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Abstract

The Dirac brackets approach to description of the dynamics of dynamical systems in presence
of the phase-space constraints is illustrated here on few examples taken from classical and
continuum mechanics course. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In classical analytic mechanics dynamical systems consists, typically, of many in-
dividual objects subjected to action of forces (external and internal). The motion of
these objects is often restricted by externally applied constraints. Concepts familiar
from textbooks of classical mechanics, the Lagrange equation of II-kind approach, and
subsequent paradigm of least action principle [1,2] reside on the incorporation of the
constraints into the construction of the generalized coordinates and momenta. Once
the Lagrange equations are constructed the Hamiltonian formulation, and subsequent
phase-space description, is presented as an application of the Legendre transformation
[2]. In modern formulation of the analytic mechanics this is replaced by a more general
approach, called symplectic dynamics more suitable for many applications, particularly
in numerical analysis [3]. One of the most appealing features of the symplectic dy-
namics description is, that it can be easily extended for quantum mechanics, and it can
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be generalized to include a broad spectrum of �eld theoretical applications, for exam-
ple continuous media mechanics [4,5]. Symplectic dynamics can also be refashion to
encompass dynamics of some dissipative systems. This later generalization is called
metriplectic description [4–6].

Systems described by symplectic dynamics are also subject to the constraints. One of
the elegant and powerful methods for handling these constraints is the Dirac brackets
approach [3,7–9]. Unfortunately, very few examples of a “practical” use of that pow-
erful technique are available in the literature. Recently we have shown how the Dirac
brackets can be used to construct the symplectic dynamics of an incompressible 
uid
[10]. In this paper we would like to show that the Dirac brackets are very convenient
and easy to use for studying many other problems in classical mechanics including
problems of rigid-body dynamics in which the body is indeed treated as consisting of
many individual objects – particles – subject to well-known constraints. To illustrate
this we shall analyze the simple problem of physical pendulum treated as a collection
of N -individual pendulums connected together by rigid bonds, as in rigid body. It is
instructive to see how various quantities, such as moment of inertia, appears, quite nat-
urally, in our description. Another example, more fundamental and potentially attractive
for other application, is the demonstration that the non-canonical Poisson brackets for
hydrodynamics [10–13] can be derived from some canonical Poisson brackets structure
[14] using the Dirac brackets procedure.

In order to make reading of this paper self-contained we include in the following
section a short primer in symplectic dynamics followed by brief exposition of the Dirac
brackets approach.

2. Symplectic dynamics

In classical dynamic of complex systems one often follows the method developed
for classical particles in Hamiltonian dynamics and describes the system dynamics
in terms of properly chosen (generalized) positions and momenta spanning the even
(2K) dimensional phase space P. Denoting the collection of these coordinates and
momenta as z A = (q1; q2; : : : ; qK ; p1; p2; : : : ; pK) and making further assumption that
the dynamics of the system is governed by a Hamilton like equations of motion we
can write them as

@tz A = {z A;H} (2.1)

where H is the system hamiltonian and {· ; ·} denotes the Poisson bracket, a bilinear
operation which satis�es three requirements:

(i) Antisymmetry: {F;G} = −{G;F}
(ii) Leibniz rule: {F;GE} = G{F;E} + {F;G}E

(iii) Jacobi identity: Alt {F; {G;E}} ≡ {F; {G;E}}+{G; {E;F}}+{E; {F;G}}=0.
A Poisson structure on N -dimensional manifold P consists of the space of smooth
functions F de�ned on P, i.e., C∞(P), and a Poisson bracket on it. A smooth
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manifold equipped with a Poisson structure is called Poisson manifold. The Leibniz
rule states that the Poisson bracket {·; ·} acts on each factor as a vector �eld, therefore
it must be of the form {F;G} = 
(dF; dG) where 
 is a �eld of bivectors on P.
If such a �eld de�nes a Poisson bracket, it is called a Poisson tensor. In the local
coordinates (z A), each Poisson bracket has the form

{F;G} =
N∑

A; B=1


AB @AF @BG; A; B= 1; : : : ; N; @A ≡ @
@z A

; (2.2)

where 
 is the antisymmetric tensor such that

N∑
D=1

[

DA @D
BC + 
DB @D
CA + 
DC @D
AB

]
= 0 : (2.3)

Indeed, condition (2.3) is equivalent to the Jacobi identity for the Poisson bracket given
by (2.2).

