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Following an earlier work we derive a gauge-independent canonical structure for a fully 
relativistic multicomponent plasma theory. The Klimontovich form of the distribution function is 
used to derive the basic Poisson bracket relations for the canonical variables/~, B, and E. The 
Poisson bracket relations provide an explicit canonical realization of the Lie algebra of the 
Poincar6 group and they lead to the correct transformation properties for the canonical variables. 
We stress the importance of a canonical realization of the full symmetry group of the evolution 
equations. The covariance of the theory under the symmetry group can be used as a criterion to 
discriminate among different canonical structures for the evolution equations. 

1. Introduction 

The purpose  of this paper  is to present  a s t raightforward der ivat ion,  based 

on particle dynamics ,  of a canonical  s t ructure  for the equa t ions  that describe 

the in teract ion of a relativistic m u l t i c o m p o n e n t  plasma with the e lectromag-  

netic field. 

Since the concept  of a canonical  or  Hami l ton i an  structure for a system of 

evolu t ion  equa t ions  has unde rgone  considerable  changes over  the past decade, 

we shall begin with a few remarks  on our  usage of the term canonical  

formulat ion.  Some authors  reserve this term exclusively for those s i tuat ions  in 

which, by a proper  choice of variables,  the evolu t ion  of the system can be 

descr ibed in terms of the s tandard  Poisson bracket  relat ions (Kronecker  deltas 

for the discrete case or Dirac de l ta - funct ions  for the con t inuous  case). We feel 
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that this requirement is too restrictive because it often necessitates the intro- 
duction of various types of potent ia ls-var iables  that are not in one-to-one 
correspondence with the states of the system. Although the introduction of 
potentials is difficult to avoid in quantum theories (they play a vital role in 
finding explicit realizations of operator  algebras), in classical theories one can 
easily do without them. The elimination of potentials in classical theories 
merely requires a natural extension of the concept of canonical formulation. 

Abstracting from our previous experience 1'2) with gauge-independent 
canonical formulations, we assert that usage of the term canonical to describe 
the structure of a system of evolution equations is fully justified for a theory in 

which the following elements are present: 
i) The state of the system at each instant of time is fully described by a set 

of fundamental dynamical var iables-canonical  variables. The rate of change 
(time derivative) of each canonical variable at a given instant of time is 
determined entirely by the state of the system at that time. Thus, the time 
evolution equations for the canonical variables are first-order differential 

equations with respect to time. 
ii) Poisson bracket relations, which satisfy all the standard properties of 

linearity, antisymmetry, product rule, and Jacobi identity, are defined on the 

space of functions of the canonical variables. 
iii) The group of canonical transformations (transformations of the canonical 

variables that leave the Poisson bracket relations invariant) contains as a 
subgroup all the symmetry transformations of the theory, that is, all trans- 
formations that leave the evolution equations unchanged. The generators of 
time translations, space translations, and space rotations are identified respec- 
tively with the energy, momentum, and angular momentum of the system. In 
particular, the time evolution equations can be expressed as Poisson bracket 

relations 

a,X' = {X', H}  (1) 

between a set of fundamental dynamical variables X i and the Hamiltonian H 

(energy) of the system. 
A canonical formulation, in the above sense, for the relativistic dynamics of 

charged particles and for the relativistic dynamics of charged fluids has been 
given by Bialynicki-Birula and Iwinski2). The other branch of physics where the 
canonical formulation of the relativistic dynamics is clearly needed is the 
statistical plasma theory. Balescu and Poulain 3) have used the formulation 2) to 
develop a Liouvillean description of relativistic plasma physics. This is however 
not the only way one may proceed. Indeed, in several problems of non- 
relativistic plasma physics as well as in the theory of weakly relativistic 



CANONICAL FORMULATION OF RELATIVISTIC PLASMA THEORY 511 

(Brei t -Darwin)  plasma the formulation based upon the use of the Klimon- 
tovich exact one-particle distribution functions happens to be more useful4'5). 
We believe this is also the case in the fully relativistic theory. 

