/2, ~kH)U(φ,~kT ). Using formula
(3.9) we calculate cos γ, compare it with cosψ for all exceptional angles ψ and find
out they never agree. Hence γ is not exceptional. Thus by Theorem 4.13 we get
< HT (φ) > = SU(2). Our algorithm for deciding universality terminates in Step 2
with l = 2.
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3. We are left with φ = k4π
4

where gcd(k4, 4) = 1. There are exactly four such angles.
Calculations of U(γ,~kHT (φ)) = HT (φ) shows that γ is exceptional, i.e γ = k3π

3
, where

gcd(k3, 3) = 1. Moreover, taking further products results in a finite subgroup con-
sisting of 48 elements (all have exceptional spectra) known as the binary octahedral
group. Our algorithm for deciding universality terminates in Step 3 with l = 8. Fix-
ing non-universality can be accomplished by, for example, adding one gate U(ψ,~kψ)

with a non-exceptional ψ and an arbitrary ~kψ.

Notice, that the methods from this section give us much more information about the groups
generated by SH,Tφ than the approach presented in Chapter 3.

4.5. Universality of 2-mode beamsplitters
In this section we will show, how to deal with non-universal sets of gates from SU(2) or SO(2)
by embedding them into gates that act on d-dimensional space, where d > 2. More precisely,
we consider the Hilbert space H = H1 ⊕ . . . ⊕ Hd, where Hk ' C, d > 2. Next we take a
matrix B ∈ SU(2) or B ∈ SO(2) (this matrix will be called a 2-mode beamsplitter). In what
follows we assume that we can permute modes and therefore we have access to matrices B and
Bσ = σtBσ, where σ is the permutation matrix.

In the next step we define matrices Bij or Bσ
ij to be the matrices that act on a 2-dimensional

subspace Hi ⊕Hj ⊂ H as B or Bσ, respectively and as the identity on the other components
of H. The indexes i, j can be chosen in 2

(
d
2

)
= d(d− 1) ways, which gives us the set

Sd = {Bij, B
σ
ij : i < j, i, j ∈ {1, . . . , d}}. (4.55)

Let us denote by Xd = {bij, bσij : i < j, i, j ∈ {1, . . . , d}} the set of corresponding Lie algebra
elements such, that Bij = ebij , Bσ

ij = eb
σ
ij (constructed as in Section 4.1.3). Our goal is to find

out when Sd is universal, i.e. when < Sd > = SO(d) or < Sd > = SU(d). In particular we
focus on showing, for which B the set S3 is universal, but S is not universal. It is known (see
[67, 69]) that for such B also any set Sd with d > 3 is universal.

4.5.1. Spaces C(AdS3) and C(adX3
)

In this section we will characterize when C(AdS3) = {λI} for both orthogonal and unitary
beamsplitters. We start our analysis from checking an analogous condition for C(adX3), which
is a simplest problem. Then we will use Facts 4.1 and 4.2 to find C(AdS3).

4.5.2. The case of the orthogonal group

Let B ∈ SO(2) be a rotation matrix by an angle φ ∈ (0, 2π). According to the notation
introduced in (4.55) we define

S3 = {B23(±φ), B13(±φ), B12(±φ)}, (4.56)
X3 = {±φX23,±φX13,±φX12}. (4.57)

It is worth emphasizing that Bij(±φ) correspond to the rotation matrices in three dimensions,
i.e. B12(φ) = O(±φ,~kz), B13(φ) = O(±φ,~ky) and B23(φ) = O(±φ,~kx), where ~kx = [1, 0, 0],
~ky = [0, 1, 0], ~kz = [0, 0, 1] and matrices Xi,j are defined by (2.52). Note that matrices belong-
ing to X form a basis of the Lie algebra so(3) if and only if φ 6= 0, therefore by Corollary 4.3
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C(adX3) = {λI}.

Note that the adjoint representation maps SO(3) to SO(3). What is more, the adjoint matrices
AdO(±φ,~ki) are again rotation matrices by angles ±φ along axes ~ki. On the other hand, by Fact
4.2 we know that C(AdS3) can be different than C(adX3) only if φ = ±π, which is exactly the
case when the adjoint matrices AdO(±φ,~ki) commute. Summing up we get:

Fact 4.10. [69, 71] For a 2-mode orthogonal beamsplitter. If φ 6= 0 then C(adX3) = {λI}. On
the other hand C(AdS3) = {λI} if and only if φ /∈ {0, π}.

4.5.3. The case of the unitary group

Let B ∈ SU(2), B = I cosφ + sinφ(kxX + kyY + kzZ), φ 6= 0 mod π, ~k = [kx, ky, kz] and
k2
x+k2

y+k2
z = 1. Permutation of modes for matrices from SU(2) is equivalent to transformation

kx 7→ −kx, kz 7→ −kz which gives us

Bσ = I cosφ+ sinφ(−kxX + kyY − kzZ).

According to the notation introduced in (4.55) we define

X3 = {bij, bσij : 1 ≤ i < j ≤ 3}} = φ · {kxXij + kyYij + kzZij,

−kxXij + kyYij − kzZij : 1 ≤ i < j ≤ 3}, (4.58)
S3 = {Bij, B

σ
ij : 1 ≤ i < j ≤ 3}} = {Iij(φ) + sinφ(kxXij + kyYij + kzZij),

Iij(φ) + sinφ(−kxXij + kyYij − kzZij) : 1 ≤ i < j ≤ 3}, (4.59)

where Iij(φ) = cosφ(Eii+Ejj)+Ell, l ∈ {1, 2, 3}\{i, j} and matrices {Xij, Yij, Zij} are defined
as in (2.52).

In order to find C(adX3) note that
[
bij, b

σ
ij

]
= 4ky (kxZij − kzXij). We get immediately that[

bij, b
σ
ij

]
6= 0 implies that bij and bσij generate su(2)ij. Thus we have access to all elements Xij,

Yij and Zij 1 ≤ i < j ≤ 3. Hence X3 generates su(3), therefore C(adX3) = {λI}.