Given a Poisson structure 
 on a manifold P, according to the splitting theorem
[15], locally (in the neighborhood of a point z = 0) there exists a coordinate system
(z A) such that the Poisson tensor 
 is of the form


=



[

0 I
−I 0

]
0

0 T


 ; (2.4)

where I is k × k unit matrix and 2k = rank 
 at the point z = 0, T = [Tij] is a
(N − 2k) × (N − 2k) matrix, Tij are functions of (z2k+1; : : : ; zN ) and Tij(0) = 0 for
i; j = 2k + 1; : : : ; N . I� 
 has constant rank and rank 
 = 2k = N at every point, the
Poisson tensor 
 de�nes a symplectic structure and locally


=
[
0 I

−I 0

]
: (2.5)

A Poisson structure is called canonical Poisson structure i� its Poisson tensor is of
the form (2.5).

As previously the equation of motion for any observable F is given as

@tF = {F;H} ; (2.6)

where H is the system Hamiltonian.

3. Dirac brackets

We shall use the de�nition of the Dirac brackets which is a natural generaliza-
tion of the original construction proposed by Dirac [7–9] and discussed in detail in
Refs. [3–5].

When the physical system with phase space P (which we suppose to be a symplectic
manifold) is subject to a set of even number of constraints {�a = 0; a= 1; : : : ; 2n} then
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its motion proceeds on a submanifold

P⊃S =
2n⋂
a=1

{z ∈P|�a(z) = 0} : (3.1)

Let us denote the Poisson bracket for two arbitrary (su�ciently smooth) phase-space
functions F and G by {F;G} and let us suppose that all constraints are of the second
class in the Dirac classi�cation, which means the matrix of Poisson brackets of the
constraints, W = [Wab],

Wab = {�a;�b} (3.2)

has the maximally rank and is invertible. The Dirac bracket v F;G w for two smooth
functions F and G is de�ned as

v F;G w = {F;G} −
2n∑
a; b

{F; �a} Mab {�b;G} ; (3.3)

where [Mab] is the inverse of the constraints matrix [Wab]. One important property
of the Dirac bracket is that all the constraints �a are Casimirs, i.e., for an arbitrary
function F,

v �a;F w = 0 : (3.4)

For �nite-dimensional phase space P, dim P=2N , and for 2n second class constraints
�a we can always �nd a canonical transformation such that the constraints, �a, lie
on the �rst 2n coordinates (x1; : : : ; xn; p1; : : : ; pn) of the phase space and the remain-
ing degrees of freedom, (Q1; : : : ; QN−n; P1; : : : ; PN−n) are unconstrained. The Dirac
bracket in the whole phase space is equal to the canonical Poisson bracket in the space
(Q1; : : : ; QN−n; P1; : : : ; PN−n), namely the reduced phase space [7–9]. An explicit con-
struction of such a canonical transformation is, in general, quite di�cult. Formally, one
can use the Dirac formalism in the Poisson context, however this formalism will be
useless since the matrix of constraints W is no longer invertible.

Dirac brackets, given by Eq. (3.3) replace the original Poisson brackets in the equa-
tion of motion for the constrained system. Thus for a phase-space function F the time
evolution on the submanifold S is governed by(

@F
@t

)
S

= v F;H w ; (3.5)

where H is system Hamiltonian.