In the present paper, following earlier work of Iwinski and Turski 6) we 
derive a gauge-independent canonical formulation of relativistic multicom- 
ponent plasma theory. We show that all three requirements (i)-(iii) can be met 
and that the full Pioncar6 group can be realized as a subgroup of the group of 
canonical transformations. The Poincar6 invariance of the canonical structure 
derived for the relativisitic plasma theory puts the theory on an equal footing 
with other relativistic field theories. Our method can also be applied to a 
plasma theory based on nonrelativistic particle dynamics; however, the group 
of symmetry transformations is smaller in this case because it does not contain 
Lorentz transformations (Galilean transformations do not leave the Maxwell 
equations invariant), and this makes the theory less appealing. 

As canonical variables (fundamental dynamical variables) describing the 
state of a system composed of a multicomponent plasma and the electromag- 
netic field, we choose the magnetic field vector B(r, t), the electric field vector 
E(r, t), and a set of distribution functions f~(r, p, t), one for each component  of 
the plasma. The electromagnetic potentials will not be used in our formulation; 
our approach is manifestly gauge-independent. Using the Klimontovich 4) for- 
mulation of relativistic plasma theory, we derive the basic Poisson bracket 
relations 6) for the fundamental dynamical variables from the canonical for- 
mulation of relativistic charged-particle dynamics given in ref. 2. 

Morrison 7) has derived a canonical structure for the nonrelativistic Vlasov- 
Maxwell equations. Recently, Marsden and WeinsteinS), using infinite-dimen- 
sional sympletic manifold theory, derived a different canonical structure for the 
nonrelativistic equations. In the nonrelativistic case our canonical structure is 
equivalent to the canonical structure derived by Marsden and Weinstein and by 
Morrison and Weinstein8). We show that the canonical structure proposed by 
Morrison is inconsistent with the symmetries that are inherent in the evolution 
equations. 

2. Derivation of the Poisson bracket relations 

As was shown by Born and Infeld 9) in 1935, Poisson bracket relations for the 
electromagnetic field can be defined in the form 

{ B i ( r ) ,  D j . ( r ' ) }  = eOkdkS(r- r ' ) ,  (2) 

even for the general case in which the constitutive equations relating the E and 
B vectors with the D and / - / vec to r s  are nonlinear. In the linear theory we can 
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identify D with E, which we shall do below. As all Poisson bracket relations 
used in this paper are defined at equal times, we shall not explicitly indicate the 
time arguments. 

In order to derive the Poisson bracket relations involving the distribution 
functions f~, we use the representation introduced by Klimontovich4). This 
representation expresses each distribution function 

L(r,p,  t) = ~, a ( r -  ~a(t))8(p-- IrA(t)) (3) 
A E S  a 

as a sum of contributions from isolated point particles. In eq. (3), ~A and 7ra are 
the position and kinet ic  m o m e n t u m  vectors of the Ath particle and S o 
denotes the set of particles of type a. In our formulation we do not use the 
canonical momenta of the charged particles. The canonical momenta are 
dependent on a choice of gauge for the electromagnetic potentials; therefore 
they are not uniquely determined by the state of the system. On the other 
hand, the kinetic momenta -which  are functions solely of the particle 
veloci t ies-are manifestly gauge-independent variables. The argument p of the 
distribution function f~ is therefore to be interpreted as 

may 
P = k / 1  - v2/c 2'  (4) 

where m~ is the rest mass of a particle of type a. 
The description of a many body system by means of the Klimontovich 

function bears some similarity to the second quantization, with f~ playing the 
role of the field operator. On the other hand L ' s  are closely related to the 
quantum Wigner distribution functions. In classical, nonrelativistic statistical 
mechanics it is the f-function method which is particularly suited for develo- 
ping the fully renormalized kinetic theory1°). 

The relativistic dynamics of charged particles interacting with the elec- 
tromagnetic field is described by the Maxwell-Lorentz equations: 

d L ( t )  
dt  = VA( t ) ,  (5a) 

dTrA(t) 
= ea (E(~a( t ) ,  t) + Va(t)  X B (~a( t ) ,  t ) ) ,  

d t  

O,B(r,  t)  = - V x E ( r ,  t) , 

(Sb) 

(5c) 

OrE(r, t) = V × B( r ,  t ) -  ~'~ e a v A ( t ) 6 ( r  -- Sea(t)), (5d) 
A 

17. B(r ,  t) = O, V"  E(r ,  t) = ~ e A ( 3 ( r -  ~A(t)), (5e) 
A 
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where we have used a rationalized system of units and have set c = 1. Eqs. (5e), 
which do not involve the time derivatives, are treated as constraints on the 
initial data. These constraints are preserved by the time evolution. Eqs. 
(5a)-(5e) have only a formal meaning because the fields are singular at the 
positions of the particles, but they are used by us just as a heuristic tool. 

