Quantum State Reconstruction via Continuous Measurement

Ivan H. Deutsch, Andrew Silberfarb

University of New Mexico

Poul Jessen, Greg Smith

University of Arizona

Information Physics Group

http://info.phys.unm.edu
Quantum Information Processing

Classical Input

\[\psi_{in} \]

QUANTUM WORLD

Control

\[\psi_{out} \]

State Preparation

Measurement

Classical Output
Evaluating Performance

• State Preparation
 How well did we prepare ρ_0?

• Control dynamics
 How well did we implement a map $\rho_t = M_t[\rho_0]$?

• Sense external fields: Metrology
 Under what Hamiltonian $H(\Theta)$ did the system evolve?
Quantum State Estimation

- Fundamental problem for quantum mechanics: Measure state ρ

Finite dimensional Hilbert space, dim d
- Any measurement, at most $\log_2 d$ bits/system
 e.g. Spin 1/2 particle, $d=2$: one bit.
- Density operator, d^2-1 real parameters
 Hermitian matrix with unit trace.
- Required fidelity: $b(d^2-1)$ bits of information.
 b bits/matrix-element.

Require many copies $\rho_N = \rho^\otimes N$
Spin-1/2:

density matrix 3 indep. real numbers

\[\text{Tr}[\rho] = 1 \]
\[\rho = \rho^+ \]
\[\rho_{11} \quad \text{Re}[\rho_{12}] \]
\[\rho_{22} \quad \text{Im}[\rho_{12}] \]

Stern-Gerlach measurement:

<table>
<thead>
<tr>
<th>Q-Axis</th>
<th>Apparatus</th>
<th>Observable</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\hat{S}_z)</td>
<td>(\rho_{11}, \rho_{22})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{S}_x)</td>
<td>(\text{Re}[\rho_{12}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{S}_y)</td>
<td>(\text{Im}[\rho_{12}])</td>
</tr>
</tbody>
</table>

Similarly

Note: can equally well rotate system 3 ways & measure \(\hat{S}_z \) Heisenberg picture
Quantum State Reconstruction

Basic Requirements:

- “Informationally Complete” Measurements

\[
\{M^{(i)}\} \{m^{(i)}_j\ j = 1, 2, \ldots, j^{(i)}_{\text{max}}\} \{p^{(i)}_j\} \Leftrightarrow \rho
\]

- Assign probabilities based on sampling ensemble

 - Standard approach: Strong measurement

 Each ensemble \[p^{(i)}_j = \frac{n^{(i)}_j}{N} \]

 with possible accuracy of \(N \log_2 d \) bits
Challenges for Standard Reconstruction

Many measurements
- Each measurement on ensemble, \(d-1 \) independent results.
- Require at least \(d+1 \) measurements of different observables.

Strong backaction
- Projective measurements destroy state.
- Need to prepare identical ensembles for each \(M_i \)

Wasted quantum information
- Need only \(b \log_2 d \) bits. Wasteful when \(N \gg b \).
- Much more “quantum backaction” than necessary.
- Quantum State \textit{erased} after reconstruction.

Alternative -- Continuous measurement
Continuous Weak Measurement Approach

\[\hat{\rho}_N = \hat{\rho}_0 \otimes N \]

- Ensemble identically coupled to probe (ancilla)

Measurement record

\[M(t) = N\langle O \rangle_t + \sigma W \]

Signal

Noise

Probe noise: Gaussian variance

\[\sigma^2 = \frac{1}{\kappa \Delta t} \]

Ultimate resolution -- Long averaging

\[\delta M^2 = \frac{1}{\kappa T} \]

“Projection noise”

\[N\Delta O^2 \ll \delta M^2 \]

No correlations
Advantages of Continuous Measurement

- Weak probes - NMR
 - Electron transport
 - Off resonance atom-laser interaction

- Real-time feedback control
The Basic Protocol

• Continuously measure observable O.

• Apply time dependent control to map new information onto O.

• Use *Bayesian* filter to update state-estimate given measurement record.

• Optimize information gain.
Mathematical Formulation

• Work in Heisenberg Picture (control independent of ρ_0)

$$\langle O \rangle_t = Tr(O(t) \rho_0) = \langle O(t) | \rho_0 \rangle$$

• Coarse-grain over detector averaging time.

$$O_i = \frac{1}{\Delta t} \int_{t_i}^{t_i + \Delta t} O(t') dt'$$

$$M_i = N \langle O_i | \rho_0 \rangle + \sigma W_i$$

Measurement series

• Need to generate “complete set” of operators O_i to find ρ_0

Time dependent Hamiltonian, $\{H_i\}$ generates $SU(d)$

Include decoherence (beyond usual Heisenberg picture)