4. Hamiltonian dynamics on the surfaces

In this section we shall illustrate Dirac bracket applications studying simple example
of a particle moving on a surface Scon�g ={x∈Rn|f(x)=0} in the con�guration space.
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Let us consider P = R 2n with a canonical Poisson (symplectic) structure and a
(2n− 2)-dimensional submanifold S⊂P de�ned as follows:

S = {(x; p)∈P | �1 =�2 = 0} ;
where

�1 ≡ f(x); �2 ≡ p · @f
@x
: (4.1)

The physical interpretation of (4.1) is simple. The �rst constraint �1 = 0 describes a
given �xed algebraic surface in the con�guration space Scon�g ⊂R n. Our main assump-
tions are that f is smooth and zero is a regular value of the function f. The second
assumption ensures that S=f−1(0) is a close regular (n− 1)-dimensional di�erential
submanifold in the con�guration space R n [16]. Moreover this assumption guarantees
∇f 6= 0, so we can use the gradient to de�ne a normal on S. The second constraint
�2 = 0 implies that the particle momentum is always tangent to that surface Scon�g.
It is clear that for a class of functions f with the regular value zero, the constraints
�i are of the second class in the Dirac classi�cation. It is quite straightforward to
generalize this example to the case of several (2k) constraints of the type (4.1) and
the case of constrained electric charges.

The matrix of constraints W has now the form

W=
∣∣∣∣@f@x

∣∣∣∣
2 [ 0 1

−1 0

]
and its inverse is M =

1

|@f=@x|2
[

0 −1
1 0

]
: (4.2)

Denoting the unit normal vector to the surface f at the point x by n(x), n(x) =
(1=@f=@)(@f=@x) and using the Dirac formula (3.3) we get

v xi; xj w =0; v xi; pj w = �ij − 1
@f=@x2

@f
@xi

@f
@xj

= �ij − ni(x)nj(x);

v pi; pj w =
1

@f=@x2

{
@f
@xj

[
p · @
@x

]
@f
@xi

− @f
@xi

[
p · @
@x

]
@f
@xj

}

= nj(x)
[
p · @
@x

]
ni(x) − ni(x)

[
p · @
@x

]
nj(x) : (4.3)

In the particular case d= 3 the bracket v pi; pj w can be rewritten as follows:

v pi; pj w = − �ijk
{
n×

[
p · @
@x

]
n
}
k
;

where �ijk is the Levi–Civitta symbol.
In the particular case when �1 = xn and �2 = pn, the constraints can be easily

eliminated by choosing a smaller number of phase variables, then the Dirac brackets
(4.3) reduce to ordinary canonical brackets

v xi; xj w = v pi; pj w = 0; v xi; pj w = �ij; here i; j = 1; : : : ; n− 1

and v xn; · w = v · ; pn w = 0. The coordinates (xn; pn) should be omitted and this is
a simplest possible example of symplectic reduction.
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In order to make use of the non-canonical brackets (4.3) we consider a single classi-
cal particle of mass m moving in the potential �eld V (x) in the presence of constraints
(4.1). The Hamiltonian for that system is

H =
p2

2m
+ V (x) (4.4)

and we denote the potential force −@V=@x by F. The Hamilton–Dirac equations of
motion (3.5) follow

ẋ= v x;H w =
1
m

[p− (p · n)n] =
p
m
;

ṗ= v p;H w =F−
[
F · n+

1
m
p ·

[(
p · @
@x

)
n
]]

n : (4.5)

One can rewrite Eqs. (4.5) in a “Newtonian” form

m �x= F− 1
@f=@x2

[
F · @f
@x

+ m ẋ · d
dt

(
@f
@x

)]
@f
@x

= F−
[
F · n+ m ẋ · d

dt
n
]
n : (4.6)

The r.h.s. of Eq. (4.6) describes the force acting on the constrained particle moving on
the surface S. This force consists of two parts: the potential force and the constraint
reaction’s force, which is always orthogonal to the surface.

5. The physical pendulum

A rigid body, in classical non-relativistic mechanics, is de�ned as a constrained
system of �nite number of particles (atoms). For rigid body consisting of N particles
one has (3N − 6) con�guration constraints. Can one handle this within the context
of the Dirac constraints discussed in Section 3? On a �rst glance the use of the
Dirac constraints for this purpose looks impractical for one has, seemingly, to handle
a (6N − 12) × (6N − 12) constraints matrix. The general way around that di�culty
will be presented elsewhere. Here we will show how a model, or the toy version, of
the Euler equation for rigid-body dynamics can be derived using the Dirac constraints
formulation. For that model we choose the physical pendulum consisting of N rigidly
tide planar mathematical pendulums as shown in Fig. 1. The usual polar coordinates
are used.