Let us consider the case [bij, b
σ
ij] = 0 which happens in the following four situations:

1. ky 6= 0 and kx = 0 = kz: in this case bij = kyYij = bσij, which gives us access to all {Yij}i<j,
i, j ∈ {1, 2, 3}. But by the commutation relations we can derive also Xj,k’s and Zj,k’s, i.e.

[Yi,j, Yi,k] = −Xj,k, [Yi,j, Yj,k] = −Xi,k, Yi,j, Yk,j] = −Xi,k, [Xi,j, Yi,j] = 2Zi,j.

This means we can generate all basis elements of su(3) starting from Yij’s, thus C(adX3) =
{λI}.

2. ky = 0 and kx 6= 0 and kz 6= 0: in this case bij = −bσij. Direct calculations show that
elements:

[b12, [b12, b13]] , [b12, [b12, b23]] , [b13, [b13, b12]] ,

[b13, [b13, b23]] , [b23, [b23, b12]] , [b12, [b12, [b13, b23]]] ,

[b23, [b13, [b23, b12]]] , [b13, [b13, [b23, b12]]] ,

form a basis of su(3). Thus C(adX3) = {λI}.

3. ky = 0 = kz and kx 6= 0: in this case the algebra generated by X3 is clearly so(3), hence
C(adX3) 6= {λI}.
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4. ky = 0 = kx and kz 6= 0: in this case the algebra generated by X3 is abelian, hence
C(adX3) 6= {λI}.

The above analysis can be summarized as follows:

Fact 4.11. [71] For a 2-mode unitary beamsplitter B = I cosφ+sinφ(kxX+kyY +kzZ), where
k2
x + k2

y + k2
z = 1 we have C(adX3) = {λI} unless (a) ky = 0 = kz and kx = 1, (b) ky = 0 = kx

and kz = 1.

In the next step we characterize C(AdS3). One should notice here that the adjoint matrices
AdBij and AdBσij are elements of SO(su(3)) ' SO(8) and the their rotation angles are ±φ, 2φ

and 0. On the other hand, Fact 4.1 states that C(AdS3) can be different than C(adX3) only if
the rotation angle is ±π, which corresponds to situations when either φ = ±π or φ = ±π

2
. But

in the first case B = −I, thus obviously C(AdS3) 6= {λI}. The case φ = ±π
2
corresponds to

S3 = X3.

Fact 4.12. [71] For a 2-mode unitary beamsplitter B = I cosφ + sinφ(kxX + kyY + kzZ) we
have C(AdS3) = {λI} unless (a) ky = 0 = kz and kx = 1, (b) ky = 0 = kx and kz = 1, (c)
φ = ±π

2
and kz = 0.

Proof. Recall that C(adX3) ⊆ C(AdS3). Cases (a) and (b) correspond to situations when
C(adX3) 6= {λI} thus also C(AdS3) 6= {λI}. Case (c) follows from direct calculations for six
Adg matrices with φ = ±π

2
and g ∈ S3 which were done with the help of a symbolic calculation

software. In order to verify case (c) we define h = SpanR{Z12, Z23}, dimRh = 2 and show that
for φ = ±π

2
and kz = 0 the space h is an invariant subspace for matrices AdBij and AdBσij , i.e.

of S3. To this end we calculate

AdB12Z12 = −Z12, AdB13Z12 = −Z23, AdB23Z12 = Z12 + Z23, (4.60)
AdB12Z23 = Z23 + Z12, AdB13Z23 = −Z12, AdB23Z23 = −Z23. (4.61)

and AdBσijZkl = AdBijZkl. Therefore the projection operator P : su(3) → h commutes with
matrices from S3 and thus it belongs to C(AdS3).

As a short exercise we studied the structure of the group < S3 > when kz = 0 and φ = π
2
.

Elements of S3 are of the form

Bij = eiψEij−e−iψEji+Ekk, Bσ
ij = −e−iψEij+eiψEji+Ekk, 1 ≤ i < j ≤ 3, k 6= i, j, ψ ∈ [0, 2π).

Note that if ψ is a rational multiple of π, then < S3 > is a finite group. Otherwise the group
< S3 > is infinite and disconnected. In fact these are groups isomorphic to ∆(6n2) and ∆(6∞2)
given in [29].

4.5.4. When is S3 universal?
Having characterized when the necessary universality criterion is satisfied we want to check
when the set < S3 > is infinite. This way we get the full classification of universal 2-mode
beamsplitters.

4.5.4.1. The case of the orthogonal group

Combining Theorem 4.13 with Fact 4.10 for φ /∈ LSO(3) we obtain immediately that the group
generated by S3 is exactly SO(3). The only interesting cases are φ ∈ LSO(3). First, note that
if φ = (2k+1)π

2
, k ∈ Z, then matrices O(φ,~kx), O(φ,~ky) and O(φ,~kz) are permutation matrices
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and they form 3-dimensional representation of S3. For all remaining φ ∈ LSO(3) we consider
the matrix: O(γ,~kxz) = O(φ,~kx)O(φ,~kz). The trace yields the following equation that relating
γ and φ:

cos γ =
cos2 φ+ 2 cosφ− 1

2
. (4.62)

We calculate cos γ using (4.62) and compare it numerically with the cosines for all angles from
LSO(3). We find out they never agree, therefore γ /∈ LSO(3) and we can apply Theorem 4.13 and
Fact 4.10 to U(γ,~kxz). Summing up:

Theorem 4.20. [69, 71] Any 2-mode orthogonal beamsplitter with φ /∈ {0, π
2
, π, 3π

2
} is universal

on 3 and hence n > 3 modes.

4.5.4.2. The case of the unitary group

In this paragraph we assume that all the entries of a matrix B ∈ SU(2) are nonzero and at
least one of them belongs to C, which provides that C(AdS3) = {λI}. For such a case we need
to verify if < S3 > is infinite.

