Quantum Information is a rapidly developing field, attracting a large number of researchers, and leading to exciting practical applications. The main aim of the CTP Quantum Information Days workshop, as a part of the Warsaw Quantum Information Week, is to bring together young researchers working in the widely understood fields of quantum information and foundations of quantum theory. We hope to inspire vivid scientific discussions and foster new collaborations. Young researchers will have the possibility of presenting their recent results in a form of a talk (approx. 20 minutes long) or a poster. A number of invited talks by widely recognized scientists of younger generation is also planned. Right after the workshop, there starts a complementary event "Near-term Quantum Computing" taking place at the same venue. More information can be found here.
There is a conference fee of 250PLN per person. The details are in the Registration section.
The participants of the QID2020 conference who wish to take part in the workshop Near-Term Quantum Computing will have a discount for the latter: 500PLN for regular participants and 250PLN for students (instead of 1000 PLN and 450 PLN, respectively). For further discounts please contact the organizers via e-mail: nisq2020@cft.edu.pl
The organizers do not provide any accommodation. Please search for accommodation on your own (at booking.com or IF PAN Guest Rooms). Organizers do not pass any personal data to third parties in order to inform about possible accommodation places. Please do not answer any unexpected e-mails with respect to the hotel booking and never reveal your credit card number through e-mail or phone contact.
Please contact us at qid2020@cft.edu.pl in case you need any assistance.
Organizers (LOC):
Remik Augusiak (Center for Theoretical Physics PAS, Warsaw)
Jarek Korbicz (Center for Theoretical Physics PAS, Warsaw)
Adam Sawicki (Center for Theoretical Physics PAS, Warsaw)
Scientific Committee:
Antonio Acín (The Institute of Photonic Sciences, Barcelona)
Remik Augusiak (Center for Theoretical Physics PAS, Warsaw)
Matthias Kleinmann (University of Siegen)
Jarek Korbicz (Center for Theoretical Physics PAS, Warsaw)
Adam Sawicki (Center for Theoretical Physics PAS, Warsaw)
Paul Skrzypczyk (University of Bristol)
Jordi Tura (Max-Planck-Institute of Quantum Optics, Munich)
Julio de Vicente (Charles III University of Madrid)
Steady technological advances are paving the way for the implementation of the quantum internet, a network of locations interconnected by quantum channels. In this talk I will describe a model to simulate a quantum internet based on optical fibers and employ network-theory techniques to characterize the statistical properties of the photonic networks it generates. This model predicts (i) a phase transition between a disconnected and a highly-connected phase, (ii) that the typical photonic networks do not present the small world property, but that (iii) they are highly aggregated. Our results provide quantitative benchmarks for the development of a quantum internet, as for example the minimum density of nodes needed to have a fully connected network and for the average distance between nodes.
In this talk I will discuss several methods to analyze high-dimensional entanglement and coherence. First, I will present the approach of multi-level entanglement, which is defined by the property that it cannot be simulated with small-dimensional quantum systems. Second, I will discuss methods to estimate coherence of quantum states and majorization properties of their eigenvalues from few measurement data.
We consider a paradigm for discrete quantum heat machines where we allow only for coupling two systems at a time, and there is explicit battery. The evolution in each discrete step is given by energy preserving unitary transformation. We first verify laws of thermodynamics in such a paradigm, emphasizing the role of ergotropy. We then obtain analytically optimal efficiency and work production over all the minimal-coupling heat engines with single qubit working body and minimal number of strokes (i.e. three). One of our main tools is and object which we call control-marginal state. It acts only on the Hilbert space of the working body, but encapsulates all the features of the joint working body and battery system. Thanks to it in our optimization we can take into account possible coherences as well as entanglement between working body and battery.
Harnessing the flow of proper time of arbitrary external systems over which we exert little or no control has been a recurring theme in both science and science-fiction. Unfortunately, all relativistic schemes to achieve this effect beyond mere time dilation are utterly unrealistic. In this talk, I will present non-relativistic scattering experiments which, if successful, freeze out, speed up or even reverse the free dynamics of any ensemble of quantum systems present in the scattering region. This "time warping" effect is universal, i.e., it is independent of the particular interaction between the scattering particles and the target systems, or the (possibly non-Hermitian) Hamiltonian governing the evolution of the latter. The protocols require careful preparation of the probes which are scattered, and success is heralded by projective measurements of these probes at the conclusion of the experiment. We fully characterize the possible time translations which one can effect on n target systems through a scattering protocol of fixed duration; the core result is that time can be freely distributed between the systems, and reversed at a small cost. For high n, our protocols allow one to quickly send a single system to its far future or past.
Quantum non-locality and entanglement are inextricably linked. However, while entanglement is necessary to achieve non-locality, it is not sufficient in the standard Bell scenario. Notwithstanding, this does not preclude the equivalence of entanglement and non-locality if the set of possible states is restricted or if more general scenarios are considered. On the one hand, it has been proven that all pure entangled states are nonlocal. On the other hand, it is known that local entangled states distributed in networks can lead to non-local correlations. In this talk I will address these questions in the genuine multipartite scenario. I will show that any star network in which each external node shares an arbitrary pure entangled state with the central node can give rise to genuine multipartite non-local (GMNL) behaviours. Interestingly, I will use this result to prove that all pure genuine multipartite entangled (GME) states are GMNL in the sense that measurements on a finite number of copies of any GME state lead to GMNL behaviours. This is joint work with P. Contreras-Tejada and C. Palazuelos.