The Maxwell-Lorentz equations (see ref. 2) can be expressed in the canoni- 

cal form (1) by using the following set of Poisson bracket relations for the 
canonical variables SEA, ~'A, B and E: 

{Try, lr~} = ~AneA%k B* (SEA)' 

{~'~, EJ(r)} = eAS,,~(r - SEA), 

{ Bi (r), E J (r')} = e,jk ak t~(r - r') . 

(6a) 

(6b) 

(6c) 

(6d) 

All the remaining Poisson brackets vanish. These Poisson brackets are con- 
sistent with the constraints (5e). 

With the above choice of Poisson bracket relations for the canonical vari- 
ables, the full Poincar6 group 2) is realized as a subgroup of the group of 
canonical transformations. To show that this is also true for the relativistic 
plasma theory, we need to express the generators of the Poincar6 group in 
terms of the distribution functions L. All the generators can be expressed as 
appropriate space integrals of the components of the energy-momentum 
tensor T ~'~. For a system composed of charged particles and the electromag- 
netic field, the components  of the symmetric energy-momentum tensor are 

TOO = E ~ / m 2  + ~r2~( r - SEA) + ~(E 2+ B2), (7a) 
A 

T o  ̀= ~'~ 7riaS(r- SEA)+ ( E  X B )  i , (7b) 
A 

T ij = ~', ~r~v~8(r - ~A)-- E'EJ - B'BJ + '  2 ~8,j(/~ + B2). (7c) 
A 

From eqs. (5a)-(5e) on can formally obtain the continuity relation 

c~,T ~ = 0 (8) 

for the energy-momentum tensor. Using the distribution functions f~, we can 
express the ene rgy-momentum tensor in the form 

T°°(r, t )= Z ~ d3pE~(p)L(r ,R ,  t )+ oo T~m(r, t ) ,  (9a) 
a 

T°'(r, t )=  ~ f d3ppiZ(r ,p  , t )+ o, To~(r, t), (9b) 
~t 
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03 ~ f  P i s~, (9c) = Te.~(r, t), Tii(r, t) j E - - - ~ p p l ,  tr, p, t)+ is 

where E°(p )=  V/-~m2,+10 2 and Tf~ is the energy-momentum tensor of the 
electromagnetic field. The continuity equation for the energy-momentum tensor 
can also be derived directly from the Klimontovich-Maxwell equations, 

[~9, + v~ " V + e.(E(r, t) + v. x B(r, t)). #]L (r, p, t) = o ,  (10a) 

O,B(r, t)= -I7 x E(r, t), (10b) 

O,g(r, t) = V × B(r, t ) -  E e~ I d3p v~L (r, p, t), (10c) 
el 

B(r, t) = O, V.  E(r, t) = E e~ I d3pL (r, p, t), (10d) V. 
a 

where v a = pV~mZ~ + p2 and V = a/Or, # = c~/ap. On the right-hand sides of eqs. 
(10c,d) one recognizes the particle density n~(r, t) and particle current j~(r, t) 
expressed in terms of the Klimontovich distribution L, that is na = f d3pL and 
j,~ = f d3p v~Z. Since L transforms as a scalar under the Lorentz transfor- 
mations the fields n~ and j~ form a four-vector j~ which is conserved by virtue 
of eqs. (10). 