Let {eiφ, e−iφ} be the spectrum of B. Note that matrices Bij and Bσ
ij have the same spectra

{eiφ, e−iφ, 1}. By the definition of the open balls Bα, α3 = 1 one can easily see that a matrix
from SU(3) with one spectral element equal to one can be introduced (by taking powers) only
to the ball B1. Moreover, the maximal n that is needed is exactly the same as for SO(3) and
the exceptional angles belong to the set LSO(3). Therefore, by Theorem 4.13, φ /∈ LSO(3) implies
that the group generated by any two elements form S3 is infinite, hence S3 is universal.

In the following we will show that < S3 > is infinite in many cases also for φ ∈ LSO(3) (providing
φ is such that C(AdS3) = {λI}). To this end we use the following procedure:

1. We calculate trace of the product B12(φ)B23(φ) and note that it belongs to R, therefore
spectrum of B12(φ)B23(φ) is of the form {eiγ, e−iγ, 1}, where the relation between φ and
γ is given by

trB12(φ)B23(φ) = 2 cosφ+ cos2 φ+ k2
z sin2 φ = 2 cos γ + 1. (4.63)

2. Using (4.63 for each γ ∈ LSO(3) we compute

k2
z =

2 cos γ + 1− 2 cosφ− cos2 φ

sin2 φ
, (4.64)

and check whether 0 < k2
z < 1. The pairs (φ, γ) that fails this test are excluded from the

further considerations. The reason is that that k2
z = 1 corresponds to diagonal matrices

B12(φ), B23(φ) and k2
z = 0 corresponds the situation when C(AdS3) 6= {λI}.

3. For the pairs (φ, γ) that give 0 < k2
z < 1 we consider the matrix U(γ′) = B12(2φ)B23(2φ).

Its trace is again real and we get

trB12(2φ)B23(2φ) =
1

2
(2 + 4 cos(2φ) + (1− k2

z)(cos(4φ)− 1)) = 2 cos γ′ + 1, (4.65)

where k2
z is determined by φ and γ. Direct computations show that γ′ /∈ LSO(3) if φ /∈{

±π
2
,±2π

3

}
. In what follows we will treat both of these cases separately.
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4. For φ = ±2π
3

and the fixed k2
z we consider yet another product of matrices U(γ

′′
) =

B2
23(φ)B2

12(φ)B23(φ)B12(φ) with a real trace:

trB2
23(φ)B2

12(φ)B23(φ)B12(φ) =
1

8
(cosφ+ 3 cos(2φ) + 4 cos(3φ) + 6 cos(4φ)

+4 cos(5φ) + cos(6φ)− 2) + 32k4
z sin4 φ cos2 φ+ 8k2

z sin2 φ(−2 cosφ+

+4 cos(2φ) + 2 cos(3φ) + cos(4φ) + 4)) = 2 cos γ
′′
. (4.66)

Direct computations show that γ′′ /∈ LSO(3), thus we are done for φ ∈ LSO(3)\{π2 ,−
π
2
}.

The same composition for U23

(
π
2

)
, U12

(
π
2

)
may give a matrix of the spectral angle γ =

±2π
3
.

For φ = ±π
2
an additional treatment is needed. It consists of three steps:

1. Assume Bij

(
π
2

)
does not commute with its permutations Bσ

ij(
π
2
) for 1 ≤ i < j ≤ 3. In this

case we can use Bij(γ) = Bij

(
π
2

)
Bσ
ij

(
π
2

)
, 1 ≤ i < j ≤ 3 as the new set of generators. Note

that the angle γ depends on the trace of Bij

(
π
2

)
Bσ
ij

(
π
2

)
as cos γ = 1− 2k2

y. Thus γ 6= ±π
2

if k2
y 6= 1

2
and then we can apply the previous procedure to show that < B12(γ), B23(γ) >

is infinite.

2. For φ = ±π
2
and k2

y = 1
2
, k2

x + k2
z = 1

2
we consider yet another product

trB2
12

(π
2

)
B13

(π
2

)
B23

(π
2

)
B2

13

(π
2

)
= k2

z = 2 cos γ
′′′

We find out that the only γ ∈ LSO(3) satisfying 2 cos γ = k2
z − 1 for 0 ≤ k2

z ≤ 1
2
are

γ = ±2π
3
, but then k2

z = 0. Therefore by Fact 4.12 the space C(AdS3) is larger than {λI}.

3. Finally we assume that matrices Bij

(
π
2

)
commute with their permutations. Recall that it

happens if either ky = ±1 and kx = kz = 0 or ky = 0 and kx, kz 6= 0. The group generated
for ky = ±1 is of course finite. Therefore we need to consider only the case when ky = 0
and kx, kz 6= 0. But in this case step 2 of the previous procedure is never satisfied (from
Equation (4.64) one can only obtain k2

z = 0 for γ = ±2π
3
).

The above considerations can be summarized as follows:

Theorem 4.21. [71] Any 2-mode unitary gate, such that all its entries are nonzero and at least
one of them is a complex number is universal on 3 and hence n > 3 modes.

It is worth emphasizing that a non-universal set S embedded into SU(3) as S3 may become
universal. It happens when elements of S anticommute or are generators of a finite subgroup
of SU(2). The only exception are generators of 〈2, 2, 2〉.

4.6. Summary and open problems

In this chapter we presented an algorithm for deciding universality of an arbitrary n−element
set S = {g1, . . . , gn} ⊂ SU(d) or S = {g1, . . . , gn} ⊂ SO(d) and discussed an upper bound of
the number of its iterations. Our algorithm consists of two steps. In the first one we check if
the group generated by S is equal to SU(d) (or SO(d), respectively) assuming, that < S > is
infinite. In the second step we check if < S > is finite or not.

The following list contains the most important results contained this chapter.
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• Section 4.1 Formulating the necessary universality criterion on the level of Lie algebras
(Theorems 4.2 and 4.3) and Lie groups (Theorems 4.4 and 4.5). In the last part of this
section we showed, how to construct Hamiltonians X = {X1, . . . , Xn} ⊂ g from quantum
gates S = {g1, . . . , gn} ⊂ G. We also specified the conditions, for which X is universal,
but S does not satisfy the necessary universality criterion.