The relevant 2(N − 1) constraints are given by

�i = ’i+1 − ’1; �N−1+i =
p’i+1

mi+1r2
i+1

− p’1

m1r2
1
; i = 1; : : : ; N − 1 : (5.1)
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Fig. 1. Physical pendulum envisaged as consisting from N two-dimensional mathematical pendulums. The
gravitational �eld is pointing vertical (along the z-axis).

It is convenient to introduce the (N − 1) × (N − 1) matrix A,

A=
[
Aij

]
=



A1 X X : : : X X
X A2 X : : : X X
X X A3 : : : X X
: : : : : : : : : : : : : : : : : :
X X X : : : X AN−1


 ; (5.2)

where

X =
1
m1r2

1
; Ai = X +

1
mi+1r2

i+1
:

The 2(N − 1) × 2(N − 1)-matrix of constraints, W is then

W=
[

0 A
−A 0

]
: (5.3)

Using the properties of determinants and the induction method one can prove that the
inverse of the constraints matrix M=W−1 has the form:

M=
[

0 −A−1

A−1 0

]
=
[

0 −B
B 0

]
;

where

Bij =
1
IN

{ −mi+1r2
i+1mj+1r2

j+1 if i 6= j;
(IN − mi+1r2

i+1)mi+1r2
i+1 if i = j

(5.4)

and IN =
∑N

i=1 mir
2
i is a physical pendulum moment of inertia. The technique used for

calculating the matrix B = A−1 is presented in the Appendix. Having a explicit form
of the matrix M we can evaluate the Dirac brackets using expression (3.3). We obtain

v ’i; ’j w = v p’i ; p’j w = 0 ;

v ’i; p’j w =
mjr2

j

IN
for i; j = 1; 2; : : : ; N : (5.5)
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We shall call the above Poisson structure the Dirac structure of the planar physical
pendulum. By adding Dirac brackets of the remaining degrees of freedom (namely
translation motion) to system (5.5), we shall obtain the full Dirac structure for planar
motion of two-dimensional rigid bodies.

In order to illustrate how one can use the non-canonical brackets (5.5), we consider
a motion of physical pendulum in the external (homogenous) gravitational �eld. The
Hamiltonian of the system is obviously the sum of individual particles contributions:

H =
N∑
i=1

[
p2
’i

2mir2
i
− gmiri cos’i

]
: (5.6)

Using Dirac brackets (5.5) we get the equations of motion for individual pendulums:

’̇i = v ’i;H w =
1
IN

N∑
j=1

p’j ;

ṗ’i = v p’i ;H w = − g
IN
mir2

i

N∑
j=1

mjrj sin’j : (5.7)

Introducing now the center of mass coordinates (R; ’) de�ned as

MR sin’=
N∑
j=1

mjrj sin’j ; MR cos’=
N∑
j=1

mjrj cos’j ; (5.8)

where M =
∑N

j=1mj, we can easily see that the equation of motion for ’ is

�’= −gMR
IN

sin’ : (5.9)

The set of equations (5.7) is indeed equivalent to that of two-dimensional physical
pendulum.

6. Dirac bracket for inviscid compressible 
uid

In this section we show how the Poisson non-canonical brackets for ideal compress-
ible 
uid [11–13,17], and therefore the dynamic of a barotropic 
uid, can be derived
from that of a simple non-interacting dust subject to the Dirac constraints and follow-
ing the Dirac construction of constrained systems dynamics [7–9,14]. Elsewhere we
have shown how the use of the Dirac algorithm permits for a simple geometrical inter-
pretations for some non-canonical Poisson brackets appearing in physics, for example
description of ideal incompressible 
uid [10].