• Stochastic linear estimation: Given $\{M_i\}$ find ρ_0
Bayesian Filter

Bayesian posterior probability

\[P(\rho_0|\{M_i\}) = A P(\{M_i\}|\rho_0) P(\rho_0) \]

Conditional probability

Single measurement Gaussian

\[P(M_i|\rho_0) = C_i \exp \left\{ - \frac{(M_i - N\langle O_i |\rho_0 \rangle)^2}{2\sigma^2} \right\} \]

Multidimensional Gaussian

\[P(\{M_i\}|\rho_0) = \prod_i P(M_i|\rho_0) = C \exp \left\{ - \frac{1}{2} \langle \delta \rho | R | \delta \rho \rangle \right\} \]

\[R = \frac{N^2}{\sigma^2} \sum_i |O_i \rangle \langle O_i | \quad \delta \rho = \rho_{\{M_i\}} - \rho_0 \quad |\rho_{\{M_i\}} \rangle = \frac{N}{\sigma^2} \sum_i M_i R^{-1} |O_i \rangle \]

Least square fit
Information Gain

Optimize Entropy in Gaussian Distribution:

\[S = -\frac{1}{2} \log(\det R) = -\sum \log \sqrt{\lambda_\alpha} \]

Eigenvalues of \(R \) : \(\sqrt{\lambda_\alpha} = \text{SNR for measurement of observable along principle axis } \alpha \).

\(R \) full rank \((d^2 - 1) \) \(\rightarrow \) Informationally complete
Physical System

Ensemble of alkali atoms. Total spin $F, \dim = 2F+1$

Measurement: Couple to off-resonant laser
Polarization dependent index of refraction: Faraday Rotation

$e_x = \sigma_+ + \sigma_-$

$e_{\theta} = \sigma_+ + e^{i\theta}\sigma_-$

Magnetically polarized atomic cloud

Measures average spin projection: $O = F_z$
Basic Tool:
Off Resonance Atom-Laser Interaction

\[|e\rangle \, nP_{3/2} \quad |g\rangle \, nS_{1/2} \]

\[\Delta = \omega_L - \omega_{eg} \]

Monochromatic Laser
\[\text{Re}(E e^{-i\omega_L t}) \]

Alkali Atom
Hyperfine structure
\[F = J + I \]

Tensor Interaction
\[\hat{V} = -\hat{\alpha}_{ij} E_i^* E_j \]

Atomic Polarizability
\[\frac{\hat{t}}{\hat{\alpha}} = -\sum_{F_e} \frac{\hat{d}_{ge} \hat{d}_{eg}}{\hbar(\Delta_{eg} - i\Gamma/2)} \]

Irreducible decomposition
\[\hat{V} = -\hat{\alpha}^{(0)}|E|^2 - \frac{\hbar}{\alpha^{(1)}} \cdot \left(E^* \times E \right) - \frac{\hbar}{\alpha^{(2)}} \left(\frac{E_i^* E_j + E_j^* E_i}{2} \right) \]
Irreducible Tensor Decomposition

<table>
<thead>
<tr>
<th>Irreducible Component</th>
<th>Interaction</th>
<th>Effect on Atoms</th>
<th>Effect on Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar</td>
<td>$\hat{V}^{(0)} = c_0</td>
<td>\mathbf{E}</td>
<td>^2 \hat{I}$</td>
</tr>
<tr>
<td>$\hat{\alpha}^{(0)} \sim \hat{I}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vector</td>
<td>$\hat{V}^{(1)} = c_1(\mathbf{E}^* \times \mathbf{E}) \cdot \hat{F}$</td>
<td>Zeeman-like, shift linear in m-level.</td>
<td>Faraday rotation about atomic spin.</td>
</tr>
<tr>
<td>$\hat{\alpha}^{(1)} \sim \hat{F}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tensor</td>
<td>$\hat{V}^{(2)} = c_2\left(3</td>
<td>\mathbf{E} \cdot \hat{F}</td>
<td>^2 - E^2 \hat{F}^2 \right)$</td>
</tr>
<tr>
<td>$\hat{\alpha}^{(2)} \sim \left(\hat{F}\pm \right)^2, \hat{F}\pm \hat{F}_z$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\left(3\hat{F}_z^2 - \hat{F}^2\right).$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For detunings $\Delta \gg \Delta E_{HF}$: $c_0, c_1 \sim 1/\Delta$
$c_2 \sim \Delta E_{HF}/\Delta^2 \propto \Gamma_{\text{scat}}$
Signal -- Continuous observation of Larmor Precession

Experiment:
P.S. Jessen, U of A
G. Smith et al.