• Section 4.2.1 Formulating the sufficient universality criterion for < S > to be infinite.
Defining the maximal exponent NG.

• Section 4.2.3 Computing exact values ofNSU(2) andNSO(3) using one-dimensional Dirich-
let approximation theorem. Computing upper bounds of NG using the modified version
of the simultaneous Dirichlet approximation theorem (see Theorem 4.14).

• Section 4.3 Presenting the algorithm for deciding universality and approximating the
upper bound for the number of its steps.

• Section 4.4 Applying the methods from Sections 4.1 and 4.2 to a 2−element set of qubit
gates S = {U(φ1, ~k1), U(φ2, ~k2)} ⊂ SU(2) or rotation matrices S = {O(φ1, ~k1), O(φ2, ~k2)} ⊂
SO(3). This section includes also numerical results of the implementation of our algo-
rithm.

• Section 4.5 Applying the methods from Section 4.1 and 4.2 to unitary one-qubit gates
or beamspitters (see more details in [69]) embedded into a gate of a larger number of
possible modes. We specified the conditions for which a non-universal set S ⊂ SU(2)
or S ⊂ SO(2) can be used for constructing a universal set of qudit gates or d-mode
beamsplitters, respectively.

As we showed is Section 4.3 the algorithm presented in this chapter terminates after a finite
number of iterations. However, computing an upper bound for a number of steps of the algo-
rithm for an arbitrary set S is still an open problem, which requires to find the spectral gap of
TS (see Section 2.5). A related question is optimality of our algorithm. It would be interesting
to find another algorithm that could work for an arbitrary set of one-qudit gates but would
terminate after fewer steps. We believe this can be done using methods of number theory (see
e.g. [63, 68]).

Another open problem is how to find a tighter upper bound for NG. As we expect, NG actually
grows exponentially with the dimension of G, however a different approach to this problem
could result in a more optimal upper bound.
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Chapter 5

Summary and outlook

The main purpose of this thesis was to formulate universality criteria for an arbitrary set of
quantum gates. The starting point for our considerations was a set finite set

S = {g1, . . . , gn} ⊂ G,

where G = SU(d) or G = SO(d), in particular G = SU(2) and G = SO(3). Moreover,
in Chapter 4 we showed, how to construct Hamiltonians corresponding to elements of S and
decide their universality.
Below we present main results included in this thesis.

Chapter 3 In this chapter we considered two particular sets of one-qubit gates:

SH,Tφ = {H,T (φ)} ,
Sx,y,zφ = {U(φ/2, ~x), U(φ/2, ~y), U(φ/2, ~z)},

where φ is a rational multiple of π. The universality criteria proposed in this chapter are based
on methods of field theory. The main results presented in this chapter include

1. Presentation of cyclotomic and trigonometric polynomials ψn(x) and ηn(x).

2. Proof that ψn(x), n /∈ {1, 2, 4} has at least non-integer coefficient (Lemma 3.2).

3. Proof that ηn(x) is a polynomial with integer coefficients (Lemma 3.4).

4. Proof that SH,Tφ and Sx,y,zφ are universal sets unless φ ∈
{

0, π
2
, π, 3π

2

}
(Theorem 3.5 and

Corollaries 3.6 and 3.7), otherwise the sets generate finite subgroups of SU(d).

At the end of this chapter we presented open problems that are related to the results. The most
interesting question is how to generalize the field theory approach for another sets of one-qubit
gates.

Chapter 4 This chapter is the main part of our thesis. It includes universality criteria for an
arbitrary set of qudit gates S ⊂ G, where G is a subgroup of SU(d) or SO(d) and universality
criteria for a set of Hamiltonians X ⊂ g, g ⊂ su(d) or g ⊂ so(d). We also showed that the
criteria presented in this chapter could be used to construct a finite-step algorithm. We include
its implementation for S ⊂ SU(2) in Appendix 6.3.
Below we list the results presented in this chapter.

1. The universality criterion for a set of Hamiltonians, X ⊂ g (Theorems 4.2 and 4.3).
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2. The necessary universality criterion for a set of one-qudit gates, S ⊂ G (Theorems 4.4
and 4.5).

3. The criterion for checking whether S generates an infinite number of elements (Theorem
4.13).

4. Introducing the concept of the maximal exponent NG and computing an upper bound for
NG using the modified version of simultaneous Dirichlet’s theorem (Theorem 4.14).

5. The algorithm for checking universality and proof that the algorithm always terminates
after a finite number of steps.

6. Universality criteria in case, when S is a two-element subset of SU(2) or SO(3) (Lemma
4.17 and Theorem 4.18). We also listed possible cases, when S generates a finite or infinite
subgroup of SU(2) (or SO(3), respectively). In Appendix 6.2 we included a full list of
two-elements sets that generate finite subgroups of SU(2).

7. Universality criteria for 2-mode unitary and orthogonal beamsplitters, that were embed-
ded into d-mode beamsplitters, d ≥ 3 (Theorems 4.20 and 4.21).

Sd = {Bij, B
σ
ij : i < j, i, j ∈ {1, . . . , d}},

where B =

(
cosφ sinφ
− sinφ cosφ

)
∈ SO(2) or

B =

(
cosφ+ ikz sinφ sinφ(kx + iky)
sinφ(−kx + iky) cosφ− ikz sinφ

)
,

Bσ =

(
cosφ− ikz sinφ sinφ(−kx + iky)
sinφ(kx + iky) cosφ+ ikz sinφ

)
.

An important conclusion from Section 4.5 is the following. If B,Bσ ∈ SU(2) anticommute
or are generators of a finite subgroup of SU(2) different than 〈2, 2, 2〉, then Sd becomes
universal for an arbitrary d ≥ 3.

