Gauge-invariant Variables in the Yang-Mills Theory

by

I. BIAŁYNICKI-BIRULA

Presented by L. INFELD on January 18, 1963

1. In two recent papers, Mandelstam [1] proposed a new scheme for quantizing electrodynamics and general relativity. In his gauge-independent formulation of quantum electrodynamics the quantities

\begin{align*}
F_{\mu\nu} &= A_{\mu,\nu} - A_{\nu,\mu}, \\
\Phi(x, P) &= \exp\left(ie \int_{-\infty}^{\infty} d\xi^{\mu} A_{\mu}(\xi)\right) \varphi, \\
\Phi^*(x, P) &= \exp\left(-ie \int_{-\infty}^{\infty} d\xi^{\mu} A_{\mu}(\xi)\right) \varphi
\end{align*}

are taken as basic field variables. The linear integrals in Eqs. (2) and (3)

\begin{align*}
\int_{-\infty}^{\infty} d\xi^{\mu} A_{\mu}(\xi) &= \int_{-\infty}^{\infty} d\tau \frac{d\xi^{\mu}}{d\tau} A_{\mu}(\tau)
\end{align*}

are evaluated along certain path \(P : \xi^\nu(\tau) \). The fields \(\Phi \) and \(\Phi^* \) will depend in general on this path which has been explictely indicated in formulas (2) and (3). The field equations expressed in terms of gauge-invariant variables have the form

\begin{align*}
(\Box + m^2) \Phi &= 0, \\
(\Box + m^2) \Phi^* &= 0, \\
F_{\nu,\nu} + j^\mu &= 0, \\
\dot{j}^\mu &= ie (\Phi^* \delta^\mu \Phi - \delta^\mu \Phi^* \cdot \Phi).
\end{align*}

Potentials do not appear in these equations.

[135]
2. In this paper we apply Mandelstam’s ideas to the Yang—Mills field [2]. For simplicity, we consider only a pure Yang—Mills field. The inclusion of other fields presents no additional difficulties, since the Yang—Mills field alone interacts with itself. The Lagrangian and the field equations for the Yang—Mills potentials \tilde{b}_μ have the form

$$L = -\frac{1}{4} \tilde{f}_{\mu\nu} \tilde{f}^{\mu\nu},$$

(9)

$$\tilde{f}_{\mu\nu} - 2i e \tilde{b}_\nu \times \tilde{f}^{\mu\nu} = 0,$$

(10)

$$\tilde{f}_{\mu\nu} = \tilde{b}_{\mu,\nu} - \tilde{b}_{\nu,\mu} + 2ie \tilde{b}_\mu \times \tilde{b}_\nu.$$

(11)

It is convenient to use matrix variables [2]

$$F_{\mu\nu} = \tilde{f}_{\mu\nu} \cdot \tilde{\tau}, \quad B_\mu = \tilde{b}_\mu \cdot \tilde{\tau},$$

where $\tilde{\tau}$ are the three Pauli matrices. In terms of these variables Eqs. (10) and (11) read

$$F_{\mu\nu} + i e [B_\nu, F^{\mu\nu}] = 0,$$

(13)

$$F_{\mu\nu} = B_{\mu,\nu} \mp B_{\nu,\mu} - i e [B_\mu, B_\nu].$$

(14)

Under the gauge transformation

$$S = \exp (-i e \lambda (x)),$$

(15)

where $\lambda (x) = \tilde{\lambda} (x) \cdot \tilde{\tau}$, the field variables B_μ and $F_{\mu\nu}$ transform as follows

$$'B_\mu = SB_\mu S^{-1} + ie^{-1} \partial_\mu S \cdot S^{-1},$$

(16)

$$'F_{\mu\nu} = SF_{\mu\nu} S^{-1}.$$

(17)

In contrast to the electromagnetic case the field strength $F_{\mu\nu}$ is not invariant under the gauge transformations.

