## Katja Sagerschnig## Contact Information
Center for Theoretical Physics PAS Al. Lotników 32/46 02-668 Warszawa, Poland e-mail: katja(at)cft.edu.pl |

I am an assistant professor (adiunkt) at the Center for Theoretical Physics of the Polish Academy of Sciences in Warsaw funded by a POLONEZ grant of the National Science Centre, Poland. Previously, I was a postdoc at the Politecnico di Torino, Italy, and at the Australian National University in Canberra, Australia. I received my PhD in mathematics from the University of Vienna, Austria, in 2008.

My POLONEZ project: Special geometries related to the exceptional group G_2.

### Research interests

### Papers

### Preprints

### Theses

*Weyl structures for generic rank two distributions in dimension five*, doctoral thesis, University of Vienna.
### Links

### Teaching

My POLONEZ project: Special geometries related to the exceptional group G_2.

Differential geometry. In particular, conformal geometry, Cartan geometries and parabolic geometries,
geometries of distributions and differential equations, applications of representation theory to geometry.

G. Manno, P. Nurowski, K. Sagerschnig, *The geometry of marked contact twisted cubic structures*, submitted.

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, *Conformal Patterson-Walker metrics*, Asian Journal of Mathematics (to appear).

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, *Fefferman-Graham ambient metrics of Patterson-Walker metrics*, Bulletin of the London Mathematical Society (2018).

Th. Leistner, P. Nurowski, K. Sagerschnig, *New relations between G_2 geometries in dimensions 5 and 7*, Int. J. Math. 28 (2017).

K. Sagerschnig, T. Willse, *The almost Einstein operator for (2,3,5) distributions*, Archivum Mathematicum (2017).

M. Hammerl, K. Sagerschnig, Josef Šilhan, Arman Taghavi-Chabert, Vojtěch Žádník, *A projective-to-conformal Fefferman-type construction*, SIGMA (2017).

K. Sagerschnig, T. Willse, *The Geometry of Almost Einstein (2,3,5) Distributions*, SIGMA (2017).

M. Hammerl, K. Sagerschnig, *The twistor spinors of generic 2- and 3-distributions*, Annals of Global Analysis and Geometry (2011).

M. Hammerl, K. Sagerschnig, *Conformal structures associated to generic rank 2 distributions on 5-manifolds-Characterization and Killing-field decomposition*, SIGMA (2009).

A. Cap, K. Sagerschnig, *On Nurowski's Conformal Structure Associated to a Generic Rank Two Distribution in Dimension Five*, Journal of Geometry and Physics (2009).

K. Sagerschnig, *Split octonions and generic rank 2 distributions in dimension 5*, Archivum Mathematicum (2006).

K. Sagerschnig, *Parabolic geometries determined by filtrations of the tangent bundle*, Rend. Circ. Mat. Palermo Suppl. ser. II (2006).

My papers on the arXiv.

*Schubert Cell Decomposition and Homology of Generalized Flag Manifolds*, diploma thesis, University of Vienna.

Lecture Course: Symmetries, Geometric Structures and Holonomy