At the end of Chapter 4 we pointed out the open problems related to our approach:

• Finding a tighter upper bound for NG.

• Finding a more optimal algorithm for deciding universality, i.e. an algorithm that allows
to decide universality after a fewer steps. A possibly useful approach to this problem is
field theory and algebraic number theory approach.
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Chapter 6

Appendix

In this chapter we include auxiliary results that extend our considerations from Chapters 3
and 4 but are not necessary to formulate the universality criteria. At the end of this chapter
we present the algorithm for deciding universality of a set S = {U(φ1, ~k1), U(φ2, ~k2)} ⊂ SU(2)
implemented in Octave.

6.1. Appendix 1: alternative version of the proof of Fact 3.4

The proof of Fact 3.4 that we presented in Section 3.2.0.8 is based on Gauss lemma and prop-
erties of cyclotomic polynomials. In particular, we used the fact that cyclotomic polynomials
have integer coefficients, however this property does not result directly from defining formula
(3.13). Therefore we present in this section an alternative proof of Fact 3.4, which is based on
recurrence formula for Chebyshev polynomials. The first step of the proof concerns properties
of Chebyshev polynomials Tn(x). In the second and third step we will use the identity (3.41)
and represent ηn(x) as a fraction of integer monic polynomials. We start from recalling Fact
3.4.

Fact 6.1. All the coefficients of ηn(x) are integers.

Proof. We start from proving the following auxiliary fact.

Fact 6.2. Let Tk(x) be a Chebyshev polynomial of the first kind, defined as Tk(x) =
∑k

i=0 cix
i.

Then the coefficients ci, i ∈ {1, . . . , k} are divisible by 2i−1.

The proof of Fact 6.2 stems from the recurrence formula (3.22) for Chebyshev polynomials.
First, from formula (3.22) we get immediately that the leading term of Tk(x) is equal to ck =
2k−1. The same holds for the coefficients c0 and c1. From (3.22) we have c0 ∈ {−1, 0, 1} and
c1 ∈ {−k, 0, k}, where k is an odd number. therefore the only power of 2 dividing c0 and c1

is 20 = 1. In case, when ci /∈ {c0, c1, ck} Fact 6.2 can be proven recursively. Let us consider
polynomials Tk+1(x), Tk(x), where k ≥ 2, and Tk−1(x) and denote their coefficients by {c(k+1)

i },
{c(k)
i } , {c

(k−1)
i }, respectively1. Writing formula (3.22) explicitly we arrive at the equation

k+1∑
i=0

c
(k+1)
i xi = 2x

∑
j=0

c
(k)
j xi −

∑
l=0

c
(k−1)
l xl ⇒ c

(k+1)
i = 2c

(k)
i−1 − c

(k−1)
i . (6.1)

Let us start from c
(k+1)
2 . By (6.1) c(k+1)

2 = 2c
(k)
1 − c

(k−1)
2 . We assume that c(k)

1 is nonzero,
but c(k)

1 = ±k, then c
(k+1)
2 = ±2k − c

(k−1)
2 . The coefficient c(k−1)

2 can be again defined as

1We skip upper indexes in the rest of the paper
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c
(k−1)
2 = c

(k−2)
1 − c

(k−3)
2 = ∓2(k − 2) − c

(k−3)
2 etc., until we arrive at ck−l2 = 0 for l = k or

l = k − 1. Thus we can represent c(k+1)
2 as the sum

c
(k+1)
2 =

l∑
i=0

(−1)bk/2c2(k − i),

therefore c(k+1)
2 must be divisible by 2 = 21 but not by higher powers of 2.

Next we consider c(k+1)
3 , which is c(k+1)

3 = 2c
(k)
2 − c

(k−1)
3 by (6.1). We can again represent

the coefficient as a sum c
(k+1)
3 = 2c

(k)
2 − (2c

(k−2)
2 − 2c

(k−4)
2 − . . .) that simplifies to c

(k+1)
3 =∑l

i=0(−1)i2ck−i2 . Because all ck−i2 ’s are divisible by 2, then c(k+1)
3 is divisible by 4 = 22 = 23−1.

Using the same reasoning for the other c(k+1)
i ’s iteratively we observe that every c(k+1)

i is divisible
by 2i−1.
In the next step we show that 2Tk

(
x
2

)
is a monic polynomial with integer coefficients. To this

end we write it explicitly as 2Tk
(
x
2

)
= 2

∑k
i=0 ci

(
x
2

)i. Because each ci is divisible by 2i−1, it
can be rewritten as a product of the form ci = 2i−1ni, where ni ∈ N. Substituting x → x

2
we

arrive at

2Tk

(x
2

)
= 2

k∑
i=0

2i−1ni

(x
2

)i
=

k∑
i=0

nix
i.

Let us express ψ2n

(
x
2

)
in terms of Chebyshev polynomials as in (3.26,3.27). Denote Pk

(
x
2

)
=

Tb k
2
c+1

(
x
2

)
− Tb k

2
c
(
x
2

)
if k is odd, or Pk(x) = T k

2
+1

(
x
2

)
− T k

2
−1

(
x
2

)
if k is an even number. Then

by (3.41) we get

ψ2n

(x
2

)
=
∏
k|2n

2−bk/2cPk

(x
2

)µ(n/d)

= (6.2)

= ψ2n

(x
2

)
= 2−d

p(x)

q (x)
, where (6.3)

p (x) =
∏
k|2n

Pk

(x
2

)µ(2n/k)=1

, q (x) =
∏
k|2n

Pk

(x
2

)µ(2n/k)=−1

, (6.4)

where 2−d is the normalizing factor obtained from the normalizing factors of Pk(x)’s. Theorem
2.2 and Fact 6.2 imply that both p

(
x
2

)
and q

(
x
2

)
Pk
(
x
2

)
multiplied by 2m, where m is the

number of divisors of 2n, monic polynomials with integer coefficients.
Recall that ηn(x) depends on p (x) and q (x) as:

ηn(x) = 2dψ2n

(x
2

)
= 2d2−d

p (x)

q (x)
=
p (x)

q (x)
.