3. We will construct in this paragraph the gauge-invariant field $(\mathcal{F}_{\mu\nu})$. Let $U(x,P)$ be the following path-dependent matrix

$$U(x,P) = T \exp \left(-ie \int_{-\infty}^{\tau} B_\mu d\xi^\mu \right) = T \exp \left(-ie \int_{-\infty}^{\tau} B_\mu (\tau) \frac{d\xi^\mu}{d\tau} d\tau \right),$$

(18)

where T denotes the τ-ordering of B_μ’s. The matrices $B_\mu (\tau)$ with larger values of τ stand to the left with respect to those with smaller τ. Following Mandelstam we define derivatives of the U matrix by the formula

$$\partial_\mu U(x,P) = \lim_{dx \to 0} \frac{U(x + dx, P') - U(x, P)}{dx},$$

(19)
where the paths P' and P differ by dx^μ. With the use of (18) we obtain

\begin{equation}
\partial_\mu U(x, P) = -ie \, B_\mu(x) \, U(x, P).
\end{equation}

The hermitian conjugate matrix U^+ can be written in the form

\begin{equation}
U^+(x, P) = \bar{T} \exp \left(ie \int_{-\infty}^{x} B_\mu \, d\xi^\mu \right),
\end{equation}

where \bar{T} denotes the anti-τ-ordering of B_μ's. U^+ obeys the equation

\begin{equation}
\partial_\mu U^+(x, P) = ieU^+(x, P) \, B_\mu(x).
\end{equation}

The gauge-invariant field $\mathcal{F}_{\mu\nu}$ is a path-dependent quantity and has the form

\begin{equation}
\mathcal{F}_{\mu\nu}(x, P) = U^+(x, P) \, F_{\mu\nu} \, U(x, P).
\end{equation}

As a result of Eqs. (10) and (11) it obeys the following equations

\begin{equation}
\mathcal{F}_{\mu\nu} = 0,
\end{equation}

\begin{equation}
\mathcal{F}_{\mu\nu, \lambda} + \mathcal{F}_{\lambda\mu, \nu} + \mathcal{F}_{\nu\lambda, \mu} = 0.
\end{equation}

We may also introduce path-dependent potentials. The field equations (25) guarantee the existence of the vector field B_μ which is linked to $\mathcal{F}_{\mu\nu}$ by the formula

\begin{equation}
\mathcal{F}_{\mu\nu} = B_{\mu, \nu} - B_{\nu, \mu}.
\end{equation}

4. The invariance of $\mathcal{F}_{\mu\nu}$ under the gauge transformations can be proved with the use of Eqs. (20) and (22) for the U matrix. The gauge-transformed $\mathcal{F}_{\mu\nu}$ is given by the formula

\begin{equation}
'\mathcal{F}_{\mu\nu} = 'U^+ \, 'F_{\mu\nu} \, 'U = 'U^+ \, SF_{\mu\nu} \, A^{-1} \, 'U,
\end{equation}

where

\begin{equation}
'U = T \exp \left(-ie \int_{-\infty}^{x} 'B_\mu \, d\xi^\mu \right),
\end{equation}

\begin{equation}
= T \exp \left[-ie \int_{-\infty}^{x} (SB_\mu \, S^{-1} + ie^{-1} \partial_\mu S \cdot S^{-1}) \, d\xi \right].
\end{equation}

The gauge-transformed U obeys the following differential equation

\begin{equation}
\partial_\mu 'U = -ie \, 'B_\mu \, 'U,
\end{equation}

\begin{equation}
= -ieS \, B_\mu \, S^{-1} \, 'U - (\partial_\mu S) \, S^{-1} \, 'U.
\end{equation}
On account of Eq. (20), the same differential equation obeys the matrix SU. Since the two matrices $'U$ and SU satisfy also the same boundary condition

$$SU|_{\tau = -\infty} = 1, \quad 'U|_{\tau = -\infty} = 1$$

it follows that they are identical

$$'U = SU, \quad 'U^+ = U^+ S^{-1}.$$

After substituting (31) into (27) we obtain

$$'\mathcal{F}_{\mu \nu} = \mathcal{F}_{\mu \nu}.$$

5. The matrix fields $F_{\mu \nu}$ can be replaced by three real (hermitian) fields $\mathcal{F}_{\mu \nu}^i$

$$\mathcal{F}_{\mu \nu}^i = 1/2 \text{Tr} (\mathcal{F}_{\mu \nu} \tau^i).$$

The formulas relating directly $\mathcal{F}_{\mu \nu}^i$ to isovectors $f_{\mu \nu}$ are, however, rather complicated.

The simplicity of Eqs. (24) and (25) as compared to Eqs. (10) and (11) suggests that gauge-independent fields $\mathcal{F}_{\mu \nu}$ may prove helpful in quantizing the Yang—Mills theory. Another interesting problem is an analogous construction of coordinate-independent variables in general theory of relativity.

Summary. The gauge-independent field variables in the Yang-Mills theory are explicitly constructed. The field equations obeyed by these fields are linear and coincide with field equations in electrodynamics.

REFERENCES