We now turn to the evaluation of the Poisson bracket relations in relativistic 
plasma theory. Treating the Klimontovich distribution functions (3 / as func- 
tions of the dynamical variables ~a and gga (with parametric dependence on r 
and p), we can calculate the Poisson bracket relations with the help of the 
following general rule: 

_ O F  i, aG 
{F, G} =/~s" ~X, {X X ' } 0 ~ ,  (11) 

where F and G are arbitrary functions of the canonical variables X ~. For 
continuous systems, partial derivatives are replaced by functional derivatives 
and sums are replaced by integrals. From (3/, (6), and ( l l  / we obtain the basic 
Poisson bracket relations for the canonical variables L, B, and E: 

= 8o t(L (r, p , ) -  L p))v. a 
+ e~B(r). (aL (x) × a)]8(x - x ' ) ,  (12a) 

{L(x), E(r')} = -e~# L (x)8(r - r'), (12b) 

{L(x), B(r')} = 0. (12c) 

Eq. (12a) can also be written in an equivalent form, 

{L (x), fB(x')} = 8  tvL (x'). as(x - x ' ) -  aL (x) .  V (x - x') 

+ e~B(r).  (~9i,, (x) × ~98(x - x'))]. (12a') 
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Here x = (r,p) denotes a point in the 6-dimensional parameter space of 
positions and kinetic momenta. The Poisson bracket relations between E and B 
retain the same form (6d). Using (12), (6), and (11), we get the following 
general form of the Poisson bracket for arbitrary functionals of f~, B, and E: 

o 8L 8f. 8fo 8L 

+e,,(¢9 8F_ 8G # 8___G_G.8~E)] 

8L 8L 

• (13) 

These Poisson bracket relations are equivalent to those derived by Marsden 
and Weinsteina). 

3. Hamiitonian and other generators of the Poincar~ group 

Now, we disregard the heuristic origin of formula (13) and check by direct 
calculations that it constitutes a consistent basis for a canonical formulation of 
relativistic plasma theory when the plasma is treated as a continuous phase 
space fluid (Vlasov approximation). The singular distribution functions (3) are 
replaced by smooth distribution functions, and the evolution equations (5a)- 
(5e) are replaced by the Vlasov-Maxweli equations, which have the same form 
as the Klimontovich-Maxwell equations. We shall denote the smooth dis- 
tribution functions by f~. 

In the complete statistical mechanics approach one should be able to derive 
the smooth Vlasov equation from the exact set of eqs. (10). In the non- 
relativistic limit that can be done either at the level of the B.B.G.K.Y. 
hierarchy or, more exactly, by showing that the Vlasov equation becomes an 
exact dynamical equation in the limit e2-->0, N--->oo with e2N--const.H). 
Unfortunately, relativistic statistical mechanics is not yet developed to the 
extent that would allow for a repetition of such a analysis. 

Since the Poisson brackets are defined for a fixed time, the Poincar6 
invariance of the canonical formulation is not explicit. We can, however, 
demonstrate by an explicit calculation that the Poincar6 group is realized as a 
subgroup of the group of canonical transformations defined with respect to the 
Poisson bracket (13). Following the approach of refs. 2 and 12, we first prove 
that the Dirac-Schwinger 13) conditions 
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{T°°(r), T°°(r')} = -(T°k(r) + TOk(r'))Ok,~(r -- r') , (14a) 

{T°°(r), T°k(r')} = --(Tkt(r) + T°°(r')Skt)Ot~(r- r'), (14b) 

{T°k(r), T°t(V)} = --(T°'(r)Ok + T°k(r')Ot)~(r- r') (14c) 

hold for the components of the energy-momentum tensor (9). By an explicit 
but lengthy calculation using the Poisson bracket relations (13), we verified that 
the Dirac-Schwinger conditions are satisfied for the relativistic plasma theory. 
These results remain true ~2) even if the linear theory of the electromagnetic 
field is replaced by a general nonlinear theory, for example, of the Born-Infeld 
type. 

The generators of the Poincar6 transformations expressed in terms of the 
distribution functions f~ have the form 

f ' f  d3r(E2+B 2) (15a) H= ~, d6qE~(p)f~(q)+~ 
a 

P= E f d6qpL,(q) + f d3r( E x  B) ,  (15b) 
ot 

M :  ~ ~ d6q(rxp)f,(q)+ f d3rr×(E×B), (15c) 
a 

X f d6qrEa(P)L~(q)+ ~f d3rr( E2+ B2) - tP. (15d)  N= 
ot 

As a result of (14), these generators form a realization of the Lie algebra of the 
Poincar6 group. 