Let p(x) =
∑deg p(x)

i=0 pix
i and q(x) =

∑deg q(x)
i=0 qix

i, where deg q < deg p. We have shown
that qdeg q(x) = 1. This fact allows us to find an explicit expression for the coefficients of
ηn(x) =

∑d
i=0 ηix

i:

p(x) = q(x)ηn(x)⇒
deg p(x)∑
i=0

pix
i =

deg q(x)∑
j=0

qjx
j

d∑
l=0

ηlx
l.
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q(x) is a monomial, thus qdeg q(x) = 1 and we have

η0 = p0 − q0,

η0 = pdeg q(x) −
deg q(x)−1∑

i=0

qiηdeg q(x)−i,

ηj = pdeg q(x)+j −
deg q(x)+j−1∑

i=0

qiηdeg q(x)+j−i

If η0 ∈ N, then pj, qk ∈ N for all j ∈ {1, . . . , deg p(x)}, k ∈ {1, . . . , deg q(x)} implies that all
ηi’s are integers.

6.2. Appendix 2: generators of finite subgroups of SU(2)
In Table 6.1 and Table 6.2 we present a list of all generators of the finite subgroups of SU(2),
i.e. < 2, 3, 3 >, < 2, 3, 4 >, < 2, 3, 5 > and finite dimensional dicyclic groups. All of these
generators have been found both numerically (see the procedure from Section 4.4.0.2) and by
analysis of the platonic polyhedrons.

6.3. Appendix 4: Implementation of the algorithm for de-
ciding universality of S = {U(φ1, ~k1), U(φ2, ~k2)}

This appendix includes the implementation of our algorithm for the case, when S consists of
two arbitrary one-qudit gates. The program that implements the algorithm was written in
Matlab/Octave. It consists of several subprograms that are listed below:

1. adjointRep.m - takes a matrix from SU(2) and computes its adjoint representation.

2. commutantChecking.m - takes two matrices from SU(2) and checks, if they commute or
anticommute.

3. equality.m - takes Sl and Sl+1 as input and compares these sets

4. isOfFiniteOrder.m - checks if a matrix U(φ,~k) is an exceptional matrix.

5. setOfGates.m - computes the sets Sl+1 from Sl, U(φ1, ~k1), U(φ2, ~k2) and l that are set as
input.

6. setU.m - defines a matrix U(φ,~k) using the parameters φ and ~k.

7. algorithm.m - An interactive program that realizes the algorithm from Section 4.3.

Below we attach the code of each program.

adjointRep.m

function o = ajointRep(u)
o = zeros(3);
if (size(u,1)==2 || size(u,2)==2)
%create adjoint representation of U(k,phi)
o(1,1) = (u(1,1)^2-u(1,2)^2+u(2,2)^2-conj(u(1,2)^2) )./2;
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No. φ1 φ2
~k1 · ~k2 γ 〈l,m, n〉 No. φ1 φ2