Collapse and revival of Larmor precession

\[
\hat{H} = g_F \mu B \hat{F}_y + c (\varepsilon_L \cdot \hat{F})^2 - \frac{i}{2} \hbar \gamma_s \hat{1}
\]
Enhanced Non-Linearity on Cs D1 Transition

Non-linear (tensor) light shift

\[V_{NL} = \beta \hbar \gamma_s |\hat{\epsilon}_{probe} \cdot \mathbf{F}|^2 \]

- maximize \(\beta \propto \Delta_{HF} \) by probing on D1 line -

Collapse & revival in Larmor precession (D1 probe)
Controlability

Our example system effective Hamiltonian:

\[H = \mathbf{B}(t) \cdot \mathbf{F} + h\gamma_s \beta F_x^2 \]

For magnetic fields alone uncontrollable (algebra closes)

\[F_x, F_y, F_z : \quad [F_i, F_j] = i\varepsilon_{ijk} F_k \]

The nonlinearity allows full controllability:

\[[F_x^2, F_y^n] \rightarrow F_x F_z F_y^{n-1} \]

But... Light shift nonlinearity is tied to decoherence.
Measurement Strategy

- Time dependent $B(t)$ to cover operator space, $\text{su}(2F+1)$.

- In given trial, system decays due to decoherence.

Errors along primary axis given by the eigenvalues of R

Maximize information gain in time before decoherence, subject to “costs”
Quantum State Reconstruction

In the Lab:

- use NL light shift + time varying B-field to implement required evolution
- measure Faraday signal $\propto F_z(t)$

Fix magnitude and $B_z=0$

$\mathbf{B}(t) = |\mathbf{B}| (\cos \theta(t), \sin \theta(t), 0)$

Choose 50 points along trajectory to specify angles.

Interpolate up to full sample rate.
Some atomic physics

- Off-resonance: \(\Delta \gg \Gamma = 2\pi \, 5.2 \, \text{MHz} \)
- Scattering rate: \(\gamma_s = \frac{I}{I_{sat}} \frac{\Gamma^2}{4\Delta^2} \)
- Nonlinear light shift requires detuning not large compared to hyperfine splitting.

\[\begin{align*}
6S_{1/2} & \quad \Delta E_{HF} = 9.2 \, \text{GHz} \\
6P_{1/2} & \quad \Delta E_{HF} = 1.2 \, \text{GHz} \\
6P_{3/2} & \quad \Delta E_{HF} = 0.25, \ 0.20, \ 0.15 \, \text{GHz}
\end{align*} \]

- Scattering time: 1 ms
- Detuning: D1 \(\Delta = 6 \, \text{GHz} \), D2 \(\Delta = 4 \, \text{GHz} \)
- Measurement duration: 4 ms
- Integration steps: 1000, \(\tau_D = 4 \, \mu\text{s} \)
Example: D1, $F=3$, Stretched state $|F = 3, m = 3\rangle$
Example: D2, F=4, Cat state, \(\frac{1}{\sqrt{2}} (|F = 4, m = 4\rangle + |F = 4, m = -4\rangle) \)
Quantum State Reconstruction (Cs, $F = 3$)

Preliminary Result
Single Measurement Record

signal (polarization rotation)

- **theory**
- **experiment**

% error

- 0
- 10
- 20
- 30

time [ms]

0 0.5 1 1.5 2 2.5 3 3.5 4

fidelity = 0.62
(random guess = 0.38)
Quantum State Reconstruction (Cs, $F = 3$)

Preliminary Result
128 Average

![Graph showing signal (polarization rotation) and % error over time with 'theory' and 'experiment' labels.]

% error

systematic errors

Initial State

Reconstructed Density Matrix

fidelity = 0.82
(random guess = 0.38)
What if control parameters are not known exactly?

Background or unknown B-field

Assume a distribution $P(B_i(t))$ then

$$P(M(t)|\rho_0) \propto \sum_i P(B_i) e^{(\rho - \hat{\rho}_{0i} | R_i | \rho - \hat{\rho}_{0i})}$$

Inhomogeneities in field intensity - include in model.

Optimization naturally seeks “spin-echo” solution.
Robustness to Field Fluctuations

Use known state to estimate field and adjust simulation.
• **Improved optimization** (convex sets).

• **Generalized measurements**: Ellipticity spectroscopy.

• **Limited reconstruction**: e.g. second moments.
 - Observation of entangling dynamics.

• **Toward feedback control of quantum features.**
Conclusions

• Continuous weak measurement allows quantum state reconstruction using a single ensemble.

• Maximizes information gain/disturbance tradeoff.

• Can be useful when probes are too noisy for single quantum system strong-measurement but sufficient signal-to-noise can be seen in ensemble.

• State-estimation beyond the “Kalman filter”.

• New possibilities of quantum feedback control.

http://info.phys.unm.edu/DeutschGroup