One can make use of our description in di�erent context solving mathematical prob-
lems. For example, one immediate consequence of our construction is that the Jacobi
identity for the hydrodynamical brackets is automatically satis�ed, when the direct
proof of that identity is cumbersome.
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6.1. Potential 
uid

Consider now a phase space of a “dust” with �eld variables %(x); �(x) and their
canonical conjugate momentum �%(x);��(x). The physical interpretation of these vari-
ables is quite intuitive. �(x) is the radius vector of the dust particle at the point x and
its canonical momentum ��(x) = %0m u(x), where %0 is constant with dimension of
density, u(x) is the particle velocity, m is the particle mass. One should imagine that
each dust particle is labelled by its initial position and �(x; t) is the position of a
particle labelled by a vector x at time t. %(x) is an additional �eld variable which is
interpreted as the “ghost” particle number density, and �%(x) is its canonical conjugate
momentum.

The canonical Poisson structure for our dust plus the ghost �elds is speci�ed by
assumption that

{%(x);�%(y)} = �(x− y) ;
{�i(x);�j

�(y)} = {�i(x); m%0uj(y)} = �ij�(x− y) (6.1)

with all other Poisson brackets equal to zero.
To de�ne the system dynamics we postulate the “dust” Hamiltonian as

H = Hk + Hp =
∫ |��(x)|2

2m%0
d3x +

∫
F

(
%(x);�%(x)

)
d3x

=
∫

1
2m%0|u(x)|2d3x +

∫
F

(
%(x);�%(x)

)
d3x : (6.2)

The physical interpretation of expression (6.2) is as follows. The �rst term represents
the dust kinetic energy and the second attaches some “energy” to the auxiliary density
�eld. The equations of motion for the dust, derived from (6.2) and using the original
Poisson brackets, (6.1), are indeed the dust equations of motion, i.e., each dust particle
moves with constant velocity. Indeed,

@%
@t

= {%;H} =
@F
@�%

;
@�%

@t
= {�%;H} = −@F

@%
;

@�i

@t
= {�i;H} = ui;

@ui

@t
= {ui;H} = 0 : (6.3)

The ghost-�eld dynamics, speci�ed entirely by choice of the “energy” F, is of no
importance.

Let us now subject our dust+ghost-�eld dynamics to the set of Dirac constraints.
Introducing �(x) as

�(x) = %0[1 −∇ · �(x)] ; (6.4)

we write the constraints as

�1(x) ≡ �%(x) = 0 ;

�2(x) ≡ %(x) − �(x) = %(x) − %0[1 −∇ · �(x)] = 0 : (6.5)
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The constraints �2 = 0 has a geometrical interpretation similar to that from elasticity
theory [18], namely that the divergence of the strain tensor equals to the volume change
of the material. The result of that constraint is that the “dust” �eld � and % become
coupled.

The constraints matrix Wij(x; y) ≡ {�i;�j} has the following form:

W(x; y) = �(x− y)
[

0 −1
1 0

]
(6.6)

and its inverse matrix kernel M=W−1 =−W. Applying now the Dirac formula (3.3),
see also [3,7–9], we found

v %(x); m%0ui(y) w = − %0
@
@xi

[�(x− y)] ;

v �i(x); m%0uj(y) w =�ij�(x− y) ; (6.7)

all the other Dirac brackets vanish.
The fact that v ui(x); u j(y) w = 0 is responsible for the fact that our formulation is

restricted to potential 
ow dynamics. Indeed, the vorticity �eld !=∇×u is a Casimir
since v %(x); !k(y) w = v uj(x); !k(y) w = 0, i.e., v !k(x);K(%; u) w = 0 for every
smooth function K.

Using constraints (6.5), and for ∇ · �.1 the kinetic part of the “dust” Hamiltonian
(6.2) can be rewritten as

Hk =
1
2

∫
m%0|u(x)|2 d3x =

1
2

∫
m%(x)|u(x)|2
[1 −∇ · �(x)]

d3x

' 1
2

∫
m%(x)|u(x)|2 d3x : (6.8)

The physical interpretation of the above approximation (6.8) is the following: the
kinetic energy of the dust particles in the in�nitesimal volume dV ′ is equal %0u2 dV ′ =
%u2dV ′=(1 − ∇ · �) ' %u2 dV , here dV = dV ′=(1 − ∇ · �) is an in�nitesimal volume
which is obtained from dV ′ by a deformation x→ x− �(x) [18].