~k1 · ~k2 γ 〈l,m, n〉
1 ±π

2
±π

2
(−1, 1) kπ

n
〈2, 2, n〉 2 ±π

2
kπ
n

0 ±π
2

〈2, 2, n〉
3 π

3
, 2π

3
±π

2
∓ 1√

3
±π

3
〈2, 3, 3〉 4 π

3
, 2π

3
±π

2
± 1√

3
2π
3

〈2, 3, 3〉
5 4π

3
, 5π

3
±π

2
± 1√

3
±π

3
〈2, 3, 3〉 6 4π

3
, 5π

3
±π

2
∓ 1√

3
2π
3

〈2, 3, 3〉
3 π

3
±π

3
±1

3
kπ
2

〈2, 3, 3〉 4 π
3

±π
3

∓1
3

±π
3

〈2, 3, 3〉
5 π

3
±2π

3
∓1

3
kπ
2

〈2, 3, 3〉 6 π
3

±2π
3

±1
3

±2π
3

〈2, 3, 3〉
7 2π

3
±2π

3
±1

3
kπ
2

〈2, 3, 3〉 8 2π
3

±2π
3

∓1
3

±π
3

〈2, 3, 3〉
9 ±π

2
π
3
, 2π

3
∓ 2√

6
π
4
, 7π

4
〈2, 3, 4〉 10 ±π

2
π
3
, 2π

3
± 2√

6
3π
4
, 5π

4
〈2, 3, 4〉

11 ±π
2
−π

3
, 2π

3
± 2√

6
π
4
, 7π

4
〈2, 3, 4〉 12 ±π

2
−π

3
, 2π

3
∓ 2√

6
3π
4
, 5π

4
〈2, 3, 4〉

13 ±π
2

π
4
, 5π

4
∓ 1√

2
π
3
, 5π

3
〈2, 3, 4〉 14 ±π

2
π
4
, 5π

4
± 1√

2
2π
3
, 4π

3
〈2, 3, 4〉

15 ±π
2

π
4
, 5π

4
± 1√

2
π
3
, 5π

3
〈2, 3, 4〉 16 ±π

2
π
4
, 5π

4
∓ 1√

2
2π
3
, 4π

3
〈2, 3, 4〉

17 ±π
4

±π
4

0 π
3
, 5π

3
〈2, 3, 4〉 18 ±π

4
±3π

4
0 2π

3
, 4π

3
〈2, 3, 4〉

19 ±3π
4

3π
4

0 π
3
, 5π

3
〈2, 3, 4〉 20 ±3π

4
±π

4
0 2π

3
, 4π

3
〈2, 3, 4〉

21 ±π
3

±π
3

∓
√

5
3

π
5
, 9π

5
〈2, 3, 5〉 22 ±π

3
±π

3
±
√

5
3

3π
5
, 7π

5
〈2, 3, 5〉

23 ±π
3

±2π
3

∓
√

5
3

2π
5
, 8π

5
〈2, 3, 5〉 24 ±π

3
±2π

3
±
√

5
3

4π
5
, 6π

5
〈2, 3, 5〉

25 ±2π
3

±2π
3

∓
√

5
3

π
5
, 9π

5
〈2, 3, 5〉 26 ±2π

3
2π
3

±
√

5
3

3π
5
, 7π

5
〈2, 3, 5〉

27 π5 ±π
5

± 1√
5

π
3
, 5π

3
〈2, 3, 5〉 28 π

5
±π

5
∓ 1√

5
π
5
, 9π

5
〈2, 3, 5〉

29 π
5

±2π
5

± 1√
5

π
2
, 3π

2
〈2, 3, 5〉 30 π

5
2π
5

∓ 1√
5

π
3
, 5π

3
〈2, 3, 5〉

31 π
5

±4π
5

± 1√
5

4π
5
, 6π

5
〈2, 3, 5〉 32 π

5
3π
5

∓ 1√
5

π
2
, 3π

2
〈2, 3, 5〉

33 π
5

±3π
5

± 1√
5

2π
3
, 4π

3
〈2, 3, 5〉 34 2π

5
±2π

5
∓ 1√

5
π
5
, 9π

5
〈2, 3, 5〉

35 π
5

±4π
5

∓ 1√
5

2π
3
, 4π

3
〈2, 3, 5〉 36 π

2
±π

5
∓0.851 π

3
, 5π

3
〈2, 3, 5〉

37 π
2

±π
5

±0.851 2π
3
, 4π

3
〈2, 3, 5〉 38 π

2
±π

5
∓0.526 2π

5
, 8π

5
〈2, 3, 5〉

39 π
2

±π
5

±0.526 3π
5
, 7π

5
〈2, 3, 5〉 40 π

2
±2π

5
∓0.526 π

3
, 5π

3
〈2, 3, 5〉

41 π
2

±2π
5

±0.526 2π
3
, 4π

3
〈2, 3, 5〉 42 π

2
±2π

5
∓0.851 π

5
, 9π

5
〈2, 3, 5〉

43 π
2

±3π
5

∓0.526 π
3
, 5π

3
〈2, 3, 5〉 44 π

2
±3π

5
±0.526 2π

3
, 4π

3
〈2, 3, 5〉

45 π
2

±3π
5

∓0.851 π
5
, 9π

5
〈2, 3, 5〉 46 π

2
±3π

5
±0.851 4π

5
, 6π

5
〈2, 3, 5〉

47 π
2

±4π
5

∓0.851 π
3
, 5π

3
〈2, 3, 5〉 48 π

2
±4π

5
±0.851 2π

3
, 4π

3
〈2, 3, 5〉

49 π
2

±4π
5

∓0.525 2π
5
, 8π

5
〈2, 3, 5〉 50 π

2
±4π

5
±0.525 3π

5
, 7π

5
〈2, 3, 5〉

Table 6.1: Generators of finite subgroups of SU(2): 〈2, 2, n〉, 〈2, 3, 3〉, 〈2, 3, 4〉, 〈2, 3, 5〉.

o(2,1) = i.*(u(1,1)^2-u(1,2)^2-u(2,2)^2+conj(u(1,2)^2))./2;
o(3,1) = u(2,2).*u(1,2)-u(1,1).*u(2,1);
o(1,2) = i.*(-u(1,1)^2-u(1,2)^2+u(2,2)^2+conj(u(1,2)^2))./2;
o(2,2) = (u(1,1)^2+u(1,2)^2+u(2,2)^2+conj(u(1,2)^2))./2;
o(3,2) = (u(2,2).*u(1,2)+u(1,1).*u(2,1)).*i;
o(1,3) = u(2,2).*u(2,1)-u(1,1).*u(1,2);
o(2,3) = -(u(2,2).*u(2,1)+u(1,1).*u(1,2)).*i;
o(3,3) = u(2,2).*u(1,1) + u(2,1).*u(1,2);
end
end

commutantChecking.m

function v = commutantChecking( u1,u2 )
epsilon = 0.0001;
o1 = adjointRep(u1)
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No. φ1 φ2
~k1 · ~k2 γ 〈l,m, n〉 No. φ1 φ2