The generators (15) of the Poincar6 group are the generators that one would 
normally construct for a noninteracting system. The Hamiltonian (15a) does 
not contain the electric charges e~, the coupling constants of the interaction. In 
our approach the interaction between the plasma and the electromagnetic field 
is introduced entirely through the Poisson bracket (13), which explicitly con- 
tains the electric charges e~ and the magnetic field vector B. The canonical 
formulation of relativistic plasma theory developed in this paper may be 
viewed as a realization of the Souriau-Sternberg 14) approach (although these 
authors consider only motion in external fields) of introducing the interaction 
as a modification of the Poisson bracket relations (symplectic structure). We 
emphasize that we treat as a canonical theory the full interacting system, not 
just the motion of the charged particles in an external electromagnetic field. 

The second step of our proof of relativistic invariance is to show that the 
generators of the Poincar6 group act on the canonical variables f~, B, and E in 
a manner that is consistent with their known transformation properties. These 
transformation properties are determined by the physical interpretation of the 
canonical variables. 
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Using the Hamiltonian H as the generator of time translations, we find that 
the evolution equations can be expressed in the canonical form 

O,f~ = {f~, H } ,  O,B = {B, H } ,  0,E = {E, H } ,  (16) 

because 

{f~, H }  = - [ G  " V + G ( E  + v~ x B ) .  a]f~, (17a) 

{ e,  H} = - V × E ,  (17b) 

{E, H}  = V× B -  ~ G d 3 p v J ~  . (17c) 
. /  

a 

The components of the momentum vector P generate the following 
infinitesimal transformations: 

{L ,  p k } = _ Okf~ ' (lSa) 

{B', p k }  = 8 ,k (V .  B )  - OkB' , (18b) 

{ E ' ,  p k  } = 3,k ( V " E - ~ ,  e,, f d3 P f,, ) - Ok E ' . (18c) 
a 

Imposing the constraints, we find that the momentum vector P is the generator 
of space translations. One can also check that our Poisson bracket relations 
(13) lead to the correct changes of f~, B, and E under infinitesimal rotations 
when the components  of the angular momentum vector M are used as 

generators. The Poisson bracket relations proposed by Morrison 7) for the 
nonrelativistic Vlasov-Maxwell equations do not lead to the correct changes in 
the canonical variables f~, B, and E under infinitesimal transformations 
generated by the momentum vector P or by the angular momentum vector M. 

Finally, we determine the behavior of f~, B, and E under infinitesimal 
Lorentz transformations generated by the first moment of energy N. Invariance 
of the theory under Lorentz transformations requires that the distribution 
functions f ,  transform as Lorentz scalars and that B and E transform as the 
components of an antisymmetric tensor of rank two. From (13) and (15d) we 
obtain 

{f~, N }  = (ra, + tV  + E ~ ( p ) 8 ) f ~ ,  

{ B  i, N k } = (xklgt 4:- tak)B  i -- eqk E l  ' 

{E  i, N k } = ( x k o t  -]- tOk)E i + eqk B t  . 

(19a) 

(19b) 

(19c) 

These are the correct changes in the canonical variables under infinitesimal 
Lorentz transformations. 

This concludes our  proof that the equal-time Poisson bracket relations (13) 
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used to define the canonical structure of relativistic plasma theory are co- 
variant under the action of the Poincar~ group. 

4. Conclusions 

The canonical theory of a multicomponent plasma and the electromagnetic 
field developed in this paper is a Poincar6 invariant theory of interacting 

particles and fields. It can be used either to describe a given history of the 
system (given initial data) or as the basis of a statistical description by 
introducing a probability distribution on the space of the canonical variables at 
a given instant of time (space of initial data). 

However,  one should be aware of that such a procedure would require the 
knowledge of equilibrium correlation functions for both fields electromagnetic 
(E, B) and particle ()?~) ones. So far no equilibrium relativistic statistical theory 
exists which would be able to provide that input. 

The formal symplectic structure of the Klimontovich-Maxwell  equations 
may also serve as a foundation for the derivation of relativistic kinetic equa- 
tions, but then one would have to cope with the field singularities at the 
positions of the particles. In our approach we have avoided these difficulties 
by dealing only (apart from initial heuristic steps) with smooth distribution 
functions. 