Applying now the Dirac brackets to “dust” Hamiltonian (6.8) we obtain equations
of motion for dust subject to constraints (6.5). The resulting Dirac brackets equations
of motion are identical to these for ideal, barotropic, potential liquid 
ow equations:

@%
@t

= v %; H w = −
d∑
k=1

@
@xk

(%uk) = −∇ · (%u) ; (6.9)

@ui

@t
= v ui;H w = − @

@xi

[
1
2
|u|2 +

1
m
@F
@%

]
; (6.10)

@�%

@t
= v �%;H w = 0 ; (6.11)

@�i

@t
= v �i;H w =

%
%0
ui : (6.12)
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Eq. (6.9) is the continuity equation and in order to show that the Eq. (6.10) is the
Euler equation for potential 
ows one can use the identity

@
@xi

[
1
2
|u|2

]
= [u · ∇]ui + [u× (∇× u)]i : (6.13)

The remaining two equations have interesting interpretation. First of them, �%=0, is just
the other formulation of the continuity equation. The second one, %0 @t�(x)=%(x) u(x),
provides the expressions of the particle current in Lagrangian and Eulerian picture of
the 
uid.

In conclusion, we have shown that the canonical formulation of a barotropic, potential

uid dynamics can be envisaged as that of a dust subjected to the Dirac constraints.

6.2. Ideal compressible 
uid

We shall denote the 
uid mass density by % and its velocity by u. To analyze
non-potential 
ow of a barotropic 
uid we decompose the 
uid �eld velocity into the
Clebsch potentials as follows:

u(x; t) = ∇x�(x; t) + �(x; t)∇x�(x; t) : (6.14)

To use the Dirac formulation, we envisaged ideal compressible 
uid as a constrained
system which is described by four pairs of canonical conjugate functional variables
%;�%; �;��; �;��; �;�� with four following constraints �i = 0, i = 1; : : : ; 4

�1 ≡ �%; �2 ≡ %+ ��; �3 ≡ ��; �4 ≡ %�+ ��: (6.15)

Note that for a potential 
ow the system of four constraints (6.15) reduces to the
system of two constraints (6.5) in the section (6.1)

�1 = �%; �2 = %+ �� = %−∇ · �u: (6.16)

The matrix of constraints W(x; y) has the following form:

W(x; y) = �(x− y)




0 −1 0 −�
1 0 0 0
0 0 0 −%
� 0 % 0


 : (6.17)

The inverse matrix M=W−1 is given by

M(x; y) = �(x− y)




0 1 0 0

−1 0 �
% 0

0 − �
% 0 1

%

0 0 − 1
% 0



: (6.18)
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Applying the Dirac formulation we obtain the following non-zero brackets:

v %(x); �(y) w = � (x− y) ; v �(x); �(y) w =
�
%
� (x− y) ;

v �(x); �(y) w =
1
%
�(x− y); v�(x);��(y) w = �(x− y) ;

v �(x);��(y) w = �(x− y) ; (6.19)

all other brackets are zeros.
Introducing now variable �= �% and rewriting u in the form

u= ∇x �(x; t) +
�
%
∇x �(x; t) ; (6.20)

we obtain well-known canonical Poisson brackets

v %(x); �(y) w = v �(x); �(y) w = �(x− y) ; (6.21)

and all other Dirac brackets between �; �; �; % vanish.
Writing the Hamiltonian (6.2) in the Clebsch representation

H =
∫ {

1
2
%
[
(∇�)2 + 2�(∇� · ∇�) + �2(∇�)2] + F(%)

}
ddx : (6.22)

We see that the equations of motion for non-constrained system are

@%
@t

= 0;
@�
@t

= 0 ;
@�
@t

= 0;
@�
@t

= 0;

@�%

@t
= −

[ |u|2
2

+
@F
@%

]
;

@��

@t
= @i [%(@i�+ �@i�)] = ∇ · (%u) ;

@��

@t
= −%(@i�+ �@i�)@i� = −%u · ∇� ;