~k1 · ~k2 γ 〈l,m, n〉
51 4π

5
±4π

5
± 1√

5
π
3
, 5π

3
〈2, 3, 5〉 52 2π

5
±2π

5
± 1√

5
3π
5
, 7π

5
〈2, 3, 5〉

53 2π
5
±3π

5
± 1√

5
2π
3
, 4π

3
〈2, 3, 5〉 54 2π

5
±3π

5
∓ 1√

5
2π
5
, 8π

5
〈2, 3, 5〉

55 2π
5
±4π

5
∓ 1√

5
π
2
, 3π

2
〈2, 3, 5〉 56 2π

5
±4π

5
± 1√

5
2π
3
, 4π

3
〈2, 3, 5〉

57 2π
3
±3π

5
∓0.794 π

5
, 9π

5
〈2, 3, 5〉 58 3π

5
±3π

5
∓ 1√

5
π
2
, 3π

2
〈2, 3, 5〉

59 2π
3
±3π

5
∓0.794 π

5
, 9π

5
〈2, 3, 5〉 60 3π

5
±3π

5
± 1√

5
3π
2
, 7π

2
〈2, 3, 5〉

61 3π
5
±4π

5
± 1√

5
π
2
, 3π

2
〈2, 3, 5〉 62 3π

5
±4π

5
∓ 1√

5
2π
3
, 4π

3
〈2, 3, 5〉

63 4π
5
±4π

5
∓ 1√

5
π
5
, 9π

5
〈2, 3, 5〉 64 π

3
±π

5
±0.795 π

2
, 3π

2
〈2, 3, 5〉

65 π
3
±π

5
∓0.188 π

3
, 5π

3
〈2, 3, 5〉 66 π

3
±π

5
∓0.795 π

5
, 9π

5
〈2, 3, 5〉

67 π
3
±π

5
±0.188 2π

5
, 8π

5
〈2, 3, 5〉 68 π

3
±2π

5
±0.188 π

2
, 3π

2
〈2, 3, 5〉

69 2π
3
±4π

5
±0.188 2π

5
, 8π

5
〈2, 3, 5〉 70 π

3
±2π

5
±0.795 2π

3
, 4π

3
〈2, 3, 5〉

71 π
3
±2π

5
∓0.795 π

5
, 9π

5
〈2, 3, 5〉 72 π

3
±2π

5
∓0.188 2π

5
, 8π

5
〈2, 3, 5〉

73 π
3
±3π

5
∓0.188 π

2
, 3π

2
〈2, 3, 5〉 74 π

3
±3π

5
∓0.795 π

3
, 5π

3
〈2, 3, 5〉

75 2π
3
±4π

5
∓0.188 π

3
, 5π

3
〈2, 3, 5〉 76 2π

3
±4π

5
∓0.795 π

5
, 9π

5
〈2, 3, 5〉

77 π
3
±3π

5
∓0.188 3π

5
, 7π

5
〈2, 3, 5〉 78 π

3
±3π

5
∓0.795 4π

5
, 6π

5
〈2, 3, 5〉

79 π
3
±4π

5
∓0.795 π

2
, 3π

2
〈2, 3, 5〉 80 π

3
±4π

5
∓0.188 2π

3
, 4π

3
〈2, 3, 5〉

81 π
3
±4π

5
∓0.188 3π

5
, 7π

5
〈2, 3, 5〉 82 π

3
±4π

5
∓0.795 4π

5
, 6π

5
〈2, 3, 5〉

83 2π
3
±π

5
∓0.795 π

2
, 3π

2
〈2, 3, 5〉 84 2π

3
±π

5
∓0.188 2π

3
, 4π

3
〈2, 3, 5〉

85 2π
3
±π

5
∓0.795 4π

5
, 6π

5
〈2, 3, 5〉 86 π

3
±4π

5
∓0.795 4π

5
, 6π

5
〈2, 3, 5〉

87 2π
3
±2π

5
∓0.188 π

2
, 3π

2
〈2, 3, 5〉 88 2π

3
±2π

5
∓0.795 π

3
, 5π

3
〈2, 3, 5〉

89 2π
3
±4π

5
±0.795 π

2
, 3π

2
〈2, 3, 5〉 90 2π

3
±3π

5
∓0.188 2π

5
, 8π

5
〈2, 3, 5〉

91 2π
3
±2π

5
±0.188 3π

5
, 7π

5
〈2, 3, 5〉 92 2π

3
±2π

5
±0.795 4π

5
, 6π

5
〈2, 3, 5〉

93 2π
3
±3π

5
±0.188 π

2
, 3π

2
〈2, 3, 5〉 94 2π

3
±3π

5
±0.795 2π

3
, 4π

3
〈2, 3, 5〉

Table 6.2: Generators of 〈2, 3, 5〉.

o2 = adjointRep(u2)
v = 1;

comm = o1*o2-o2*o1;
acomm = o1*o2+o2*o1;

if (norm(comm)<epsilon || norm(acomm)<epsilon)
v = 0;
end

end

equality.m

function res = equality(newSet,S)
res=0;
epsilon=0.0001;
%definig matrix of differences
differences = ones(1,size(newSet,3));

for m=1:size(newSet,3)
for n=1:size(S,3)
if norm(newSet(:,:,m)-S(:,:,n))<epsilon %equality of elements of S and newSet
differences(m) = 0;
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break;
end
end
end
if norm(differences)==0
res=1;
end
end

isOfFiniteOrder.m

function res = isOfFiniteOrder(u)
res = 1;
nmax=44;
epsilon = 0.0001;
I = eye(2);
n=1;

while ( norm(u^n-I)>1/sqrt(2) && n<=nmax )
n = n+1;
end

if (norm(u^n-I)<epsilon|| norm(u^n+I)<epsilon)
res=0;
end

end

setOfGates.m

function s = setOfGates(s_prev,u1,u2,n)
s = zeros(2,2,2^(n+1));
for k=1:2^n
s(:,:,k)=s_prev(:,:,k)*u1;
s(:,:,k+2^n)=s_prev(:,:,k)*u2;
end
end

setU.m

function u = setU(k,phi)
u = zeros(2,2);

if (size(k,1) == 1 && size(k,2)==3 )
% 2-norm vector k
n = norm(k);
k = k/sqrt(n);

%%fill matrix elements
u(1,1) = cos(phi)+i*k(1,3)*sin(phi);
u(1,2) = sin(phi)*(k(1,1)+i*k(1,2));
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u(2,1) = sin(phi)*(-k(1,1)+i*k(1,2));
u(2,2) = cos(phi)-i*k(1,3)*sin(phi);
end
end

algorithm.m

clear all;
prompt=’Set axis k1 - horizontal 3D vector [x,y,z] \n’;
k1=input(prompt);
prompt=’Set angle phi1 (real)\n’;
phi1=input(prompt);
prompt=’Set axis k2 - horizontal 3D vector [x,y,z] \n’;
k2=input(prompt);
prompt=’Set angle phi2 (real)\n’
phi2=input(prompt);

u1=setU(k1,phi1);
u2=setU(k2,phi2);
l=1;

%first step
if commutantChecking( u1,u2 )== 0
disp(’U1,U2 - Non-universal set’);
else %second and third step
S = zeros(2,2,2);
S(:,:,1)=u1;
S(:,:,2)=u2;
isFinite=1;
while isFinite==1
for n=1:2^l
if isInfinite(S(:,:,n))==1
isFinite=0;
disp(’U1,U2 - Universal set’);
break;
end
newSet = setOfGates(S,u1,u2,l);
if equality(newSet,S)==1
isFinite=0;
disp(’U1,U2 - Non-universal set’);
break;
end
S=newSet;
l=l+1;
end

end

end

disp(’Length necessary to decide universality’);
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