The formulation of the Vlasov dynamics we propose is completely free of 
unphysical problems occurring in the theories based on gauge-noninvariant 
formulation. There is no need, for example, in taking a "quantum mechanical 

de tour" as in ~5) in order to avoid confusion with two possible forms of the 
Vlasov equation. 

The relativisitic field theory that we have considered is different from the 
standard field theories studied in elementary particle physics because one of 
the fields f~(r, p, t) is defined on the phase space. The canonical formulation 
described in this paper may perhaps be a convenient starting point for the 
quantization of such unusual field theories. 

Acknowledgements 

We thank Meinhard E. Mayer for several discussions on the geometric 
aspects of the Souriau-Sternberg approach of introducing the interaction as a 
modification of the symplectic structure. One of us (LAT) expresses his 
gratitude to Heiner  Miiller-Krumbhaar for the hospitality at IFF, KFA J/ilich. 



CANONICAL FORMULATION OF RELATIVISTIC PLASMA THEORY 519 

References 

1) 1. Bialynicki-Birula, Rep. Math. Phys. 1 (1970) 83. 
2) I. Bialynicki-Birula and Z. Iwinski, Rep. Math. Phys. 4 (1973) 139. 

The idea of using only gauge-independent variables in a canonical formulation of elec- 
trodynamics can be traced back to W. Pauli. In the first edition of his classic Handbuch der 
Physik article on quantum mechanics, Pauli defined the quantum commutator version of the 
basic Poisson bracket relations (6) that we use in our canonical formulation of relativistic 
plasma theory. An English translation of this article, including the chapter on Quantum 
Electrodynamics from the original 1933 edition, is now available from Springer-Verlag: 
General Principles of Quantum Mechanics (Springer, New York, 1981). 

3) R. Balescu and M. Poulain, Physica 76 (1974) 421. 
4) Y. L. Klimontovich, Zh. Eksp. Teor. Fiz. 34 (1958) 173; 37 (1959) 735 (Sov. Phys. JETP 7 

(1958) 119, 10 (1960) 524). 
cf. also ref. 5. 

5) P. Goldstein and L. A. Turski, Physica 89A (1971) 481. 
P. Goldstein, Phys. Lett. 66A (1978) 299. 

6) Z. R. Iwinski and L. A. Turski, Lett. Applied Sci. and Engineering 4 (1976) 179. 
7) P. J. Morrison, Phys. Lett. ~IA (1980) 383. 
8) J. E. Marsden and A. Weinstein, Physica 41) (1982) 394. 

c.f. also: P. J. Morrison and A. Weinstein, Phys. Lett. 86A (1981) 235. 
9) M. Born and L. Infeld, Proc. R. Soc. London 1511 (1935) 141. Born and Infeld gave the 

quantum commutator version of eq. (2). A detailed discussion of the Poisson bracket relations 
in the classical theories of the electromagnetic field is given in refs. 1 and 8. 

10) G.F. Mazenko and S. Yip, in: Statistical Mechanics, vol. B, B.J. Bernie, ed. (Plenum, New 
York, 1977). 

11) W. Braun and K. Hepp, Comm. Math. Phys. 56 (1977) 101. 
c.f. also O.E. Lanford III, Physica 106A (1981) 70. 

12) I. Bialynicki-Birula and Z. Bialynicki-Birula, Quantum Electrodynamics (Pergamon, Oxford, 
1975). 

13) P.A.M. Dirac, Rev. Mod. Phys. 34 (1962) 592. 
J. Schwinger, Phys. Rev. 127 (1962) 324, 1311 (1963) 406, 800. 
I. Bialynicki-Birula, Nuovo Cimento 35 (1965) 697. 
D.G. Boulware and S. Deser, J. Math. Phys. 8 (1967) 1468. 

14) J.M. Souriau, Structure des Syst~mes Dynamiques (Dunod, Paris, 1970). 
S. Sternberg, in: Differential Geometrical Methods in Mathematical Physics II, Lec. Notes in 
Math. 676 K. Bleuler, H.R. Petry, and A. Reetz, eds. (Springer, New York, 1978), pp. 1-80. 

15) K. Els~isser, Phys. of Fluids 21 (1978) 1442. 