@��

@t
= @i[%�(@i�+ �@i�)] = ∇ · (%�u) : (6.23)

Under the presence of constraints (6.15) the simple dynamics (6.23) modi�es to the
dynamics for constrained system which follows:

@%
@t

= −∇ [%(∇�+ �∇�)] = −∇[%u];
@�%

@t
= 0 ;

@�
@t

= �u · ∇� −
( |u|2

2
+
@F
@%

)
;

@��

@t
= ∇ · (%u) ;

@�
@t

= 0;
@��

@t
= 0 ;

@�
@t

= −u · ∇�; @��

@t
= ∇ · (%�u) : (6.24)
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Knowing brackets (6.19) one can easily calculate non-canonical Poisson brackets
[11,12,18]:

v %(x); %(y) w = 0; v %(x); u i(y) w =
@
@yi
�(x− y);

v ui(x); u j(y) w =
1
%

(
@i�@j� − @i�@j�

)
�(x− y)

=
1
%
�ijk [∇× u]k�(x− y): (6.25)

The Dirac bracket (6.25) which applies to 
ow with non-zero vorticity, generalizes
bracket (6.7) for potential 
ow. It is worth to note that the Kelvin theorem follows
Eq. (6.25).

Having then we can write the Dirac brackets for two arbitrary functionals F;G of
the �eld (%; u) as

v F;G w (%; u) =
∫

dx dy
(
�F
�%(x)

�G
�ui(y)

− �G
�%(x)

�F
�ui(y)

)
v %(x); u i(y) w

+
(

�F
�ui(x)

�G
�uj(y)

− �G
�ui(x)

�F
�uj(y)

)
v ui(x); u j(y) w

=
∫

dx
(
−�F
�%

[
∇ · �G

�u

]
+
�G
�%

[
∇ · �F

�u

])

+
(
�F
�u

× �G
�u

)
· (∇× u) 1

%
: (6.26)

It is easy to see that the Dirac bracket (6.26) is the same as in [13].

7. Conclusions

We have shown how some problems from classical mechanics of constrained systems
can be handled within the framework of the Dirac formulation of constraints. The
particularly interested example of physical pendulum illustrates the general approach
to the constrained many particles (many objects) system. It also indicates that the
Dirac brackets can be generalized for the case of symplectic description on continuous
media mechanics. Elsewhere [10] we have shown how the Dirac constraints and the
following Dirac brackets can be used to describe symplectic dynamics of incompressible

uid and the constrained dust dynamics [14]. The Dirac constraints can also be used to
formulate the generalized (symmetric with respect to the electric and magnetic charges)
electrodynamics, to determine the Poisson structures for elasticity theory, non-linear
�-model [19], etc. The Dirac approach was found to be useful in [20].
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Appendix. Calculation of the matrix B

Following expression (5.2) let us denote

DN−1(A1; : : : ; AN−1;X ) = detA : (A.1)

One easily �nds the following recurrent property:

DN (A1; : : : ; AN ;X ) = (AN − X )DN−1(A1; : : : ; AN−1;X )

+ (AN−1 − X )(AN−2 − X ) : : : (A1 − X )X : (A.2)

Let Nij = {1; 2; : : : ; N − 1} − {i; j} be a set of natural number less than N and does
not contain element i; j, and let B= [Bij] = A−1. The elements of the matrix B are

Bij =
1

DN−1(A1; : : : ; AN−1;X )

{ −X �
k∈Nij

(Ak − X ) if i 6= j ;

DN−2(A1; : : : ; Âi; : : : ; AN−1;X ) if i = j ;

(A.3)

where Âk means that Ak is missing. Using the recurrent property (A.2), by induction
principle, one easily �nds that

DN−1(A1; : : : ; AN−1;X ) =
∑N

k=1mkr
2
k

�N
k=1mkr

2
k

=
IN

�N
k=1mkr

2
k
: (A.4)

Substituting Eqs. (A.4) to (A.3) we obtain Eq. (5.4).
Note that one can also use the theorem of Cayley–Hamilton to compute the

matrix B.
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